Math 334 Sample Problems

One side of one notebook sized page of notes will be allowed on the test. You may work together on the sample problems - I encourage you to do that. The test will cover up to §4.1.

1. Is the set $\left\{(x, y): y^{2}+x^{2} e^{y}=0\right\}$ a smooth curve? Is the set $\{(a \cos t, b \sin t): t \in(0, \pi)\}$, where $a>0, b>0$ a smooth curve?
2. Expand $(1-x+2 y)^{3}$ in powers of $x-1$ and $y-2$ in two different ways. The first way is by using algebra and the second way is by computing the Taylor series.
3. Let f be defined and bounded on $[a, b]$. Define a function g on $[a, b]$ by the formula $g(x)=\bar{I}\left(\chi_{[a, x]} f\right)$. In other words $g(x)$ is the upper integral of f on the interval $[a, x]$. Prove that g is continuous on $[a, b]$. Suppose f is continuous at x_{0}. Prove that $g^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$. The same is true for lower integrals.
4. Using the method of Lagrange multipliers, find the highest and lowest points of the circle

$$
x^{2}+y^{2}+z^{2}=16,(x+1)^{2}+(y+1)^{2}+(z+1)^{2}=27
$$

5. Show that the surface $z=3 x^{2}-2 x y+2 y^{2}$ lies entirely above every one of its tangent planes. Hint: Look at the Taylor expansion at every point.
6. Let $a>0$ and $b>0$. Decide whether or not the map $F(r, t)=(r a \cos t, r b \sin t)$ from $\{(r, t): 0<r<1,0<t<\pi / 2\}$ to $\left\{(x, y): x>0, y>0, \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}<1\right\}$ has a differentiable inverse.
7. Let f be continuously differentiable on $[a, b]$ and assume $f^{\prime}(x)>0$ on $[a, b]$.
(a) Prove that f has a continously differentiable inverse g and that $g^{\prime}(x)>0$.
(b) Prove that

$$
\int_{a}^{b} f+\int_{f(a)}^{f(b)} g=b f(b)-a f(a)
$$

Can you give a geometric interpretation of the result?
8. Let $f(x, y)=\sec \left(x+y^{2}\right)$. Find the first two non-zero terms in the Taylor series of $\cos x$, centered at 0 . Use it to find the first two non-zero terms of the Taylor series of $\sec x$ centered at 0 . Then use that series to find the first two non-zero terms of f at $(0,0)$.
9. Let g be a polynomial of degree three. Prove that

$$
\int_{-1}^{1} g=\frac{g(-1)+4 g(0)+g(1)}{3} .
$$

10. Consider the following function

$$
F(x, y)=\left(\frac{x}{1+x+y}, \frac{y}{1+x+y}\right),
$$

which has the set $\{(x, y): 1+x+y \neq 0\}$ as its domain. Compute $\frac{\partial(f, g)}{\partial(x, y)}$. Where is it different from 0 ? Show that F is $1-1$ and find an explicit formula for its inverse. Use these results to describe the exact image of F
11. Folland, $\S 2.9$, problem 16.
12. Let f be a positive continuous function on $I=[a, b]$. Let $M=\max \{f(x): x \in I\}$. Prove that

$$
\lim _{n \rightarrow \infty}\left(\int_{I} f^{n}\right)^{1 / n}=M
$$

13. Suppose $F(x, y)$ is a C^{2} function that satisfies the equations $F(x, y)=F(y, x), F(x, x)=x$. Prove that the quadratic term in the Taylor polynomial of F based at the point (a, a) is $\frac{1}{2} F_{x x}(a, a)(x-y)^{2}$.
14. There may be homework problems or example problems from the text or lectures on the midterm.
