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Preface

This text evolved from notes we developed for use in a two semester undergrad-
uate course on foundations of analysis at the University of Utah. The course
is designed for students who have completed three semesters of calculus and
one semester of linear algebra. For most of them, this is the first mathematics
course in which everything is proved rigorously and they are expected to not
only understand proofs, but to also create proofs.

The course has two main goals. The first is to develop in students the
mathematical maturity and sophistication they will need when they move on
to senior or graduate level mathematics courses. The second is to present a
rigorous development of the calculus, beginning with a study of the properties
of the real number system.

We have tried to present this material in a fashion which is both rigorous
and concise, with simple, straightforward explanations. We feel that the mod-
ern tendency to expand textbooks with ever more material, excessively verbose
explanations, and more and more bells and whistles, simply gets in the way of
the student’s understanding of the material.

The exercises differ widely in level of abstraction and level of difficulty. They
vary from the simple to the quite difficult and from the computational to the
theoretical. There are exercises that ask students to prove something or to
construct an example with certain properties. There are exercises that ask
students to apply theoretical material to help do a computation or to solve a
practical problem. Each section contains a number of examples designed to
illustrate the material of the section and to teach students how to approach the
exercises for that section.

This text, in its various incarnations, has been used by the author and his
colleagues for several years at the University of Utah. Each use has led to
improvements, additions, and corrections.

The topics covered in the text are quite standard. Chapters 1 through 6
focus on single variable calculus and are normally covered in the first semester
of the course. Chapters 7 through 11 are concerned with calculus in several
variables and are normally covered in the second semester.

Chapter 1 begins with a section on set theory. This is followed by the intro-
duction of the set of natural numbers as a set which satisfies Peano’s axioms.
Subsequent sections outline the construction, beginning with the natural num-
bers, of the integers, the rational numbers, and finally the real numbers. This
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vi PREFACE

is only an outline of the construction of the reals beginning with Peano’s ax-
ioms and not a fully detailed development. Such a development would would
be much too time consuming for a course of this nature. What is important is
that, by the end of the chapter: (1) students know that the real number system
is a complete, Archimedean, ordered field; (2) they have some practice at using
the axioms satisfied by such a system; and (3) they understand that this system
may be constructed beginning with Peano’s axioms for the counting numbers.

Chapter 2 is devoted to sequences and limits of sequences. We feel sequences
provide the best context in which to first carry out a rigorous study of limits.
The study of limits of functions is complicated by issues concerning the domain
of the function. Furthermore, one has to struggle with the student’s tendency to
think that the limit of f(x) as x approaches a is just a pedantic way of describing
f(a). These complications don’t arise in the study of limits of sequences.

Chapter 3 provides a rigorous study of continuity for real valued functions
of one variable. This includes proving the existence of minimum and maximum
values for a continuous function on a closed bounded interval as well as the
Intermediate Value Theorem and the existence of a continuous inverse function
for a strictly monotone continuous function. Uniform continuity is discussed as
is uniform convergence for a sequence of functions.

The derivative is introduce in Chapter 4 and the main theorems concern-
ing the derivative are proved. These include the Chain Rule, the Mean Value
Theorem, existence of the derivative of an inverse function, the monotonicity
theorem, and L’Hôpital’s Rule.

In Chapter 5 the definite integral is defined using upper and lower Riemann
sums. The main properties of the integral are proved here along with the two
forms of the Fundamental Theorem of Calculus. The integral is used to define
and develop the properties of the natural logarithm. This leads to the the
definition of the exponential function and the development of its properties.

Infinite sequences and series are discussed in Chapter 6 along with Taylor’s
Series and Taylor’s Formula.

The second half of the text begins in Chapter 7 with an introduction to d-
dimensional Euclidean space, Rd, as the vector space of d-tuples of real numbers.
We review the properties of this vector space while reminding the students of
the definition and properties of general vector spaces. We study convergence of
sequences of vectors and prove the Bolzano-Weierstrass Theorem in this context.
We describe open and closed sets and discuss compactness and connectedness
of sets in Euclidean spaces. Throughout this chapter and subsequent chapters
we follow a certain philosophy concerning abstract verses concrete concepts.
We briefly introduce abstract metric spaces, inner product spaces, and normed
linear spaces, but only as an aside. We emphasize that Euclidean space is the
object of study in this text, but we do point out now and then when a theorem
concerning Euclidean space does or does not hold in a general metric space or
inner product space or normed vector space. That is, the course is grounded in
the concrete world of Rd, but the student is made aware that there are more
exotic worlds in which these concepts are important.

Chapter 8 is devoted to the study of continuous functions between Euclidean
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spaces. We study the basic properties of continuous functions as they relate to
open and closed sets and compact and connected sets. The third section is
devoted to sequences and series of function and the concept of uniform conver-
gence. The last two sections comprise a review of the topic of linear functions
between Euclidean spaces and the corresponding matrices. This includes the
study of rank, dimension of image and kernel and invertible matrices. We also
introduce representations of linear or affine subspaces in parametric form as well
as solution sets of systems of equations.

The most important topic in the second half of the course is probably the
study, in Chapter 9, of the total differential of a function from Rp to Rq. This
is introduced in the context of affine approximation of a function near a point
in its domain. The chain rule for the total differential is proved in what we
believe is a novel and intuitively satisfying way. This is followed by applications
of the total differential and the chain rule, including the multivariable Taylor’s
formula and the inverse and implicit function theorems.

Chapter 10 is devoted to integration over Jordan regions in Rd. The devel-
opment, using upper and lower sums, is very similar to the development of the
single variable integral in Chapter 5. Where the proofs are virtually identical
to those in Chapter 5, they are omitted. The really new and different material
here is that on Fubini’s Theorem and the change of variables formula. We give
rigorous and detailed proofs of both results along with a number of applications.

The chapter on vector calculus, Chapter 11 uses the modern formalism of dif-
ferential forms. In this formalism, the major theorems of the subject – Green’s
Theorem, Stoke’s Theorem, and Gauss’ s Theorem – all have the same form.
We do point out the classical forms of each of these theorems, however. Each
of the main theorems is proved first on a rectangle or cube and then extended
to more complicated domains through the use of transformation laws for differ-
ential forms and the change of variables formula for multiple integrals. Most of
the chapter focuses on integration over sets in R, R2 or R3 which can be param-
eterized by smooth maps from an interval, a square or a cube, or sets which can
be partitioned into sets of this form. However, in an optional section at the end,
we introduce integrals over p-chains and p-cycles and state the general form of
Stoke’s Theorem

There are topics which could have been included in this text, but were not.
Some of our colleagues suggested that we include an introductory chapter or
section on formal logic. We considered this but decided against it. Our feeling is
that logic at this simple level is just language used with precision. Students have
been using language for most of their lives, perhaps not always with precision,
but that doesn’t mean that they are incapable of using it with precision if
required to do so. Teaching students to be precise in their use of the language
tools that they already possess is one of the main objectives of the course. We
do not believe that beginning the course with a study of formal logic would be
of much help in this regard and, in fact, might just get in the way.

We could also have included a chapter of Fourier Series. However, we fell
that the material that has been included makes for a text that is already a
challenge to cover in a two semester course. We feel it unrealistic to think that
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an additional chapter at the end would often get covered. In any case, the study
of Fourier series is most naturally introduced at the undergraduate level in a
course in differential equations.



Chapter 1

The Real Numbers

This course has two goals: (1) to develop the foundations that underlie calculus
and all of post calculus mathematics, and (2) to develop students’ ability to
understand definitions and proofs and to create proofs of their own – that is, to
develop students’ mathematical sophistication.

The typical freshman and sophomore calculus courses are designed to teach
the techniques needed to solve problems using calculus. They are not primarily
concerned with proving that these techniques work or teaching why they work.
The key theorems of calculus are not really proved, although sometimes proofs
are given which rely on other reasonable, but unproved assumptions. Here we
will give rigorous proofs of the main theorems of calculus. To do this requires
a solid understanding of the real number system and its properties. This first
chapter is devoted to developing such an understanding.

