Areas of Hypersurfaces

December 7, 2010

This note will derive the following result. There is a more general result which I will post later.
Theorem 1. Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a differentiable function. Let $S=\left\{x_{n+1}=f\left(x_{1}, \ldots, x_{n}\right)\right\} \subset \mathbf{R}^{n+1}$. Then the n-dimensional area of S is

$$
\begin{equation*}
A(S)=\int\left(1+|\nabla f|^{2}\right)^{1 / 2} \tag{1}
\end{equation*}
$$

This theorem will rely on the following formula.
Theorem 2. Let Π be the m-dimensional parallelotope in \mathbf{R}^{n} with coterminous edges given by the vectors v_{1}, \ldots, v_{m}. Then the m-dimensional area of Π is

$$
\begin{equation*}
A(\Pi)=(\operatorname{det}(C))^{1 / 2}, \tag{2}
\end{equation*}
$$

where C is the $m \times m$ matrix with entries $v_{i} \cdot v_{j}$.
Proof. (of Theorem 2) Notice that we can write C in the following form.

$$
\begin{equation*}
C=V^{T} V, V=\left[v_{1}, \cdots, v_{m}\right] \tag{3}
\end{equation*}
$$

where V is the $n \times m$ matrix matrix whose columns are the column vectors v_{1}, \ldots, v_{m}.. If Π is rectangular (the v_{i} are orthogonal), the matrix C is diagonal and the diagonal entries are $\left|v_{i}\right|^{2}$; so the result is true in this case. C is symmetric and it is easy to see it is positive semi-definite, since

$$
\sum v_{i} \cdot v_{j} x_{i} x_{j}=\left|\left(\sum_{1}^{m} x_{i} v_{i}\right)\right|^{2}
$$

Hence $\operatorname{det} C \geq 0$. (If the vectors are linearly dependent (Π is degenerate), then $\sum_{1}^{m} x_{i} v_{i}=0$ for some choice of the x_{i} and $\operatorname{det} C=0$.) So assume the v_{i} are linearly independent. Let's modify v_{1} by subtracting multiples of v_{2}, \ldots, v_{m} to make it orthogonal to each of v_{2}, \ldots, v_{m} This requires solving the equations

$$
\sum_{2}^{m} a_{j} v_{j} \cdot v_{k}=v_{1} \cdot v_{k}, k=2, \ldots, m
$$

Since v_{2}, \ldots, v_{m} are linearly independent, this system has a unique solution. If we let $\bar{v}_{1}=v_{1}-\sum_{2}^{m} a_{j} v_{j}$ and keep the rest of the columns the same, we get a new parallelotope with the same area. The new matrix \bar{C} is related to the original matrix C by the formula

$$
\begin{equation*}
\bar{C}=A^{T} C A, \tag{4}
\end{equation*}
$$

where A is the matrix that differs from the identity matrix by having the last $n-1$ entries in the first column replaced by $-a_{2},-a_{3}, \ldots,-a_{n}$. The determinant of A is 1 , so $\operatorname{det}(\bar{C})=\operatorname{det}(C)$. Eventually this process produces a rectangular parallelotope $\bar{\Pi}$ with the same area as Π and thus

$$
\begin{equation*}
A(\bar{\Pi})=A(\Pi)=(\operatorname{det}(\bar{C}))^{1 / 2}=(\operatorname{det}(C))^{1 / 2} \tag{5}
\end{equation*}
$$

Theorem 1 is a consequence of the following lemma. To simplify notation we use vertical bars to denote determinant, $|A|=\operatorname{det}(A)$.

Lemma 1. In the statement of the lemma, d denotes the determinant.

$$
1+a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}=\left|\begin{array}{ccccc}
1+a_{1}^{2} & a_{1} a_{2} & a_{1} a_{3} & \ldots & a_{1} a_{n} \tag{6}\\
a_{2} a_{1} & 1+a_{2}^{2} & a_{2} a_{3} & \ldots & a_{2} a_{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n} a_{1} & a_{n} a_{2} & a_{n} a_{3} & \ldots & 1+a_{n}^{2}
\end{array}\right|=d
$$

Proof. The proof is by induction on n.

$$
d=\left|\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \tag{7}\\
a_{2} a_{1} & 1+a_{2}^{2} & a_{2} a_{3} & \ldots & a_{2} a_{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n} a_{1} & a_{n} a_{2} & a_{n} a_{3} & \ldots & 1+a_{n}^{2}
\end{array}\right|+a_{1}\left|\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & \ldots & a_{n} \\
a_{2} a_{1} & 1+a_{2}^{2} & a_{2} a_{3} & \ldots & a_{2} a_{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n} a_{1} & a_{n} a_{2} & a_{n} a_{3} & \ldots & 1+a_{n}^{2}
\end{array}\right|
$$

Now by subtracting appropriate multiples of the first row from the other rows in the second determinant we get

$$
\left|\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & \ldots & a_{n} \tag{8}\\
a_{2} a_{1} & 1+a_{2}^{2} & a_{2} a_{3} & \ldots & a_{2} a_{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n} a_{1} & a_{n} a_{2} & a_{n} a_{3} & \ldots & 1+a_{n}^{2}
\end{array}\right|=\left|\begin{array}{ccccc}
a_{1} & a_{2} & a_{3} & \ldots & a_{n} \\
0 & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1
\end{array}\right|=a_{1}
$$

Hence $d=\left(1+a_{2}^{2}+\ldots a_{n}^{2}\right)+a_{1}^{2}$.
Proof. (of Theorem 1). According to the definition of area, the area of the surface is

$$
\begin{equation*}
A(S)=\int A(\Pi) d x_{1} d x_{2} \ldots d x_{n} \tag{9}
\end{equation*}
$$

Where Π is the parallelotope spanned by the column vectors
$\left[1,0,0, \ldots, f_{x_{1}}\right]^{T},\left[0,1,0, \ldots, f_{x_{2}}\right]^{T}, \ldots,\left[0,0, \ldots, 1, f_{x_{n}}\right]^{T}$. Theorem 2 and Lemma 1 tell how to compute $A(\Pi)$ and the result is $A(\Pi)=\left(1+f_{x_{1}}^{2}+f_{x_{2}}^{2}+\ldots f_{x_{n}}^{2}\right)^{1 / 2}=\left(1+|\nabla f|^{2}\right)^{1 / 2}$.

