Jensen Inequality

Theorem 1. Let f be an integrable function defined on $[a, b]$ and let ϕ be a continuous (this is not needed) convex function defined at least on the set $[m, M]$ where m is the int of f and M is the sup of f. Then

$$
\phi\left(\frac{1}{b-a} \int_{a}^{b} f\right) \leq \frac{1}{b-a} \int_{a}^{b} \phi(f)
$$

Proof. We take the following definition of a convex function. ϕ is convex if for every point $\left(x_{0}, \phi\left(x_{0}\right)\right)$ on the graph of ϕ there is a line $y=\alpha\left(x-x_{0}\right)+\phi\left(x_{0}\right)$ such that $\phi(x) \geq \alpha\left(x-x_{0}\right)+\phi\left(x_{0}\right)$ for all x in the domain of ϕ. Now let $x_{0}=\frac{1}{b-a} \int_{a}^{b} f$ and integrate the inequality

$$
\phi(f(x)) \geq \alpha\left(f(x)-x_{0}\right)+\phi\left(x_{0}\right)
$$

We get

$$
\int \phi(f) \geq \alpha\left(x_{0}-x_{0}\right)(b-a)+(b-a) \phi\left(x_{0}\right)=(b-a) \phi\left(\frac{1}{b-a} \int_{a}^{b} f\right)
$$

which is what we want. This is much easier to remember if $b-a=1$:

$$
\phi\left(\int f\right) \leq \int \phi(f)
$$

Restated:

$$
\phi(\operatorname{average}(f)) \leq \operatorname{average} \phi(f)
$$

