Fundamental Theorem of Algebra

November 9, 2013

The fundamental theorem of algebra was stated in various forms going back even before Euler. A variety of proofs were proposed. Gauss gave several proofs, not all of them correct. I have not read any of his proofs, nor have I read the proof of Jean-Robert Argand. It is claimed that Argand gave the first correct proof in 1814. I've not been able to read his exact proof, but from what I know of it the proof I am going to give here is pretty close to it. It is totally elementary except for using the fact that a continuous function on a compact set assumes a minimum. Argand must have implicitly assumed that, since he didn't have a construction of the real numbers (for example the least upper bound axiom).
Theorem 1 (Fundamental Theorem of Algebra). Let $f(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}$, where z is a complex variable and the a_{j} are complex numbers. Then there is a complex number $a \in \mathbb{C}$ for which $f(a)=0$.
Proof. Assume not. Then $f(z) \neq 0$ for all $z \in \mathbb{C}$. Consider $|f|$ on the set $K=\{z:|f(z) \leq|f(0)|$. Since $|f(z)| \rightarrow \infty$ as $|z| \rightarrow \infty, K$ is a compact set (closed and bounded). Since K is compact, $|f|$ assumes a minimum on K and this will be a global minimum of $|f|$ on all of \mathbb{C}. If the minimum is assumed at a, we can change variables and let $p(z)=f(z+a)$ to get a new polynomial with a minimum at 0 . We can multiply p by a constant to arrange it so the minimum value is 1 . Let's call the new polynomial q. Then here is how q looks

$$
q(z)=1+b_{k} z^{k}+\cdots+b_{n} z^{n}
$$

where the minimum value of $|q|$ is 1 and it is assumed at 0 , where in this expression it is assumed that $b_{k} \neq 0$. This is all done to make the algebra transparent. Now we compare the terms after $b_{k} z^{k}$ to $b_{k} z^{k}$.
Claim 1. There is an $\epsilon>0$ so that

$$
\left|b_{k} z^{k}\right| \geq 2\left(\left|b_{k+1} z^{k+1}\right|+\cdots+\left|b_{n} z^{n}\right|\right), \text { when }|z| \leq \epsilon
$$

Proof of claim. We can divide by $|z|$ and the claim is equivalent to

$$
\left|b_{k}\right| \geq 2\left(\left|b_{k+1} z^{k}\right|+\cdots+\left|b_{n} z^{n-1}\right|\right), \text { when }|z| \leq \epsilon,
$$

which is true since the right side goes to 0 as $|z| \rightarrow 0$.
Now choose z to be so that $b_{k} z^{k}=-\delta$, where $\delta \leq\left|b_{k}\right| \epsilon^{k}$. Then $|z|^{k} \leq \frac{\delta}{\left|b_{k}\right|} \leq \epsilon^{k}$. Hence

$$
\delta \geq 2\left(\left|b_{k+1} z^{k}\right|+\cdots+\left|b_{n} z^{n-1}\right|\right)
$$

Finally choose δ so that $0<\delta<1$. Then for this z

$$
\begin{align*}
|q(z)| & =\left|1-\delta+b_{k+1} z^{k+1}+\cdots+b_{n} z^{n}\right| \tag{1}\\
& \leq 1-\delta+\frac{\delta}{2} \tag{2}\\
& =1-\frac{\delta}{2} \tag{3}\\
& <1 \tag{4}\\
& \rightarrow \leftarrow
\end{align*}
$$

