Riemann Integral

November 19, 2011

This note gives a proof that a bounded function is Riemann integrable if and only if it is continuous except on a set of Lebesgue measure 0. We will say f is continuous almost everywhere if it is continuous except on a set of measure 0. To prove this we will introduce several key ideas.

Let K be a set in \mathbb{R}^n .

Definition 1. The Lebesgue number of an open cover $\{U_{\alpha}\}$ of a set K is a number $\delta > 0$ with the property that for each point $a \in K$ the set $\{x : |x - a| < \delta\}$ is a subset of some set U_{α} in the cover.

Theorem 1. Every open cover of a compact set has a Lebesgue number.

Proof. For each point $x \in K$, $x \in U_{\alpha}$ for some set U_{α} . Since U_{α} is open, there is a δ_x so that $\{y : |y - x| < \delta_x\} \subset U_{\alpha}$. Since K is compact, there is a finite cover $\{W_j\}$ where $W_j = \{y : |y - x_j| < \frac{1}{2}\delta_{x_j}\}$. Let $\delta = \frac{1}{2}\min\{\delta_{x_j}\}$. Let $a \in K$ and let $|y - a| < \delta$. Now $a \in W_{x_j}$ for some j hence $|a - x_j| < \frac{1}{2}\delta_{x_j}$. Then

$$|y - x_j| \le |y - a| + |a - x_j| < \delta + \frac{1}{2} \delta_{x_j} \le \delta_{x_j},$$

so $y \in U_{\alpha}$ for some α .

(This is the proof that Cory suggested.)

Definition 2. The oscillation of a function on a set S is

$$\Omega_f(S) = \sup\{f(x) : x \in S\} - \inf\{f(x) : x \in S\}.$$

The oscillation function is

$$\omega_f(x) = \lim_{\epsilon \to 0} \Omega_f(\{y : |y - x| < \epsilon\}).$$

Remark 1. f is continuous at x if and only if $\omega_f(x) = 0$.

Remark 2. If $\omega_f(x) < \alpha$ then there is neighborhood W of x so that $\Omega_f(W) < \alpha$.

Proposition 1. Let f be defined on a compact set. Let $D_{\alpha} = \{x : \omega_f(x) \geq \alpha\}$. Then D_{α} is a closed compact set.

Proof. Let $x \notin D_{\alpha}$. Then $\omega_f(x) < \alpha$ and hence $\Omega_f(\{y : |y - x| < \epsilon\} < \alpha$ for small enough ϵ . But this implies that $\omega_f(y) < \alpha$ when $|y - x| < \epsilon$ so the complement of D_{α} is open and D_{α} is closed.

Corollary 1. If A is compact and $\mu(A) = 0$ then c(A) = 0.

Proof. If we have a countable open cover U_k of A such that $\sum |U_k| < \epsilon$ then any finite subcover satisfies $\sum |U_{k_j}| < \epsilon$.

Let $D_f = \{x : \omega_f(x) > 0 \text{ (the discontinuity set of } f).$

Theorem 2. Let f be defined and bounded on an interval [a,b]. Then f is Riemann integrable if and only if $\mu(D_f) = 0$ where μ is Lebesgue measure.

Proof. Assume f is Riemann integrable. We will show $\mu(D_f) = 0$ by showing that $c(D_\alpha) = 0$ for any $\alpha > 0$ where c is the Jordan content of D_α . Suppose

$$S_P(f) - s_P(f) < \alpha \epsilon$$
.

Let J_k be the intervals in the partition P that have a point of D_{α} in their interior. Then

$$\alpha \sum_{k} |J_k| \le \sum_{k} (M_k - m_k)|J_k| < \alpha \epsilon,$$

hence $\sum_k |J_k| < \epsilon$. The intervals J_k cover D_α except for the finite number of points of D_α that do not belong to the interior of some interval of P. We can find a finite number of small additional intervals around these points such that the sum of their lengths is less than ϵ . So we have a finite set of intervals that cover D_α such that the sum of their lengths is less than 2ϵ and hence $c(D_\alpha) = 0$.

Assume that $\mu(D_f) = 0$. Then $\mu(D_\epsilon) = 0$ for all ϵ and since D_ϵ is compact $c(D_\epsilon) = 0$. Choose a finite set of intervals J_k such that $D_\epsilon \subset \cup interior(J_k)$ and $\sum |J_k| < \epsilon$. Notice I chose the same ϵ , which I am allowed to do. Let $K = [a, b] - \cup interior(J_k)$. Then K is a finite union of closed intervals and hence compact. For each $x \in K$ there is an open interval W_x such that $\Omega_f(W_x) < \epsilon$ by definition of $\omega_f(x)$, remark 2, and since $K \cap D_\epsilon = \emptyset$. Let δ be a Lebesgue number for the cover $\{W_x\}$. Choose a (finite) refinement of the intervals in K so that each of the intervals I in the refinement has length less than δ . Then on each of these intervals $\Omega_f(I) = (M_i - m_i) < \epsilon$. So for the partition P consisting of the J_k intervals and the intervals refining K we have

$$S_P(f) - s_P(f) < 2M\epsilon + \epsilon(b-a),$$

where we have made an obvious over estimate of the lengths of the intervals in K and used the assumption that |f(x)| < M (f is bounded). Now we are done.