Our study of the real number system will follow the historical development of
numbers: We first discuss the natural numbers or counting numbers (the positive
integers), then the integers, followed by the rational numbers. Finally, we discuss
the real number system and the property that sets it apart from the rational
number system – the completeness property. The completeness property is the
missing ingredient in most calculus courses. It is seldom discussed, but without
it, one cannot prove the main theorems of calculus.

The natural numbers can be defined as a set satisfying a very simple list
of axioms – Peano’s axioms. All of the properties of the natural numbers can
be proved using these axioms. Once this is done, the integers, the rational
numbers, and the real numbers can be constructed and their properties proved
rigorously. To actually carry this out would make for an interesting, but rather
tedious course. Fortunately, that is not the purpose of this course. We will not
give a rigorous construction of the real number system beginning with Peano’s
axioms, although we will give a brief outline of how this is done. However, the
main purpose of this chapter is to state the properties that characterize the real
number system and develop some facility at using them in proofs. The rest of
the course will be devoted to using these properties to develop rigorous proofs
of the main theorems of calculus.

1



2 CHAPTER 1. THE REAL NUMBERS

1.1 Sets and Functions

We precede our study of the real numbers with a brief introduction to sets and
functions and their properties. This will give us the opportunity to introduce
the set theory notation and terminology that will be used throughout the text.

Sets

A set is a collection of objects. These objects are called the elements of the set.
If x is an element of the set A, then we will also say that x belongs to A or x is
in A. A shorthand notation for this statement that we will use extensively is

x ∈ A.

Two sets A and B are the same set if they have the same elements – that is,
if every element of A is also an element of B and every element of B is also an
element of A. In this case, we write A = B.

One way to define a set is to simply list its elements. For example, the
statement

A = {1, 2, 3, 4}
defines a set A which has as elements the integers from 1 to 4.

Another way to define a set is to begin with a known set A and define a
new set B to be all elements x ∈ A that satisfy a certain condition Q(x). The
condition Q(x) is a statement about the element x which may be true for some
values of x and false for others. We will denote the set defined by this condition
as follows:

B = {x ∈ A : Q(x)}.
This is mathematical shorthand for the statement “B is the set of all x in A
such that Q(x)”. For example, if A is the set of all students in this class, then
we might define a set B to be the set of all students in this class who are
sophomores. In this case, Q(x) is the statement “x is a sophomore”. The set B
is then defined by

B = {x ∈ A : x is a sophomore}.

Example 1.1.1. Describe the set (0, 3) of all real numbers greater than 0 and
less than 3 using set notation.

Solution: In this case the statement Q(x) is the statement “0 < x < 3”.
Thus,

(0, 3) = {x ∈ R : 0 < x < 3}.

A set B is a subset of a set A if B consists of some of the elements of A –
that is, if each element of B is also an element of A. In this case, we use the
shorthand notation

B ⊂ A.

Of course, A is a subset of itself. We say B is a proper subset of A if B ⊂ A
and B 6= A.
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Figure 1.1: Intersection and Union of Two Sets.

For example, the open interval (0, 3) of the preceding example is a proper
subset of the set R of real numbers . It is also a proper subset of the half open
interval (0, 3] – that is, (0, 3) ⊂ (0, 3], but the two are not equal because the
second contains 3 and the first does not.

There is one special set that is a subset of every set. This is the empty set
∅. It is the set with no elements. Since it has no elements, the statement that
“each of its elements is also an element of A” is true no matter what the set A
is. Thus, by the definition of subset,

∅ ⊂ A

for every set A.
If A and B are sets, then the intersection of A and B, denoted A∩B, is the

set of all objects that are elements of A and of B. That is,

A ∩B = {x : x ∈ A and x ∈ B}.

Similarly, the union of A and B, denoted A∪B, is the set of objects which are
elements of A or elements of B (possibly elements of both). That is,

A ∪B = {x : x ∈ A or x ∈ B}.

Example 1.1.2. If A is the closed interval [−1, 3] and B is the open interval
(1, 5), describe A ∩B and A ∪ B.

Solution: A ∩B = (1, 3] and A ∪B = [−1, 5).

If A is a (possibly infinite) collection of sets, then the intersection and union
of the sets in A are defined to be

⋂

A = {x : x ∈ A for all A ∈ A}

and
⋃

A = {x : x ∈ A for some A ∈ A}.

Note how crucial the distinction between “for all’ and “for some’ is in these
definitions.
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The intersection
⋂

A is also often denoted
⋂

A∈A

A or
⋂

s∈S
As

if the sets in A are indexed by some index set S. Similar notation is often used
for the union.

Example 1.1.3. If A is the collection of all intervals of the form [s, 2] where
0 < s < 1, find

⋂

A and
⋃

A.
Solution: A number x is in the set

⋂

A =
⋂

s∈(0,1)

[s, 2]

if and only if
s ≤ x ≤ 2 for every positive s < 1. (1.1.1)

Clearly every x in the interval [1, 2] satisfies this condition. We will show that
no points outside this interval satisfy (1.1.1).

Certainly an x > 2 does not satisfy (1.1.1). If x < 1, then s = x/2 + 1/2
(the midpoint between x and 1) is a number less than 1 but greater than x, and
so such an x also fails to satisfy (1.1.1). This proves that

⋂

A = [1, 2].

A number x is in the set
⋃

A =
⋃

s∈(0,1)

[s, 2]

if and only if
s ≤ x ≤ 2 for some positive s < 1. (1.1.2)

Every such x is in the interval (0, 2]. Conversely, we will show that every x in
this interval satisfies (1.1.2). In fact, if x ∈ [1, 2], then x satisfies (1.1.2) for
every s < 1. If x ∈ (0, 1), then x satisfies 1.1.2 for s = x/2. This proves that

⋃

A = (0, 2].

If B ⊂ A, then the set of all elements of A which are not elements of B is
called the complement of B in A. This is denoted A \B. Thus,

A \B = {x ∈ A : x /∈ B}.

Here, of course, the notation x /∈ B is shorthand for the statement “x is not an
element of B”.

If all the sets in a given discussion are understood to be subsets of a given
universal setX, then we may use the notationBc forX\B and call it simply the
complement of B. This will often be the case in this course, with the universal
set being the set R of real numbers or, in later chapters, real n dimensional
space Rn for some n.
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Example 1.1.4. If A is the interval [−2, 2] and B is the interval [0, 1], describe
A \B and the complement Bc of B in R.

Solution: We have

A \B = [−2, 0) ∪ (1, 2] = {x ∈ R : −2 ≤ x < 0 or 1 < x ≤ 2},

while
Bc = (−∞, 0) ∪ (1,∞) = {x ∈ R : x < 0 or 1 < x}.

Theorem 1.1.5. If A and B are subsets of a set X and Ac and Bc are their
complements in X. then

(a) (A ∪ B)c = Ac ∩Bc; and

(b) (A ∩ B)c = Ac ∪Bc.

Proof. We prove (a) first. To show that two sets are equal, we must show that
they have the same elements. An element of X belongs to (A∪B)c if and only
if it is not in A ∪B. This is true if and only if it is not in A and it is not in B.
By definition this is true if and only if x ∈ Ac∩Bc. Thus, (A∪B)c and Ac∩Bc
have the same elements and, hence, are the same set.

If we apply part (a) with A and B replaced by Ac and Bc and use the fact
that (Ac)c = A and (Bc)c = B, the result is

(Ac ∪Bc)c = A ∩B.

Part (b) then follows if we take the complement of both sides of this identity.

A statement analogous to Theorem 1.1.5 is true for unions and intersections
of collections of sets (Exercise 1.1.7).

Two sets A and B are said to be disjoint if A ∩ B = ∅. That is, they are
disjoint if they have no elements in common. A collection A of sets is called a
pairwise disjoint collection if A∩B = ∅ for each pair A,B of distinct sets in A.

Functions

A function f from a set A to a set B is a rule which assigns to each element
x ∈ A exactly one element f(x) ∈ B. The element f(x) is called the image of x
under f or the value of f at x. We will write

f : A→ B

to indicate that f is a function from A to B. The set A is called the domain of
f . If E is any subset of A then we write

f(E) = {f(x) : x ∈ E}

and call f(E) the image of E under f .
We don’t assume that every element of B is the image of some element of

A. The set of elements of B which are images of elements of A is f(A) and is
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called the range of f . If every element of B is the image of some element of A
(so that the range of f is B), then we say that f is onto.

