Differentiability and the Chain Rule

September 24, 2010

This note will give an alternate definition of differentiability and derivation of the chain rule. I learned this idea from some notes of Michael Range. He attributes the idea to Caratheodory. The usual definition is as follows.

Definition 1. Let f be a function defined in a neighborhood of a point a in \mathbb{R}^{n}. f is differentiable at a if there is a vector $c=\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in \mathbb{R}^{n}$ so that

$$
\begin{equation*}
\lim _{x \rightarrow a} \frac{f(x)-f(a)-\sum_{i=1}^{n} c_{i}\left(x_{i}-a_{i}\right)}{|x-a|}=0 \tag{1}
\end{equation*}
$$

In this definition, $|x-a|$ can be any one of the p-norms, $|x-a|_{p}=\left(\sum_{1}^{n}\left|x_{i}-a_{i}\right|^{p}\right)^{1 / p}$. If we use the 1-norm we can write

$$
\begin{equation*}
|x|_{1}=\sum_{1}^{n} \sigma_{i} x_{i} \tag{2}
\end{equation*}
$$

where σ_{i} is the sign of x_{i}. The numbers c_{i} are defined to be the partial derivatives of f at $a, \frac{\partial f}{\partial x_{i}}(a)=c_{i}$ and $\nabla f(a)=\left(c_{1}, \ldots, c_{n}\right)$.

Theorem 1. f is differentiable at a if and only if there are functions $q_{i}(x), i=1, \ldots, n$ which are continuous at a, such that

$$
\begin{equation*}
f(x)=f(a)+\sum_{1}^{n} q_{i}(x)\left(x_{i}-a_{i}\right) \tag{3}
\end{equation*}
$$

Proof. Assume f is differentiable. Let

$$
\begin{equation*}
r(x)=\frac{f(x)-f(a)-\sum_{i=1}^{n} c_{i}\left(x_{i}-a_{i}\right)}{|x-a|_{1}} \tag{4}
\end{equation*}
$$

By (1), $r(x) \rightarrow 0$ as $x \rightarrow a$. Using (2) rewrite (4) as

$$
\begin{equation*}
f(x)=f(a)+\sum_{1}^{n}\left(c_{i}+\sigma_{i} r(x)\right)\left(x_{i}-a_{i}\right) \tag{5}
\end{equation*}
$$

where σ_{i} is the sign of $x_{i}-a_{i}$. Now let $q_{i}(x)=c_{i}+\sigma_{i} r(x)$. Since $r(x) \rightarrow 0, q_{i}$ is continuous at a and we have proved (3).

Assume (3), where q_{i} is continuous at a. Then let $c_{i}=q_{i}(a)$. We can write $q_{i}(x)=c_{i}+r_{i}(x)$, where $r_{i} \rightarrow 0$ as $x \rightarrow a$. Then

$$
\begin{equation*}
\frac{f(x)-f(a)-\sum_{i=1}^{n} c_{i}\left(x_{i}-a_{i}\right)}{|x-a|}=\frac{\sum_{1}^{n} r_{i}(x)\left(x_{i}-a_{i}\right)}{|x-a|} \tag{6}
\end{equation*}
$$

and

$$
\left|\frac{\sum_{1}^{n} r_{i}(x)\left(x_{i}-a_{i}\right)}{|x-a|}\right| \leq \sum_{1}^{n}\left|r_{i}(x)\right|
$$

since $\left|x_{i}-a_{i}\right| /|x-a| \leq 1$. This goes to 0 as $x \rightarrow a$.
Remark: $q_{i}(a)=\frac{\partial f}{\partial x_{i}}(a)$.
Theorem 2. (Chain rule) Let f be differentiable at $a \in \mathbb{R}^{n}$. Let $\gamma(t)=\left(\gamma_{1}(t), \ldots, \gamma_{n}(t)\right)$ be differentiable at 0 and $\gamma(0)=a$. Then $g(t)=f(\gamma(t))$ is differentiable at 0 and

$$
g^{\prime}(0)=\nabla f(a) \cdot \gamma^{\prime}(0)=\sum_{1}^{n} \frac{\partial f}{\partial x_{i}}(a) \gamma_{i}^{\prime}(0)
$$

Proof. The proof is a string of equations. Differentiability of γ_{i} implies $\gamma_{i}(t)=\gamma_{i}(0)+s_{i}(t) t$ where s_{i} is continuous at 0 and $s_{i}(0)=\gamma_{i}^{\prime}(0)$.

$$
\begin{aligned}
g(t) & =f(\gamma(0))+\sum_{1}^{n} q_{i}(\gamma(t))\left(\gamma_{i}(t)-\gamma_{i}(0)\right) \\
& =g(0)+\sum_{1}^{n} q_{i}(\gamma(t))\left(s_{i}(t)\right) t \\
& =g(0)+\left(\sum_{1}^{n} q_{i}(\gamma(t))\left(s_{i}(t)\right)\right) t
\end{aligned}
$$

The expression $\sum_{1}^{n} q_{i}(\gamma(t))\left(s_{i}(t)\right.$ is continuous at 0 and its value at 0 is

$$
\sum_{1}^{n} c_{i} \gamma_{i}^{\prime}(0)=\sum_{1}^{n} \frac{\partial f}{\partial x_{i}}(a) \gamma_{i}^{\prime}(0)
$$

