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Abstract

Letp: Ra -*• R be a polynomial with a local minimum at its only critical point. This must give a
global minimum if the degree ofp is < 5, but not necessarily if the degree is > 5. It is an open
question what the result is for cubics and quartics in more variables, except cubics in three
variables. Other sufecient conditions for a global minimum of a general function are given.

1980 Mathematics subject classification (Amer. Math. Soc): 26 B 99, 26 C 99.

1. Introduction

In a course on calculus of several variables one has to deal with global extrema
as well as local. If/: R->R has a local minimum at a certain point, and has no other
critical points, then the local minimum becomes the global minimum. The purpose
of this paper is to extend this result to functions of several variables. In general,
the analogous result is false for several variables as shown in Theorem 1. However,
the result holds under certain additional conditions. These are obtained in Theorems
2, 3, 4, 5 and 6.

For integers n> 1 we let x = (xx, x2,...,xn) denote a point in the Euclidean space
R", and || x || = (xf +... + x\)*, the norm of x. We denote the derivative of/: Rn -+ R
by Df=(D1f,...,Dnf). We also use the notations (x,y) and (x,y,z) to denote
points in Ra and R3.

We make use of the notion of topological degree and refer the reader to Cronin
(1964) for this concept.

We thank David B. Gauld for his comments.
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2. A counterexample

We give a simple counterexample in Theorem 1 to show that a unique critical
point may give a local minimum but not a global minimum. In general for a non-
polynomial counterexample one may take almost any function/: Rn-*R, n^-2,
with a local minimum at a and /(b) </(a) for some b, and restrict / to some set
containing a and b but no critical points =£ a of/and which is diffeomorphic to R™.

THEOREM 1. For all integers p^S and q~^2 there exists a polynomial in
x = (xv ...,xg) ofdegree p with local minimum at the only critical point 0 but which
is not bounded above or below.

PROOF. Let/(x) = x\m(\ + 3%=2xiT + 'Zi=ixin> w h e r e n,m>l, with

max (2m + 3,2n) = p.

For x near 0, (l + 2?_2Jti)>£ and/(x)^xfm/2+Sf= 2x|">0 for x^O. For a
critical point we have £»/(x) = (^/(x),.. .) = 0. That is,

DJ(x) = 2mxf-*(l + £xi)
3 = 0

and fory = 2 q, Dtf(x) = 3xlm(l + 2$=2xi)
2+2nxJn-1 = 0. From the second

equation, if xt = 0 then x, = 0. From the first, if xx^0 then 1 + E?=2*i = 0, and
then from the second, x,- = 0, for eachy = 2, ...,q, a contradiction. Hence 0 is the
only critical point. If 2m + 3>2n,f(x1,x1,0, ...,0) is of odd degree in xlt and if
2m + 3 < In, then f(x\n, xx, 0,..., 0) is of odd degree 4mn+3. In either case /-> + oo
as j ^

3. Sufficient conditions

From Theorem 1 we see that a unique critical point which gives a local minimum
need not give a global minimum even for polynomials in two or more variables,
provided the degree exceeds four. What about degree ^4? Of course, for degree
one the result is trivially true, and for degree two the result follows by homogeneity
or from the theory of quadratic forms. The result is also true for convex functions,
and some functions derived from these. We now show the result is true for a cubic
in two or three variables and a quartic in two variables. The remaining cases are
still open. However, we note that Theorem 6 shows that if the result holds for a
quartic in n variables then it holds for a cubic in «+1 variables.

THEOREM 2. Let f: Rn->R be a C1 function with a local minimum at 0 and no
other critical point. Suppose that ifx(t) is an integral curve for the gradient Dfoff
withf(x(t)) bounded then x(t) is also bounded. Then f has a global minimum at 0.
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PROOF. We may assume that /(0) = 0. For s > 0, small, we have a compact
(n — l)-manifold {x:| |x| | small, / (x) = s} = c(s). For $ and x large possibly, we
extend these level sets by continuity, in fact, if we parametrize c(s) as c(s, t), then
dc/8s(s,t) = Df(c(s,t))/\\Df(c(s,t))\\2. We suppose there is k = sup{j: c(s) a
compact (« — l)-manifold} < oo. If the images of e(s) for s < k cover Rm we are done.
Otherwise c(k) is unbounded, and there is an integral curve x(r) with/(x(r))->fc
as r-^-oo and x(r) unbounded. This contradicts our hypothesis. Thus k = oo and
hence the images of c(s) for s < k cover Rn.