A function f : A → B is is said to be one-to-one if, whenever x, y ∈ A and
x 6= y, then f(x) 6= f(y) – that is, if f takes distinct points to distinct points.

If g : A → B and f : B → C are functions, then there is a function
f ◦ g : A→ C, called the composition of f and g, defined by

f ◦ g(x) = f(g(x)).

Since g(x) ∈ B and the domain of f is B, this definition makes sense.
If f : A→ B is a function and E ⊂ B, then the inverse image of E under f

is the set
f−1(E) = {x ∈ A : f(x) ∈ E}.

That is, f−1(E) is the set of all elements of A whose images under f belong to
E.

Inverse image behaves very well with respect to the set theory operations,
as the following theorem shows.

Theorem 1.1.6. If f : A → B is a function and E and F are subsets of B,
then

(a) f−1(E ∪ F ) = f−1(E) ∪ f−1(F );

(b) f−1(E ∩ F ) = f−1(E) ∩ f−1(F ); and

(c) f−1(E \ F ) = f−1(E) \ f−1(F ) if F ⊂ E.

Proof. We will prove (a) and leave the other two parts to the exercises.
To prove (a), we will show that f−1(E ∪ F ) and f−1(E) ∪ f−1(F ) have the

same elements. If x ∈ f−1(E ∪F ), then f(x) ∈ E ∪F . This means that f(x) is
in E or in F . If it is in E, then x ∈ f−1(E). If it is in F , then x ∈ f−1(F ). In
either case, x ∈ f−1(E)∪f−1(F ). This proves that every element of f−1(E∪F )
is an element of f−1(E) ∪ f−1(F ).

On the other hand, if x ∈ f−1(E) ∪ f−1(F ), then x ∈ f−1(E), in which
case f(x) ∈ E, or x ∈ f−1(F ), in which case f(x) ∈ F . In either case, f(x) ∈
E ∪ F , which implies x ∈ f−1(E ∪ F ). This proves that every element of
f−1(E)∪f−1(F ) is also an element of f−1(E∪F ). Combined with the previous
paragraph, this proves that the two sets are equal.

Image does not behave as well as inverse image with respect the set opera-
tions. The best we can say is the following:

Theorem 1.1.7. If f : A → B is a function and E and F are subsets of A,
then

(a) f(E ∪ F ) = f(E) ∪ f(F );

(b) f(E ∩ F ) ⊂ f(E) ∩ f(F );

(c) f(E) \ f(F ) ⊂ f(E \ F ) if F ⊂ E.
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Proof. We will prove (c) and leave the others to the exercises.
To prove (c), we must show that each element of f(E) \ f(F ) is also an

element of f(E \ F ). If y ∈ f(E) \ f(F ), then y = f(x) for some x ∈ E and y
is not the image of any element of F . In particular, x /∈ F . This means that
x ∈ E \ F and so y ∈ f(E \ F ). This completes the proof.

The above theorem cannot be improved. That is, it is not in general true
that f(E∩F ) = f(E)∩f(F ) or that f(E)\f(F ) = f(E \F ) if F ⊂ E. The first
of these facts is shown in the next example. The second is left to the exercises.

Example 1.1.8. Give an example of a function f : A→ B for which there are
subsets E,F ⊂ A with f(E ∩ F ) 6= f(E) ∩ f(F ).

Solution: Let A and B both be R and let f : A→ B be defined by

f(x) = x2.

If E = (0,∞) and F = (−∞, 0), then E ∩ F = ∅, and so f(E ∩ F ) is also the
empty set. However, f(E) = f(F ) = (0,∞), and so f(E) ∩ f(F ) = (0,∞) as
well. Clearly f(E ∩ F ) and f(E) ∩ f(F ) are not the same in this case.

Cartesian Product

If A and B are sets, then their Cartesian product A×B is the set of all ordered
pairs (a, b) with a ∈ A and b ∈ B. Similarly, the Cartesian product of n sets
A1, A2, · · · , An is the set A1×A2×· · ·An of all ordered n-tuples (a1, a2, · · · , an)
with ai ∈ Ai for i = 1, · · · , n.

If f : A→ B is function from a set A to a set B, then the graph of f is the
subset of A× B defined by {(a, b) ∈ A× B : b = f(a)}.

Exercise Set 1.1

1. If a, b ∈ R and a < b, give a description in set theory notation for each of
the intervals (a, b), [a, b], [a, b), and (a, b] (see Example 1.1.1).

2. If A,B, and C are sets, prove that

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

3. If A and B are two sets, then prove that A is the union of a disjoint pair
of sets, one of which is contained in B and one of which is disjoint from
B.

4. What is the intersection of all the open intervals containing the closed
interval [0, 1]? Justify your answer.

5. What is the intersection of all the closed intervals containing the open
interval (0, 1)? Justify your answer.
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6. What is the union of all of the closed intervals contained in the open
interval (0, 1)? Justify your answer.

7. If A is a collection of subsets of a set X, formulate and prove a theorem
like Theorem 1.1.5 for the intersection and union of A.

8. Which of the following functions f : R → R are one to one and which ones
are onto. Justify your answer.

(a) f(x) = x2;

(b) f(x) = x3;

(c) f(x) = ex.

9. Prove Part (b) of Theorem 1.1.6.

10. Prove Part (c) of Theorem 1.1.6.

11. Prove Part (a) of Theorem 1.1.7.

12. Prove Part (b) of Theorem 1.1.7.

13. Give an example of a function f : A → B and subsets F ⊂ E of A for
which f(E) \ f(F ) 6= f(E \ F ).

14. Prove that equality holds in Parts (b) and (c) of Theorem 1.1.7 if the
function f is one-to-one.

15. Prove that if f : A → B is a function which is one-to-one and onto, then
f has an inverse function – that is, there is a function g : B → A such
that g(f(x)) = x for all x ∈ A and f(g(y)) = y for all y ∈ B.

16. Prove that a subset G of A × B is the graph of a function from A to B
if and only if the following condition is satisfied: for each a ∈ A there is
exactly one b ∈ B such that (a, b) ∈ G.

1.2 The Natural Numbers

The natural numbers are the numbers we use for counting, and so, naturally,
they are also called the counting numbers. They are the positive integers
1, 2, 3, · · · .

The requirements for a system of numbers we can use for counting are very
simple. There should be a first number (the number 1), and for each number
there must always be a next number (a successor). After all, we don’t want to
run out of numbers when counting a large set of objects. This line of thought
leads to Peano’s axioms which characterize the system of natural numbers N:

N1. there is an element 1 ∈ N;

N2. for each n ∈ N there is a successor element s(n) ∈ N;
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N3. 1 is not the successor of any element of N;

N4. if two elements of N have the same successor, then they are equal;

N5. if a subset A of N contains 1 and is closed under succession (meaning
s(n) ∈ A whenever n ∈ A), then A = N.

Note: at this stage in the development of the natural number system, all we
have are Peano’s axioms; addition has not yet been defined. When we define
addition in N, S(n) will turn out to be n+ 1.

Everything we need to know about the natural numbers can be deduced from
these axioms. That is, using only Peano’s axioms, one can define addition and
multiplication of natural numbers and prove that they have the usual arithmetic
properties. One can also define the order relation on the natural numbers and
prove that it has the appropriate properties. To do all of this is not difficult, but
it is tedious and time consuming. We will do some of this here in the text and
the exercises, but we won’t do it all. We will do enough so that students should
understand how such a development would proceed. Then we will state and
discuss the important properties of the resulting system of natural numbers.

Our main tool in this section will be mathematical induction, a powerful
technique that is a direct consequence of Axiom N5.

Induction

Axiom N5 above is often called the induction axiom, since it is the basis for
mathematical induction. Mathematical induction is used in making definitions
that involve a sequence of objects to be defined and in proving propositions that
involve a sequence of statements to be proved. Here, by a sequence we mean a
function whose domain is the natural numbers. Thus, a sequence of statements
is an assignement of a statement to each n ∈ N. For example, “n is either 1 or
it is the successor of some element of N” is a sequence of statements, one for
each n ∈ N. We will use induction to prove that all of these statements are true
once we prove the following theorem.

