Heine-Borel Theorem

October 7, 2013

Theorem 1. $K \subset \mathbb{R}^{n}$ is compact if and only if every open covering $\left\{U_{\alpha}\right\}$ of K has a finite subcovering $\left\{U_{\alpha_{1}}, U_{\alpha_{2}}, \ldots, U_{\alpha_{s}}\right\}$.

We first discuss countability.
Definition 1. $-A$ set X is countable if its elements can be put in a seqeuence

$$
X=\left\{x_{1}, x_{2}, \ldots, x_{k}, \ldots\right\}
$$

Let $\left(a_{k}\right),\left(b_{k}\right),\left(c_{k}\right)$ be sequences. Then $\left(a_{1}, b_{1}, c_{2}, a_{2}, b_{2}, c_{2}, \ldots\right)$ is a sequence. Similarly, if $A_{k}, k=$ $1, \ldots, m$ is a finite set of countable sets $A_{1} \cup A_{2} \cdots \cup A_{m}$ is a countable set. Moreover, if $\left(A_{1}, A_{2}, \ldots\right)$ is a sequence of countable sets, $A_{1} \cup A_{2} \cup \ldots$ is a countable set. To prove this, let $A_{k}=\left\{a_{k 1}, a_{k 2}, a_{k 3}, \ldots\right\}$. Then

$$
A_{1} \cup A_{2} \cup \cdots=\left\{a_{11}, a_{12}, a_{21}, a_{13}, a_{22}, a_{31}, \ldots\right\} .
$$

Using this we can prove that the set of points $\{(p, q): p \in \mathbb{Z}, q \in \mathbb{Z}\}$ is a countable set. If we consider only those points with $p>0, q>0$ we can prove that the set of positive rational numbers is a countable set, and then we can prove that the set of all rational numbers is a countable set. Finally we can prove the set of all balls in \mathbb{R}^{n} with rational radii and with centers at points that have rational coordinates is a countable set. Let U be any open set in \mathbb{R}^{n}. Then U is the union of all balls with rational radii and rational coordinates that belong to U.

Now we are ready to prove the Heine-Borel theorem.
Proof. First assume K is compact and $\left\{U_{\alpha}\right\}$ is an open covering. Let $\left\{B_{j}\right\}$ be the set of open balls with rational radii and coordinates such that for each $j, B_{j} \subset U_{\alpha_{j}}$ for some α_{j}. We are including every B_{j} that fits inside some U_{α}. There are a a countable number of such B_{j} and we put them in a list B_{1}, B_{2}, \ldots (maybe a new indexing). They also cover K (each U_{α} is a union of such balls). Now suppose there is a point of K that is not in B_{1}. Call it x_{1}. Then suppose there is a point $x_{2} \notin B_{1} \cup B_{2}$, etc. In other words suppose no finite collection of B_{j} covers K. We have a sequence $x_{m} \in K$ so that

$$
x_{m} \notin B_{1} \cup B_{2} \cup \cdots \cup B_{s} \text {, if } m>s .
$$

By compactness of K, there is a subsequence that converges to a point of $K, x_{n_{j}} \rightarrow a \in K$. But $a \in B_{t}$ for some t. Hence $x_{n_{j}} \in B_{t}$ for large enough j. But for large enough $j, n_{j}>t$ and this is a contradiction.

For the converse, if K is not bounded, $\left\{B_{n}=\{x:\|x\|<n\}\right\}$ is an open covering with no finite sub covering. If K is not closed and $a \notin K, a \in \bar{K}$ then $\left\{B_{n}=\{x:\|x-a\|>1 / n\}\right\}$ is an open subcovering of K with no finite subcovering.

