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This note gives a proof that a bounded function is Riemann integrable if and only if it is continuous
except on a set of Lebesgue measue 0. We will say f is continuous almost everywhere if it is continous
except on a set of measure 0. To prove this we will introduce several key ideas.

Let K be a set in Rn.

Definition 1. The Lebesgue number of an open cover {Uα} of a set K is a number δ > 0 with the property
that for each point a ∈ K the set {x : |x− a| < δ} is a subset of some set Uα in the cover.

Theorem 1. Every open cover of a compact set has a Lebesgue number.

Proof. For each point x ∈ K, x ∈ Uα for some set Uα. Since Uα is open, there is a δx so that {y : |y− x| <
δx} ⊂ Uα. Since K is compact, there is a finite cover {Wj} where Wj = {y : |y − xj | < 1

2δxj}. Let
δ = 1

2 min{δxj}. Let a ∈ K and let |y − a| < δ. Now a ∈Wxj for some j hence |a− xj | < 1
2δxj . Then

|y − xj | ≤ |y − a|+ |a− xj | < δ +
1

2
δxj ≤ δxj ,

so y ∈ Uα for some α.

(This is the proof that Cory suggested.)

Definition 2. The oscillation of a function on a set S is

Ωf (S) = sup{f(x) : x ∈ S} − inf{f(x) : x ∈ S}.

The oscillation function is
ωf (x) = lim

ε→0
Ωf ({y : |y − x| < ε}).

Remark 1. f is continuous at x if and only if ωf (x) = 0.

Remark 2. If ωf (x) < α then there is neighborhood W of x so that Ωf (W ) < α.

Proposition 1. Let f be defined on a compact set. Let Dα = {x : ωf (x) ≥ α}. Then Dα is a closed
compact set.

Proof. Let x /∈ Dα. Then ωf (x) < α and hence Ωf ({y : |y − x| < ε} < α for small enough ε. But this
implies that ωf (y) < α when |y − x| < ε so the complement of Dα is open and Dα is closed.

Corollary 1. If A is compact and µ(A) = 0 then c(A) = 0.

Proof. If we have a countable open cover Uk of A such that
∑
|Uk| < ε then any finite subcover satisfies∑

|Ukj | < ε.

Let Df = {x : ωf (x) > 0 (the discontinuity set of f).
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Theorem 2. Let f be defined and bounded on an interval [a, b]. Then f is Riemann integrable if and only
if µ(Df ) = 0 where µ is Lebesgue measure.

Proof. Assume f is Riemann integrable. We will show µ(Df ) = 0 by showing that c(Dα) = 0 for any α > 0
where c is the Jordan content of Dα. Suppose

SP (f)− sP (f) < αε.

Let Jk be the intervals in the partition P that have a point of Dα in their interior. Then

α
∑
k

|Jk| ≤
∑
k

(Mk −mk)|Jk| < αε,

hence
∑

k |Jk| < ε. The intervals Jk cover Dα except for the finite number of points of Dα that do not
belong to the interior of some interval of P . We can find a finite number of small additional intervals
around these points such that the sum of their lengths is less than ε. So we have a finite set of intervals
that cover Dα such that the sum of their lengths is less than 2ε and hence c(Dα) = 0.

Assume that µ(Df ) = 0. Then µ(Dε) = 0 for all ε and since Dε is compact c(Dε) = 0. Choose a
finite set of intervals Jk such that Dε ⊂ ∪interior(Jk) and

∑
|Jk| < ε. Notice I chose the same ε, which I

am allowed to do. Let K = [a, b] − ∪interior(Jk). Then K is a finite union of closed intervals and hence
compact. For each x ∈ K there is an open interval Wx such that Ωf (Wx) < ε by definition of ωf (x), remark
2, and since K ∩Dε = ∅. Let δ be a Lebesgue number for the cover {Wx}. Choose a (finite) refinement of
the intervals in K so that each of the intervals I in the refinement has length less than δ. Then on each
of these intervals Ωf (I) = (Mi − mi) < ε. So for the partition P consisting of the Jk intervals and the
intervals refining K we have

SP (f)− sP (f) ≤ 2Mε+ ε(b− a),

where we have made an obvious over estimate of the lengths of the intervals in K and used the assumption
that |f(x)| < M (f is bounded). Now we are done.