The following theorem states the mathematical induction principle as it ap-
plies to proving propositions.

Theorem 1.2.1. Suppose {Pn} is a sequence of statements, one for each n ∈ N.
These statements are all true provided

1. P1 is true (the base case is true); and

2. whenever Pn is true for some n ∈ N, then Ps(n) is also true (the induction
step can be carried out).

Proof. Let A be the subset of N consisting of those n for which Pn is true. Then
hypothesis (1) of the theorem implies that 1 ∈ A, while hypothesis (2) implies
that s(n) ∈ A whenever n ∈ A. By Axiom N5, A = N, and so Pn is true for
every n.
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Example 1.2.2. Prove that each n ∈ N is either 1 or is the successor of some
element of N .

Solution: If n is 1 then the statement is obviously true. Thus, the base case
is true. If the statement is true of n then it is certainly true of s(n), because
it is true of any element which is the successor of something in N. Thus, by
induction, the statement is true for every n ∈ N.

Another way to say what was proved in this example is that every natural
number except 1 has a predecessor. This statement doesn’t seem obvious at
this stage of development of N, but its proof was a rather trivial application of
induction.

Inductive Definitions

Inductive definitions are used to define sequences. The sequence {xn} to be
defined is a sequence of elements of some set X, which may or may not be a set
of numbers. We wish to define the sequence in such a way that x1 is a specified
element of X and, for each n ∈ N, xs(n) is a certain function of xn. That is, we
are given an element x1 ∈ X and a sequence of functions fn : X → X and we
wish to construct a sequence {xn}, beginning with x1, such that

xs(n) = fn(xn) for all n ∈ N. (1.2.1)

This equation, defining xs(n) in terms of xn, is called a recursion relation. Se-
quences defined in this way occur very often in mathematics. Newton’s method
from calculus and Euler’s method for numerically solving differential equations
are two important examples.

Theorem 1.2.3. Given a set X, an element x1 ∈ X, and a sequence {fn} of
functions from X to X, there is a unique sequence {xn} in X, beginning with
x1, which satisfies xs(n) = fn(xn) for all n ∈ N.

Proof. Consider the Cartesian product N × X – that is, the set of all ordered
pairs (n, x) with n ∈ N and x ∈ X. We define a function S : N×X → N×X by

S(n, x) = (s(n), fn(x)) (1.2.2)

We say that a subset E of N ×X is closed under S if S sends elements of E to
elements of E. Clearly the intersection of all subsets of N ×X that are closed
under S and contain (1, x1) is also closed under S and contains (1, x1). This is
the smallest subset of N ×X, that is closed under S and contains (1, x1). We
will call this set A.

To complete the argument, we will show that the set A is the graph of a
function from N to X – that is, it has the form {(n, xn) : n ∈ N} for a certain
sequence {xn} in X. This is the sequence we are seeking. To prove A is the
graph of a function from N to X we must show that each n ∈ N is the first
element of exactly one pair (n, x) ∈ A. We prove this by induction.
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The element 1 is the first element of the pair (1, x1), which is in A by the
construction of A. If there were another element x ∈ X such that (1, x) ∈ A,
then we could remove (1, x) from A and have a smaller set containing (1, x1)
and closed under S. This is due to the fact that (1, x) cannot be in the image
of S, since 1 is not the successor of any element of N by N3.

Now, for the induction step, suppose for some n we know that there is a
unique element xn ∈ X such that (n, xn) ∈ A. Then S(n, xn) = (s(n), fn(xn))
is in A. Suppose there is another element (s(n), x) ∈ A with x 6= fn(xn)
and suppose this element is in the image of S – that is (s(n), x) = S(m,y) =
(s(m), fm(y)) for some (m,y) ∈ A. Then n = m by N4, and y = xn by the
induction assumption. Thus if (s(n), x) is really different from (s(n), fn(xn),
then it cannot be in the image of S. As before this means we can remove it
from A and still have a set closed under S and containing (1, x1). Since A is the
smallest such set, we conclude there is no such element (s(n), x). By induction,
for each element of N there is a unique element xn ∈ X such that (n, xn) ∈ A.
Thus, A is the graph of a function n→ xn from N to X.

This shows the existence of a sequence with the required properties. We
leave the proof that this sequence is unique to the exercises.

Note that the proof of the above theorem used all of Peano’s axioms, not
just N5.

Using Peano’s Axioms to Develop Properties of N

In this subsection, we will demonstrate some of the steps involved in developing
the arithmetic and order properties of N using only Peano’s axioms. It is not a
complete development, but just a taste of what is involved. We begin with the
definition of addition.

Definition 1.2.4. We fix m ∈ N and define a sequence {m+n}n∈N inductively
as follows:

m+ 1 = s(m), and

m+ s(n) = s(m+ n).
(1.2.3)

These two conditions determine a unique sequence {m + n}n∈N by Theorem
1.2.3.

By the above definition, the successor s(n) of n is our newly defined n+1. At
this point we will begin using n+ 1 in place of s(n) in our inductive arguments
and definitions.

Example 1.2.5. Using the above definition and Peano’s axioms, prove the
associative law for addition in N. That is, prove

m+ (n+ k) = (m+ n) + k for all k, n,m ∈ N.

Solution: We fix m and n and, for each k ∈ N, let Pk be the proposition
m+ (n+ k) = (m+n) + k. We prove that Pk is true for all k ∈ N by induction
on k.
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The base case P1 is just

m+ (n+ 1) = (m+ n) + 1. (1.2.4)

which is the recursion relation (1.2.3) used in the definition of addition once we
replace s(n) with n+ 1. Thus, P1 is true by definition.

For the induction step, we assume Pk is true for some k – that is, we assume

m+ (n+ k) = (m+ n) + k.

We then take the successor of both sides of this equation to obtain

(m+ (n+ k)) + 1 = ((m+ n) + k) + 1.

If we use (1.2.4) on both sides of this equation, the result is

m+ ((n+ k) + 1) = (m+ n) + (k + 1).

Using (1.2.4) again, this time on the left side of the equation, leads to

m+ (n+ (k + 1)) = (m+ n) + (k + 1).

Since this is proposition Pk+1, the induction is complete.

Example 1.2.6. Using Definition 1.2.4 and Peano’s axioms, prove that 1+n =
n+ 1 for every n ∈ N.

Solution: Let Pn be the statement 1 + n = n + 1. We prove by induction
that Pn is true for every n. It is trivially true in the base case n = 1, since P1

just says 1 + 1 = 1 + 1.
For the induction step, we assume that Pn is true for some n – that is we

assume 1 + n = n+ 1. If we add 1 to both sides of this equation (i.e. take the
successor of both sides), we have

(1 + n) + 1 = (n+ 1) + 1.

By Definition 1.2.4, the left side of this equation is equal to 1 + (n+ 1). Thus,

1 + (n+ 1) = (n+ 1) + 1.

Thus, Pn+1 is true if Pn is true and the induction is complete.

A similar induction, this time on m, with n fixed can be used to prove the
commutative law of addition – that is, m + n = n + m for all n,m ∈ N. The
base case for this induction is the statement proved above. The associative law
proved in Example 1.2.5 is needed in the proof of the induction step. We leave
the details to the exercises.

We leave the definition of multiplication in N to the exercises. Its definition
and the fact that it also satisfies the associative and commutative laws follows
a pattern similar to the one above for addition. Once multiplication is defined,
we can define factors and prime numbers:
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Definition 1.2.7. If a number n ∈ N can be written as n = mk with both
m ∈ N and k ∈ N, then k and m are called factors of n and are said to divide
n. If n 6= 1 and the only factors of n are 1 and n, then n is said to be prime.

The order relation in N can be defined as follows:

Definition 1.2.8. If n,m ∈ N, we will say that n is less than m, denoted
n < m, if there is a k ∈ N such that m = n+ k. We say n is less than or equal
to m and write n ≤ m if n < m or n = m.

Some of the properties of this order relation are worked out in the exercises.
One of these is that each factor of n is necessarily less than or equal to n
(Exercise 1.2.7).

