Definition of Cosine

November 27, 2013

Now that we have a definition of arc length we can define the functions sine and cosine. Let us use the parametrization $\left(-t, \sqrt{1-t^{2}}\right),-1 \leq t \leq 1$ for the the unit semicircle in the upper half plane. The arc length from $(1,0)$ to $\left(-t, \sqrt{1-t^{2}}\right)$ is $s(t)=\int_{-1}^{t} \frac{d x}{\sqrt{1-x^{2}}}$. The traditional notation for arc length on the circle is θ, so we will switch to that notation: $\theta(t)=\int_{-1}^{t} \frac{d x}{\sqrt{1-x^{2}}}$. Since $\frac{d \theta}{d t}>0$ the inverse function theorem implies that t is a differentiable function of $t(\theta)$. We define $\cos \theta=-t(\theta)$, the x-coordinate of the point on the circle of arc length, θ from (1,0). We define $\sin \theta=\sqrt{1-\cos ^{2}(\theta)}$. Now we have

Theorem 1.

$$
\begin{aligned}
\text { fracd } \cos \theta d \theta & =-\sin \theta \\
\text { fracd } \sin \theta d \theta & =\cos \theta .
\end{aligned}
$$

Proof.

$$
\begin{aligned}
\frac{d \cos \theta}{d \theta} & =-\frac{d t}{d \theta} \\
& =-\frac{1}{\frac{d \theta}{d t}} \\
& =-\sqrt{1-t^{2}} \\
& =-\sin \theta .
\end{aligned}
$$

This proves the first equality. The second equality follows from the definition of $\sin \theta$, using the first equality and the chain rule.

