Riemann Integral
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This note gives a proof that a bounded function is Riemann integrable if and only if it is continuous
except on a set of Lebesgue measue 0. We will say f is continuous almost everywhere if it is continous
except on a set of measure 0. To prove this we will introduce several key ideas.

Let K be a set in R™.

Definition 1. The Lebesgue number of an open cover {Uy} of a set K is a number 6 > 0 with the property
that for each point a € K the set {z : |v —a| < 6} is a subset of some set U, in the cover.

Theorem 1. FEvery open cover of a compact set has a Lebesgue number.

Proof. For each point z € K, x € U, for some set U,. Since U, is open, there is a d, so that {y : |y — x| <
8z} C U, Since K is compact, there is a finite cover {W;} where W; = {y : |y — 25| < 305,}. Let
§ = 2 min{d,,}. Let a € K and let |y — a| < 6. Now a € W, for some j hence |a — 2| < 16,,. Then
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so y € U, for some a. O
(This is the proof that Cory suggested.)

Definition 2. The oscillation of a function on a set S is
Q¢(S) =sup{f(z) :x € S} —inf{f(z) : xz € S}.

The oscillation function is
wpe) = lm Q({y : ly — 2] < e}).

Remark 1. f is continuous at x if and only if ws(x) = 0.
Remark 2. If wg(x) < a then there is neighborhood W of x so that Qp(W) < .

Proposition 1. Let f be defined on a compact set. Let Do = {x : wg(x) > a}. Then D, is a closed
compact set.

Proof. Let « ¢ D,. Then ws(xz) < a and hence Q¢({y : |y — z| < €} < «a for small enough e. But this
implies that w(y) < a when |y — x| < € so the complement of D, is open and D, is closed. O

Corollary 1. If A is compact and u(A) =0 then ¢(A) = 0.

Proof. If we have a countable open cover Uy of A such that > |Ug| < e then any finite subcover satisfies
Z ’U k‘j‘ < €. ]

Let Dy = {x : wg(z) > 0 (the discontinuity set of f).



Theorem 2. Let f be defined and bounded on an interval [a,b]. Then f is Riemann integrable if and only
if p(Dy) =0 where p is Lebesgue measure.

Proof. Assume f is Riemann integrable. We will show p(Dy) = 0 by showing that ¢(D,) = 0 for any o > 0
where c is the Jordan content of D,. Suppose

Sp(f) —sp(f) < ae.

Let Ji be the intervals in the partition P that have a point of D, in their interior. Then

Q> [Tl < (Mg — my)| k| < e,
k k

hence ), |Jk| < e. The intervals Jj cover D, except for the finite number of points of D, that do not
belong to the interior of some interval of P. We can find a finite number of small additional intervals
around these points such that the sum of their lengths is less than e. So we have a finite set of intervals
that cover D, such that the sum of their lengths is less than 2¢ and hence ¢(D,) = 0.

Assume that u(Dy) = 0. Then p(D.) = 0 for all € and since D, is compact ¢(D.) = 0. Choose a
finite set of intervals Ji such that D, C Uinterior(Jy) and > |Ji| < e. Notice I chose the same ¢, which I
am allowed to do. Let K = [a,b] — Uinterior(Jy). Then K is a finite union of closed intervals and hence
compact. For each x € K there is an open interval W, such that Q;(W,) < e by definition of w(x), remark
2, and since K N D, = (). Let § be a Lebesgue number for the cover {W,}. Choose a (finite) refinement of
the intervals in K so that each of the intervals I in the refinement has length less than §. Then on each
of these intervals Q¢(I) = (M; — m;) < e. So for the partition P consisting of the Jj intervals and the
intervals refining K we have

Sp(f) = sp(f) < 2Me+e(b - a),

where we have made an obvious over estimate of the lengths of the intervals in K and used the assumption
that |f(z)| < M (f is bounded). Now we are done.
O