Example 1.2.9. Prove that each natural number n > 1 is a product of primes.
Solution: Here we understand that a prime number itself is a product of

primes – a product with only one factor. Note that if k and m are two numbers
which are products of primes, then their product km is also a product of primes.

Let the proposition Pn be that every m ∈ N, with 1 < m ≤ n, is a product
of primes.

Base case: P1 is true because there is no m ∈ N with 1 < m ≤ 1.
Induction step: suppose n is a natural number for which Pn is true. Then

each m with 1 < m ≤ n is a product of primes . Now n + 1 > 1 and so it is
either a prime, or it factors as a product km with k and m not equal to 1 or
n+ 1. In the first case, Pn+1 is true. In the second case, both k and m are less
than n + 1 and, hence, less than or equal to n. Since Pn is true, k and m are
products of primes. This implies that n + 1 = km is also a product of primes
and, in turn, this implies that Pn+1 is true.

By induction, Pn is true for all n ∈ N and this means that every natural
number n > 1 is a product of primes.

Additional Examples of the Use of Induction

At this point we leave the discussion of Peano’s axioms and the development of
the properties of the natural numbers. The remainder of the section is devoted
to further examples of inductive proofs and inductive definitions. Some of these
involve the real number system, which won’t be discussed until Section 1.4.
Never-the-less we are happy to anticipate its development and use its properties
in these examples.

Example 1.2.10. Prove by induction that every number of the form 5n − 2n,
with n ∈ N is divisible by 3.

Solution: The proposition Pn is that 5n − 2n is divisible by 3.
Base case: Since 5 − 2 = 3, P1 is true;
Induction step: We need to show that Pn+1 is true whenever Pn is true. We

do this by rewriting the expression 5n+1 − 2n+1 as

5n+1 − 5 · 2n + 5 · 2n − 2n+1 = 5(5n − 2n) + (5 − 2)2n.
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If Pn is true then the first term on the right is divisible by 3. The second term
on the right is also divisible by 3, since 5−2 = 3. This implies that 5n+1 −2n+1

is divisible by 3 and, hence, that Pn+1 is true. This completes the induction
step.

By induction (that is, by Theorem 1.2.1), Pn is true for all n.

Example 1.2.11. Define a sequence {xn} of real numbers by setting x1 = 1
and using the recursion relation

xn+1 =
√
xn + 1. (1.2.5)

Show that this is an increasing sequence of positive numbers less than 2.

Solution: The function f(x) =
√
x+ 1 may be regarded as a function from

the set of positive real numbers into itself. We can apply Theorem 1.2.3, with
each of the functions fn equal to f , to conclude that a sequence {xn} is uniquely
defined by setting x1 = 1 and imposing the recursion relation (1.2.5).

Let Pn be the proposition that xn < xn+1 < 2. We will prove that Pn is
true for all n by induction.

Base Case: P1 is the statement x1 < x2 < 2. Since x1 = 1 and x2 =
√

2,
this is true.

Induction Step: Suppose Pn is true for some n. Then xn < xn+1 < 2. If we
add one and take the square root, this becomes

√
xn + 1 <

√

xn+1 + 1 <
√

3.

Using the recursion relation (1.2.5), this yields

xn+1 < xn+2 <
√

3

Since
√

3 < 2, Pn+1 is true. This completes the induction step.
We conclude that Pn is true for all n ∈ N.

Binomial Formula

The proof of the binomial formula is an excellent example of the use of induction.

We will use the notation
(

n
k

)

=
n!

k!(n− k)!
.

This is the number of ways of choosing k objects from a set of n objects.

Theorem 1.2.12. If x and y are real numbers and n ∈ N, then

(x+ y)n =
n
∑

k=0

(

n
k

)

xkyn−k.
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Proof. We prove this by induction on n.

Base Case: Since

(

1
0

)

and

(

1
1

)

are both 1, the binomial formula is true

when n = 1.
Induction Step: If we assume the formula is true for a certain n, then mul-

tiplying both sides of this formula by x+ y yields

(x+ y)n+1 = x
n
∑

k=0

(

n
k

)

xkyn−k + y
n
∑

k=0

(

n
k

)

xkyn−k

=
n
∑

k=0

(

n
k

)

xk+1yn−k +
n
∑

k=0

(

n
k

)

xkyn−k+1.

(1.2.6)

If we change variables in the first sum on the second line of (1.2.6) by replacing
k by k − 1, then our expression for (x+ y)n+1 becomes

xn+1 +

n
∑

k=1

(

n
k − 1

)

xkyn−k+1 +

n
∑

k=1

(

n
k

)

xkyn−k+1 + yn+1

= xn+1 +
n
∑

k=1

[(

n
k − 1

)

+

(

n
k

)]

xkyn+1−k + yn+1.

(1.2.7)

If we use the identity (to be proved in Exercise 1.4.17)

(

n
k − 1

)

+

(

n
k

)

=

(

n+ 1
k

)

,

then the right side of equation (1.2.7) becomes

xn+1 +

n
∑

k=1

(

n+ 1
k

)

xkyn+1−k + yn+1 =

n+1
∑

k=0

(

n+ 1
k

)

xkyn+1−k.

Thus, the binomial formula is true for n+ 1 if it is true for n. This completes
the induction step and the proof of the theorem.

Exercise Set 1.2

In the first seven exercises use only Peano’s axioms and results that were proved
in Section 1.2 using only Peano’s axioms.

1. Prove the commutative law for addition, n+m = m+n, holds in N. Use
induction and Examples 1.2.6 and 1.2.5.

2. Prove that if n,m ∈ N, then m+ n 6= n. Hint: use induction on n.

3. Use the preceding exercise to prove that if n,m ∈ N, n ≤ m, and m ≤ n
then n = m.
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4. Prove that the order relation on N has the transitive property: if k < n
and n < m, then k < m.

5. Use the preceding exercise and Peano’s axioms to prove that if n ∈ N,
then for each element m ∈ N either m ≤ n or n ≤ m. Hint: use induction
on n.

6. Show how to define the product nm of two natural numbers. Hint: use
induction on m.

7. Use the definition of product you gave in the preceding exercise to prove
that if n,m ∈ N then n ≤ nm.

For the remaining exercises you are no longer restricted to just using Peano’s
axioms and their immediate consequences.

8. Using induction, prove that n2 + 3n+ 3 is odd for every n ∈ N;

9. Using induction, prove that 7n − 2n is divisible by 5 for every n ∈ N.

10. Using induction, prove that
n
∑

k=1

k =
n(n+ 1)

2
for every n ∈ N.

11. Using induction, prove that
n
∑

k=1

(2k − 1) = n2 for every n ∈ N.

12. Finish the prove of Theorem 1.2.3 by showing that there is only one se-
quence {xn} which satisfies the conditions of the theorem.

13. Let a sequence {xn} of numbers be defined recursively by

x1 = 0 and xn+1 =
xn + 1

2
.

Prove by induction that xn ≤ xn+1 for all n ∈ N. Would this conclusion
change if we set x1 = 2?

14. Let a sequence {xn} of numbers be defined recursively by

x1 = 1 and xn+1 =
1

1 + xn
.

Prove by induction that xn+2 is between xn and xn+1 for each n ∈ N.

15. Mathematical induction also works for a sequence Pk, Pk+1, · · · of propo-
sitions, indexed by the integers n ≥ k for some k ∈ N. The statement is:
If Pk is true and Pn+1 true whenever Pn is true and n ≥ k, then Pn is
true for all n ≥ k. Prove this.

16. Use induction in the form stated in the preceding exercise to prove that
n2 < 2n for all n ≥ 5.
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17. Prove the identity

(

n
k − 1

)

+

(

n
k

)

=

(

n+ 1
k

)

,

which was used in the proof of Theorem 1.2.12.

18. Write out the binomial formula in the case n = 4.

19. Prove the well ordering principal for the natural numbers: each non-empty
subset S of N contains a smallest element. Hint: apply the induction axiom
to the set

T = {n ∈ N : n < m for all m ∈ S}.

20. Use the result of Exercise 1.2.19 to prove the division algorithm: If n and
m are natural numbers with m < n, and if m does not divide n, then
there are natural numbers q and r such that n = qm+r and r < m. Hint:
consider the set S of all natural numbers s such that (s+ 1)m > n.

