Products, Sup, Inf, and Absolute Value

December 5, 2012

Theorem 1. Let f, g be integrable. Then $f^{+},|f|, f g, \sup (f, g), \inf (f, g)$ are integrable.
Proof. We first prove that f^{+}is integrable. It is easy to check that

$$
S_{P}\left(f^{+}\right)-s_{P}\left(f^{+}\right) \leq \mathcal{S}_{P}(f)-s_{P}(f) .
$$

This proves that f^{+}is integrable. Since $f=f^{+}-f^{-}, f^{-}$is integrable. Now it follows that $|f|=f^{+}+f^{-}$ is integrable. Because

$$
\begin{aligned}
\inf (f, g) & =\frac{1}{2}(f+g-|f-g|) \\
\sup (f, g) & =\frac{1}{2}(f+g+|f-g|)
\end{aligned}
$$

$\sup (f, g)$ and $\inf (f, g)$ are integrable. Next, suppose that $f \geq 0$. Let $m_{j}=\inf \left\{f(x): x \in I_{j}\right\}$ where I_{j} is a subinterval and $M_{j}=\sup \left\{f(x): x \in I_{j}\right\}$. Also let $K=\sup \{f(x): x \in I\}$, where I is the interval of integration. Then $M_{j}^{2}-m_{j}^{2} \leq 2 K\left(M_{j}-m_{j}\right)$. Hence

$$
S_{\mathcal{P}}\left(f^{2}\right)-s_{\mathcal{P}}\left(f^{2}\right) \leq 2 K\left(S_{\mathcal{P}}(f)-s_{P}(f)\right) .
$$

This proves that if $f \geq 0$ and f is integrable, then f^{2} is integrable. Now let f be any integrable function. Then for some $c, g=f-c \geq 0$ and hence $g^{2}=f^{2}-2 c f+c^{2}$ is integrable. Hence f^{2} is integrable. Finally suppose f and g are integrable. Then $(f+g)^{2},(f-g)^{2}$ are integrable. Hence $f g=\frac{1}{4}\left((f+g)^{2}-(f-g)^{2}\right)$ is integrable.

Corollary 1. Let A, B be measurable sets. Then $A \cup B$ and $A \cap B$ are measurable.
Proof.

$$
\chi_{A \cup B}=\sup \left(\chi_{A}, \chi_{B}\right), \chi_{A \cap B}=\inf \left(\chi_{A}, \chi_{B}\right)
$$

