Products, Sup, Inf, and Absolute Value

December 5, 2012

Theorem 1. Let f, g be integrable. Then $f^+, |f|, fg, \sup(f, g), \inf(f, g)$ are integrable.

Proof. We first prove that f^+ is integrable. It is easy to check that

$$S_{\mathcal{P}}(f^+) - s_{\mathcal{P}}(f^+) \le S_{\mathcal{P}}(f) - s_{\mathcal{P}}(f).$$

This proves that f^+ is integrable. Since $f = f^+ - f^-$, f^- is integrable. Now it follows that $|f| = f^+ + f^-$ is integrable. Because

$$\inf(f, g) = \frac{1}{2} (f + g - |f - g|)$$

$$\sup(f, g) = \frac{1}{2} (f + g + |f - g|)$$

 $\sup(f,g)$ and $\inf(f,g)$ are integrable. Next, suppose that $f\geq 0$. Let $m_j=\inf\{f(x):x\in I_j\}$ where I_j is a subinterval and $M_j=\sup\{f(x):x\in I_j\}$. Also let $K=\sup\{f(x):x\in I\}$, where I is the interval of integration. Then $M_j^2-m_j^2\leq 2K(M_j-m_j)$. Hence

$$S_{\mathcal{P}}(f^2) - s_{\mathcal{P}}(f^2) \le 2K(S_{\mathcal{P}}(f) - s_{\mathcal{P}}(f)).$$

This proves that if $f \ge 0$ and f is integrable, then f^2 is integrable. Now let f be any integrable function. Then for some c, $g = f - c \ge 0$ and hence $g^2 = f^2 - 2cf + c^2$ is integrable. Hence f^2 is integrable. Finally suppose f and g are integrable. Then $(f+g)^2$, $(f-g)^2$ are integrable. Hence $fg = \frac{1}{4}((f+g)^2 - (f-g)^2)$ is integrable.

Corollary 1. Let A, B be measurable sets. Then $A \cup B$ and $A \cap B$ are measurable.

Proof.

$$\chi_{A \cup B} = \sup(\chi_A, \chi_B), \ \chi_{A \cap B} = \inf(\chi_A, \chi_B)$$