1.3 Integers and Rational Numbers

The need for larger number systems than the natural numbers became apparent
early in mathematical history. We need the number 0 in order to describe
the number of elements in the empty set. The negative numbers are needed
to describe deficits. Also, the operation of subtraction leads to non-positive
integers unless n−m is to be defined only for m < n.

Beginning with the system of natural numbers N and its properties derivable
from Peano’s axioms, the system of integers Z can easily be constructed. One
simply adjoins to N a new element called 0 and, for each n ∈ N a new element
called −n. Of course, one then has to define addition and multiplication and an
order relation “≤” for this new set Z in a way that is consistent with the existing
definitions of these things for N. When addition and multiplication are defined,
we want them to have the properties that 0+n = n, and n+(−n) = 0. It turns
out that these requirements and the commutative, associative and distributive
laws (described below) are enough to uniquely determine how addition and
multiplication are defined in Z.

When all of this has been carried out, the new set of numbers Z can be shown
to be a commutative ring, meaning that it satisfies the axioms listed below.

The Commutative Ring of Integers

A binary operation on a set A is rule which assigns to each ordered pair (a, b)
of elements of A a third element of A.

Definition 1.3.1. A commutative ring is set R with two binary operations,
addition ((a, b) → a + b) and multiplication ((a, b) → ab), that satisfy the
following axioms:
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A1. (Commutative Law of Addition) x+ y = y + x for all x, y ∈ R;

A2. (Associative Law of Addition) x+ (y+ z) = (x+ y) + z for all x, y, z ∈ R;

A3. (Additive Identity) there is an element 0 ∈ R such that 0 + x = x for all
x ∈ R;

A4. (Additive Inverses) for each x ∈ R, there is an element −x such that
x+ (−x) = 0;

M1. (Commutative Law of Multiplication) xy = yx for all x, y ∈ R;

M2. (Associative Law of Multiplication) x(yz) = (xy)z for all x, y, z ∈ R;

M3. (Multiplicative Identity) there is an element 1 ∈ R such that 1 6= 0 and
1x = x for all x ∈ R;

D. (Distributive Law) x(y + z) = xy + xz for all x, y, z ∈ R.

A large number of familiar properties of numbers can be proved using these
axioms, and this means that these properties hold in any commutative ring. We
will prove some of these in the examples and exercises.

Example 1.3.2. If F is a commutative ring and x, y, z ∈ F , prove that

(a) x+ z = y + z implies x = y;

(b) x · 0 = 0;

(c) (−x)y = −xy;
Solution: Suppose x+z = y+z. On adding −z to both sides, this becomes

(x+ z) + (−z) = (y + z) + (−z).

Applying the associative law of addition (A2) yields

x+ (z + (−z)) = y + (z + (−z)).

But (z + (−z)) = 0 by A4 and x+ 0 = x by A3 and A1. Similarly, y + 0 = y.
We conclude that x = y. This proves (a).

By A3, 0 + 0 = 0. By D and A3,

x · 0 + x · 0 = x · (0 + 0) = x · 0 = 0 + x · 0.

Using (a) above, we conclude that x · 0 = 0.
To prove (c), we first note that, by definition, −xy is the additive inverse of

xy (it follows from (a) that there is only one of these). We will show that (−x)y
is also an additive inverse for xy. By D, (b), and A1,

xy + (−x)y = (x+ (−x))y = 0 · y = 0.

This proves that (−x)y is an additive inverse for xy and, hence, it must be −xy.
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Subtraction in a commutative ring is defined in terms of addition and the
additive inverse by setting

x− y = x+ (−y).

The system of integers satisfies all the laws of Definition 1.3.1, and so it is a
commutative ring. In fact, it is a commutative ring with an order relation, since
the order relation on N can be used to define a compatible order relation on Z.
However, Z is still inadequate as a number system. This is due to our need to
talk about fractional parts of things. This defect is fixed by passing from the
integers to the rational numbers.

The Field of Rational Numbers

A field is a commutative ring in which division is possible as long as the divisor
is not 0. That is,

Definition 1.3.3. A field is a commutative ring satisfying the additional axiom:

M4. (Multiplicative Inverses) for each non-zero element x there is an element
x−1 such that x−1x = 1.

In a field, an element y can be divided by any non-zero element x. The result
is x−1y, which can also be written as y/x or y

x .
The rational number system Q is a field that is constructed directly from

the integers. The construction begins by considering all symbols of the form n
m ,

with n,m ∈ Z and m 6= 0. We identify two such symbols n
m and p

q whenever

nq = mp. The resulting object is called a fraction. Thus, 4
6 and 2

3 represent the
same fraction because 4 · 3 = 6 · 2. The set Q is then the set of all fractions.

Addition and multiplication in Q are defined in the familiar way:

n

m
+
p

q
=
nq +mp

mq
and

n

m
· p
q

=
np

mq
.

A fraction of the form n
1 is identified with the integer n. This makes the set

of integers Z a subset of Q.
The above construction yields a system that satisfies A1 through A4, M1

through M4 and D. It is therefore a field. We call it the field of rational numbers
and denote it by Q. We won’t prove here that Q satisfies all of the field axioms,
but a few of them will be verified in the examples and exercises of this section.
We will also use the examples and exercises to show how the field axioms can
be used to prove other standard facts about arithmetic in fields such as Q.

Example 1.3.4. Assuming that Z satisfies the axioms of a commutative ring ,
verify that Q satisfies A3 and M3.

Solution: The additive identity in Z is the integer 0, which is identified
with the fraction 0

1 . If we add this to another fraction n
m , the result is

0

1
+
n

m
=

0 ·m+ 1 · n
1 ·m =

n

m
.
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Thus, 0 = 0
1 is an additive identity for Q and axiom A3 is satisfied.

The multiplicative identity in Z is the integer 1 which is identified with the
fraction 1

1 . If we multiply this by another fraction n
m , the result is

1

1
· n
m

=
1 · n
1 ·m =

n

m
.

Thus, 1 = 1
1

is a multiplicative identity for Q and axiom M3 is satisfied.

Example 1.3.5. Verify that Q satisfies M4.
Solution: We know that the elements of Q of the form 0

m represent the
zero element of Q. Thus, each non-zero element is represented by a fraction n

m
in which n 6= 0. Then m

n is also a fraction, and

m

n
· n
m

=
nm

nm
=

1

1
= 1.

Thus, m
n is a multiplicative inverse for n

m . This proves that M4 is satisfied in
Q.

The Ordered Field of Rational Numbers

Using the order relation on the integers, it is easy to define an order relation on
Q. If r is an element of Q, then we declare r ≥ 0 if r can be represented in the
form n

m for integers n ≥ 0 and m > 0. The order relation is then defined by
declaring

p

q
≤ n

m
if and only if

n

m
− p

q
≥ 0.

With the order relation defined this way, Q becomes an ordered field. That is,
it satisfies the axioms in the following definition.

Definition 1.3.6. A field F is called an ordered field if it has an order relation
“≤” such that the following are satisfied for all x, y, z ∈ F :

O1. either x ≤ y or y ≤ x;

O2. if x ≤ y and y ≤ x, then x = y:

O3. if x ≤ y and y ≤ z, then x ≤ z.

O4. if x ≤ y, then x+ z ≤ y + z;

O5. if x ≤ y and 0 ≤ z, then xz ≤ yz.

Remark 1.3.7. Given an order relation “≤”, we don’t distinguish between the
statements “x ≤ y and “y ≥ x” – they mean the same thing. Also, If x ≤ y and
x 6= y, then we write x < y or, equivalently, y > x.

Example 1.3.8. Prove that if F is an ordered field, then

(a) if x, y ∈ F and x ≤ y, then −y ≤ −x;
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(b) if x ∈ F , then x2 ≥ 0;

(c) 0 < 1.

Solution: If x ≤ y, then 0 = x − x ≤ y − x by O4. Using O4 again, along
with A1 through A4 yields −y ≤ (y − x) − y = −x. This completes the proof
of (a).