COROLLARY 1. Let f: Rre-»R be C1 with a local minimum at 0 and no other
critical point. Suppose there are 8>0 and M>0 such that for all x eR n wi7A||x||>il/
we have || Z)/(x)|| > S. Then f has a global minimum at 0.

PROOF. This follows from the fact that if the integral curve x(s) is parametrized
with respect to arc length s, then df/ds = || Z)/(x(s))||.

THEOREM 3. Let p: R"->R be a polynomial of degree q. Let pq, the homogeneous
part of degree q, be such that after any change of coordinates there is a term in
x9n or x^^Xjfor somej<n. Ifn = 2, this means there are no repeated linear factors
in pq. For n>2, this means ifpq(x) = 0 when Px = 0, P a projection of rank < n, we
do not have a function a. of(I-P)x with \pg(x)\a\\Px\\2 oc((I-P)x).

Suppose p has a local minimum at 0 but no other critical point. Then p has a
global minimum at 0.

PROOF. Claim Dpq^0 away from 0. If not, after a change of coordinates we
could suppose Dpq = 0 along the xn axis. There would be no term in x^^Xj for
a n y y = 1. . . , « • This proves the claim.

By compactness, for | |x|| = 1, ||Z>/>8(x)||#:A:>0. By homogeneity of degree q— 1,
|[ 7>pa(x) || > /: || x [|«-i for aU x.

Since D(p -pq) is of degree < q - 2, || D(p -pq) (x) || < M( || x ||«-2 +1) for some M.
Then for | |x|| large, || Dp(x)\\^l. The result follows by Corollary 1 of Theorem 2.

For « = 2, there is a repeated root if and only if after a change of variables

Pq(x, y) =

if and only if with these coordinates pq(x, y) has no term in j 9 " 1 x or y9.

LEMMA 1. Let p: Rre->-R be C1 with local minimum at 0 and no other critical point.
Then deg(Dp, B, 0) = 1 for B a ball centred at 0.

PROOF. Since 0 is the only critical point it suffices to show deg (£>/>, Af,0) = 1
for M any «-manifold with boundary containing 0. Let ^(0) = 0. On a small
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neighbourhood U of 0 we may suppose />(x)>0 since Dp(x)^ot for x#0. Let the
closed ball Br(0)^U with p(x)^S>0 for ||x|| = r. Take ke(0,8) and let
M = {xeBr(Q): p(x)^k}. Then M is compact, and Dp points outward at all
boundary points of M. By the Poincare-Hopf Theorem of Milnor (1965), p. 35,
the sum of the indices of Dp at its zeros is \(M). M is contractible since any integral
curve for -Dp must converge to 0, giving \(M) — 1- (Let dx/dt = -Dpx(t), and
x(t(n))-^xx for a sequence t(n)->oo. Then x(t(n)) is in a neighbourhood of x^
isomorphic by the implicit function theorem to the product of an open level set
for p through xx, and a real interval corresponding to the value of p. This contra-
dicts the fact p(x(t(ri))) is decreasing.)

LEMMA 2. Let p(x,y) be a polynomial in two variables, homogeneous of degree q,
with n linear factors a^+b^, none repeated. Then for B a ball centred at 0,
deg(Dp,B,0) = 1 —n. (There are \(q-ri) quadratic factors.)

PROOF. Suppose p is equal to zero along two rays. As we move anticlockwise
through an angle 6 from the first to the second, Dp moves clockwise through an
angle tr/2- 6. Going through all 2n of these ups and downs of p, we see that Dp
winds n— I times clockwise round 0.

THEOREM 4. Let pipe, y) be a cubic in two variables. Suppose p has a local minimum
at 0. Then p has other critical points.

PROOF. If there are no repeated roots in p3, the cubic term, Theorem 3 gives the
result. Thus we let/>3 have a double or triple root, and after a linear transformation
we have either

(i) p(x,y) = xiy+ax2+2bxy+cy2 or
(ii) p(x, y) = x3+ax2+2bxy+cy2.

For a local minimum at 0 we must have a > 0, b > 0, hP < ac, under the supposition
Dp(x)^ 0 for x# 0, which gives p(x) > 0 for x ^ 0 near 0.