By O1, if x ∈ F , then 0 ≤ x or x ≤ 0. If 0 ≤ x, then we multiply this
inequality by x and use O4 to conclude that 0 ≤ x2. On the other hand,
suppose x ≤ 0. Then, by Part (a), 0 ≤ −x. As above, we conclude that
0 ≤ (−x)2. Since (−x)2 = x2 (Exercise 1.3.6), the proof of Part (b) is complete.

Since 12 = 1, Part (b) implies that 0 ≤ 1. By M3, 1 6= 0 and so 0 < 1.

Defects of the Rational Field

The rational number system is very satisfying in many ways and is highly useful.
However, there are real world mathematic problems that appear to have real
world numerical solutions, but these solutions cannot be rational numbers. For
example, the Pythagorean Theorem tells us that if the legs of a right triangle
have length a and b, then the length c of the hypotenuse satisfies the equation

c2 = a2 + b2.

However, there are many examples of rational and even integer choices for a and
b, such that this equation has no rational solution for c. The simplest example
is a = b = 1. The Pythagorean Theorem says that a right triangle with legs
of length 1 has a hypotenuse of length c satisfying c2 = 2. However, there is
no rational number whose square is 2. We will prove this using the following
theorem:

Theorem 1.3.9. If k is an integer and the equation x2 = k has a rational
solution, then that solution is actually an integer.

Proof. Suppose r is a rational number such that r2 = k. Let r = n
m

be r
expressed as a fraction in which n and m have no common factors. Then,

( n

m

)2

= k and so n2 = m2k

This equation implies that m divides n2. However, if m 6= 1, then m can be
expressed as a product of primes, and each of these primes must also divide n2.
However, if a prime number divides n2, it must also divide n (Exercise 1.3.15).
Thus, each prime factor of m divides n. Since n and m have no common
factors, this is impossible. We conclude that m = 1 and, hence, that r = n is
an integer.

Now it is easy to see that 2 is not the square of a rational number. If it
were, that number would have to be an integer, by the above theorem. The
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only possibilities are −1, 0, 1 since all other integers have squares that are too
large. Of course, none of the numbers −1, 0, 1 has square equal to 2.

Other geometric objects also lead to the conclusion that the system of ratio-
nal numbers is not sufficient for the measurement of objects that occur in the
natural world. The area π of a circle of radius 1 is not a rational number, for
example. In fact, the rational number system is riddled with holes where there
ought to be numbers. This problem is fixed by the introduction of the system
of real numbers which is the topic of the next section.

Exercise Set 1.3

1. Given that N has an operation of addition which is commutative and
associative, how would you define such an addition operation in Z?

2. Referring to the previous exercise, answer the same question for the oper-
ation of multiplication.

3. Prove that if Z satisfies the axioms for a commutative ring, then Q satisfies
A1 and M1.

4. Prove that if Z satisfies the axioms for a commutative ring, then Q satisfies
A2 and M2.

In the next three exercises you are to prove the given statement assuming x, y, z
are elements of a field. You may use the results of examples and theorems from
this section.

6. (−x)(−y) = xy.

7. xz = yz implies x = y, provided z 6= 0.

8. xy = 0 implies x = 0 or y = 0.

In the next three exercises you are to prove the given statement assuming x, y, z
are elements of an ordered field. Again, you may use the results of examples
and theorems from this section.

9. x > 0 and y > 0 imply xy > 0.

10. x > 0 implies x−1 > 0.

11. 0 < x < y implies y−1 < x−1.

12. Prove that the equation x2 = 5 has no rational solution.

13. Generalize Theorem 1.3.9 by proving that every rational solution of a
polynomial equation

xn + an−1x
n−1 + · · · + a1x+ a0 = 0,

with integer coefficients ak, is an integer solution.
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14. Prove that if m and n are positive integers with no common factors other
than 1 (i. e. m and n are relatively prime), then there are integers a and
b such that 1 = am + bn. Hint: let S be the set of all positive integers
of the form am + bn, where a and b are integers. This set has a smallest
element by Exercise 1.2.19. Use the division algorithm (Exercise 1.2.20)
to show that this smallest element divides both m and n.

15. Use the result of the preceding exercise to prove that if a prime p divides
the product nm of two positive integers, then it divides n or it divides m.

1.4 The Real Numbers

As pointed out in the previous section, the set of rational numbers is riddled
with “holes” where there ought to be numbers. Here we will try to make this
statement more precise and then indicate how these holes can be “filled” result-
ing in the system of real numbers. In addition to the ordered field axioms, the
real number system satisfies a new axiom C – the completeness axiom. Later
in the section we will state it and explore its consequences.

The construction of the real numbers that we outline below is motivated by
the idea that a “hole” in the rational numbers is a location along the rational
number line where there should be a number but there is no rational number.
What do we mean by a “location” along the rational number line? Well if this
has meaning, then it should make sense to talk about the rational numbers that
are to the left of this location and those that are to the right of this location.
This should lead to a separation of the rational numbers into two sets – one
to the left and one to the right of the given location. In fact, we can define a
location on the rational line to be such a separation. This leads to the notion
of a Dedekind cut.

Dedekind Cuts

If r is a rational number, consider the infinite interval Lr consisting of all rational
numbers to the left of r. That is,

Lr = {x ∈ Q : x < r}. (1.4.1)

This set is a non-empty, proper subset of Q. It has no largest element, since,
for each x < r, there are rational numbers larger than x that are also less than
r (for example, (x + r)/2 is one such number). It also has the property that
if x ∈ Lr, then so is any rational number less than x. It turns out that there
are also subsets of Q with these three properties that are not of the form Lr
for some rational number. A subset of Q with these three properties is called a
Dedekind cut. That is,

Definition 1.4.1. A subset L of Q is called a Dedekind cut, or simply a cut in
the rationals, if it satisfies the following three conditions:
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Figure 1.2: A Dedekind Cut in the Rationals.

(a) L 6= ∅ and L 6= Q;

(b) L has no largest element;

(c) if x ∈ L then so is every y with y < x.

The reason for calling such a set L a “cut” is that, if R is the complement of
L, then each number in L is to the left of each number in R. Thus, the rational
line is separated or cut into left and right halves. Since each half determines
the other, we choose to focus on just the left half in this discussion.

Each rational number r determines a cut – the set Lr of (1.4.1). In this case,
r is called the cut number for the Dedekind cut. Are there Dedekiind cuts that
are not determined in this way? cuts that have no rational cut number?

Example 1.4.2. Describe a Dedekind cut that is not of the form Lr for a
rational number r.

Solution: We are guided by the idea that there ought to be a number whose
square is 2, but there is no such rational number. If there were a number

√
2

with square 2, then the set of rational numbers less than
√

2 could be described
as

L = {r ∈ Q : r ≥ 0 and r2 < 2} ∪ {r ∈ Q : r < 0}.
We claim this a Dedekind cut not of the form Lr for any r ∈ Q.

Certainly L is a non-empty, proper subset of Q. It has no largest element
because if n

m
is any positive element of L, then we can always choose a larger

rational number which is still has square less than 2 as follows: kn+1
km > n

m for
every k ∈ N and

(

kn+ 1

km

)2

=
( n

m

)2

+
1

km

(

2
n

m
+

1

km

)

.

By choosing k large enough, we can make the second term on the right less than
2− ( nm )2 and this will imply that ( kn+1

km )2 < 2. Thus, L has no largest element.
If x ∈ L and y < x, then either y is negative, in which case it is in L, or

0 ≤ y < x. In the latter case, y2 < x2 < 2, and so y ∈ L in this case as well.
Thus L is a Dedekind cut.

We next show that there is no rational number r such that L = Lr. If
there is such a number r, then r is a positive rational number not in L and so
r2 ≥ 2. However, there are numbers in L arbitrarily close to r and each of them
has square less than 2. It follows that r2 ≤ 2. This means r2 = 2, which is
impossible for a rational number r.
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Thus, although it might seem that every Dedekind cut ought to correspond
to a cut number, the above example shows that this is not the case. In fact,
there are a lot more cuts than there are rational cut numbers. However, we can
fix this by enlarging the number system so that there is a cut number for every
Dedekind cut. The way this is usually done is to define the new number system
to actually be the set of all Dedekind cuts of the rationals. Below, we attempt
to describe this idea in a way that is somewhat visually intuitive.