(i) We want to find (x,y) with

0 = Dp{x, y) = (2xy + 2ax + 2by, 2bx + 2cy + x2).

From D2p = 0 we have y = —x(x+2b)/2c. And substituting in Dxp = 0 and
cancelling x (assuming x^ 0) gives x2+3bx+2(62—ac) = 0. This has real roots, ^ 0.

(ii) We want (x,y) with

0 = Dp(x,y) = (3x2+2ax+2by,2bx+2cy).

We solve 3x2+2(a-b2/c)x = 0. This has a nonzero root.
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THEOREM 5. Letp(x, y) be a quartic in two variables. Supposep has a local minimum
at 0 and this is the only critical point. Then p has a global minimum at 0.

PROOF. We have many cases exhibited below. We leave the reader to check most
of the results, which involve calculation of degrees by diagram sketching.

(0) There are no repeated linear factors in/>4, the homogeneous part of degree 4.
Deg (Dp, B, 0) = — 3 or — 1 or p has a minimum at 0.

(1) There is a fourfold linear factor in pt, after a linear transformation,

p(x,y) = Sxi+dxs+ex2y+fxy2+gy3+ax2+2bxy+cy2.

(a) g*
(b)# = 0 , /#0 , degree = - 1 .
(c) g = / = 0, p has a minimum at 0.

(II) There is a triple factor in pt,

p(x,y) = x3y+dx3+ex2y+fxy2+gy3+ax2+2bxy+cy2.

(a) g¥=0,f^0, degree = - 1 .
Q>) g¥=0,f=0, degree = - 1
(c) g = 0, /V 0, degree = - 2 .
(A)g=f=0, degree = - 1 .

(III) There is a double factor and two other linear factors in pt,

p(x,y) = x2y(8y+hx)+dxt+ex2y+fxy2+gya+ax2+2bxy+cy2.

(a) g¥=0, degree = 0, — 1 or —2.
(b) g = 0, degree = - 1 , - 2 or - 3 .

2. h = 0
(a) g =£ 0, d^ 0, degree = - 1 .

(i) S = - 1 , degree = 0.
(ii) S = 1

(a) e2 < 4a, degree = 0.
(b) e2>4a, degree = - 2 .
(c) ^ = 4^

(a) e/V 4b, degree = - 1 .
OS) e/= 46, degree = - 2 , - 1 or 0.

(c) g = 0, rf^ 0, degree = -2, -1 or 0.

(i) S = - l , degree = - 3 .
(ii) S = 1



[6] Local and global extrema 367

(a) e2<4a,P<4c, minimum at 0.
(b) e2>4a,P> 4c, degree = - 3.
(c) e2 > 4a, P < 4c or vice versa, degree = — 1.
(d) e2 = 4a

(i)P<4c
(a) 4b / ef, degree = 0.
(b) 4b = ef, minimum at 0.

(a) 4b # <?/, degree = - 2 .
(b) 4b = ef,Q not the only critical point,

(iii) P = 4c
(a) 46 ̂  e/, degree = — 1.
(b) 4b = ef, 0 not the only critical point.

(IV) There is a double linear factor and a quadratic,

p(x,y) = 8x2(x2+y2)+....

(a) g * 0, degree = 0.
(b)g = 0

(i)/2>4Sc, degree = - 1 .
(ii) P<48c, use Corollary 1 of Theorem 2.
(iii) /a = 48c

(a) e/V 46, degree = 0.
(b) e = b = 0, minimum at 0.
(c) e/= 46 # 0, 0 not the only critical point.

THEOREM 6. Let p be a cubic in x, y and z, with local minimum at 0. Then p has
another critical point.

PROOF. By Theorem 3, we may assume

p(x,y,z) = ax*+bf+cx2y+dx*z+exf+ffz

+gxyz+hx2+iy2 +jz2+Tkxy+2mxz+2nyz.

D3p = 0 when z = -(dx+fyP+gxy+lmx+lnyyij = Q(x,y) say. Let

P(x,y)=p(x,y,Q(x,y)).

A critical point (x,y) for P gives a critical point (x,y, Q(x,y)) for p by the chain
rule. Since P is of degree s* 4 with local minimum at 0, we need to show P(x, y)<0
for some (x,y). Pl{x,y) = (dx2+fy2+gxy)2/-4j. If P(x,y)>0 then P4 = 0.
Assuming P(x,y)^0 still, P3 = 0, which contradicts p being a cubic.
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