We will think of a Dedekind cut L as specifying a certain location (the
location between L and its complement R) along the rational number line. We
will think of the real number system R as being the set of all such locations.
Then each real number x corresponds to a Dedekind cut Lx, which is to be
thought of as the set of all rational numbers to the left of the location x. We next
need to define an order relation and operations of addition and multiplication
in R.

The order relation on R is simple: We say x ≤ y if Lx ⊂ Ly. An element
x ∈ R is, then, non-negative if L0 ⊂ Lx. With this definition of order on R we
can assert that

Lx = {r ∈ Q : r < x}
for all x ∈ R (not just for x ∈ Q).

Addition of real numbers is defined as follows: If x, y ∈ R, then we set

Lx + Ly = {r + s : r ∈ Lx, s ∈ Ly}.

It is easily verified that this is also a Dedekind cut (Exercise 1.4.10) and, hence,
it corresponds to an element of R. We define x+ y to be this element.

The product of two non-negative numbers x and y is defined as follows: we
set

K = {rs : r ∈ Lx, r ≥ 0, s ∈ Ly, s ≥ 0} ∪ {t ∈ Q : t < 0}.
This is a Dedekind cut (Exercise 1.4.11), and we define xy to be the corre-
sponding element of R. For pairs of numbers where one or both is negative, the
definition of product is more complicated due to the fact that multiplication by
a negative number reverses order.

Of course Q ⊂ R, since each rational number was already the cut number of a
Dedekind cut. It is easily checked that the definitions of addition, multiplication
and order given above agree with the usual ones in the case that the numbers
are rational.

The numbers in R that are not in Q are called irrational numbers. It turns
out that there are many more irrational numbers than there are rational num-
bers. To make sense of this statement requires a discussion of finite sets and
infinite sets, and how some infinite sets are larger than others. We present such
a discussion in the appendix.

The Completeness Axiom

This is the property of the real number system that distinguishes it from the
rational number system. Without it, most of the theorems of calculus would
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not be true.
A subset A of an ordered field F is said to be bounded above if there is an

element m ∈ F such that x ≤ m for every x ∈ A. The element m is called
an upper bound for A. If, among all upper bounds for A, there is one which is
smallest (less than all the others), then we say that A has a least upper bound.

Definition 1.4.3. An ordered field F is said to be complete if it satisfies:

C. each non-empty subset of F which is bounded above has a least upper
bound.

If one defines the real number system R in terms of Dedekind cuts of the
rationals and defines addition, multiplication, and order as above, then one can
prove that the resulting system is an ordered field. To carry out all the details
of this proof is a long and tedious process and it will not be done here. However,
it is quite easy to prove that R, as defined in this way, satisfies the completeness
axiom C.

Theorem 1.4.4. If R is defined using Dedekind cuts of Q, as above, then every
non-empty subset of R which is bounded above has a least upper bound.

Proof. Let A be a bounded subset of R and let m be any upper bound for A.
For each x ∈ A, let Lx be the corresponding cut in Q. Then x ≤ m for all x ∈ A
means that Lx ⊂ Lm for all x ∈ A. We set

L =
⋃

x∈A
Lx.

Then L is a proper subset of Q because L ⊂ Lm. If r ∈ L and s < r, then
r ∈ Lx for some x ∈ A and this implies s ∈ Lx and, hence, s ∈ L. If L had a
largest element t, then t would belong to Lx for some x, and it would have to
be a largest element for Lx – a contradiction. Thus, L has no largest element.
We have now proved that L satisfies (a), (b), and (c) of Definition 1.4.1 and,
hence, that L is a Dedekind cut.

If y is the real number corresponding to L, that is if L = Ly, then, for all
x ∈ A, Lx ⊂ Ly, and this means x ≤ y. Thus, y is an upper bound for A. Also,
Ly ⊂ Lm means that y ≤ m. Since m was an arbitrary upper bound for A, this
implies that y is the least upper bound for A. This completes the proof.

This completes our outline of the construction of the real number system
beginning with Peano’s axioms for the natural numbers. The final result is the
following theorem, which we will state without further proof. It will be the
starting point for our development of calculus.

Theorem 1.4.5. The real number system R is a complete ordered field.

Example 1.4.6. Find all upper bounds and the least upper bound for the
following sets:

A = (−1, 2) = {x ∈ R : −1 < x < 2};
B = (0, 3] = {x ∈ R : 0 < x ≤ 3}.
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Solution: The set of all upper bounds for the set A is {x ∈ R : x ≥ 2}.
The smallest element of this set (the least upper bound of A) is 2. Note that 2
is not actually in the set A.

The set of all upper bounds for B is the set {x ∈ R : x ≥ 3}. The smallest
element of this set is 3 and so it is the least upper bound of B. Note that, in
this case, the least upper bound is an element of the set B.

If the least upper bound of a set A does belong to A, then it is called the
maximum of A. Note that a non-empty set which is bounded above always has
a least upper bound, by Axiom C. However, the preceding example shows that
it need not have a maximum.

The Archimedean Property

An ordered field always contains a copy of the natural numbers and, hence, a
copy of the integers (Exercise 1.4.5). Thus, the following definition makes sense.

Definition 1.4.7. An ordered field is said to have the Archimedean property
if, for every x ∈ R, there is a natural number n such that x < n. An ordered
field with the Archimedean property is called an Archimedean ordered field.

Theorem 1.4.8. The field of real numbers has the Archimedean property.

Proof. We use the completeness property. Suppose there is an x such that n ≤ x
for all n ∈ N. Then N is a non-empty subset of R which is bounded above. By
the completeness property, there is a least upper bound b for N. Then b is an
upper bound for N, but b − 1 is not. This implies there is an n ∈ N such that
b− 1 < n. Then b < n+ 1, which contradicts the statement that b is an upper
bound for N. Thus, the assumption that N is bounded above by some x ∈ R has
led to a contradiction. We conclude that every x in R is less than some natural
number. This completes the proof.

The Archimedean property can be stated in any one of several equivalent
ways. One of these is: for every real number x > 0, there is an n ∈ N such that
1/n < x (Example 1.4.9). Another is: given real numbers x and y with x > 0,
there is an n ∈ N such that nx > y (Exercise 1.4.6).

Example 1.4.9. Prove that, in an Archimedean field, for each x > 0 there is
an n ∈ N such that 1/n < x.

Solution The Archimedean property tells us that there is a natural number
n > 1/x. Since n and x are positive, this inequaltiy is preserved when we
multiply it by x and divide it by n. This yields 1/n < x, as required.

Another consequence of the Archimedean property is that there is a rational
number between each distinct pair of real numbers (Exercise 1.4.7).
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Exercise Set 1.4

1. For each of the following sets, describe the set of all upper bounds for the
set :

(a) the set of odd integers;

(b) {1− 1/n : n ∈ N};
(c) {r ∈ Q : r3 < 8};
(d) {sinx : x ∈ R}.

2. For each of the sets in (a), (b), (c) of the preceding exercise, find the least
upper bound of the set, if it exists.

3. Prove that if a subset A of R is bounded above, then the set of all upper
bounds for A is a set of the form [x,∞). What is x?

4. Show that the set A = {x : x2 < 1 − x} is bounded above, and then find
its least upper bound.

5. If F is an ordered field, prove that there is a sequence of elements {nk}k∈N,
all different, such that n1 = 1 (the identity element of F ), and nk+1 =
nk + 1 for each k ∈ N. Argue that the terms of this sequence form a
subset of F which is a copy of the natural numbers, by showing that the
correspondence k → nk is a one-to-one function from N onto this subset.
By definition it takes the successor k + 1 of an element k ∈ N to the
successor nk + 1 of its image nk.

6. Let F be an ordered field, We consider N to be a subset of F as described
in the preceding exercise. Prove that F is Archimedean if and only if, for
each pair x, y ∈ F with x > 0, there exists a natural number n such that
nx > y.

7. Prove that if x < y are two real numbers, then there is a rational number
r with x < r < y. Hint: use the result of Example 1.4.9.

8. Prove that if x is irrational and r is a non-zero rational number, then x+r
and rx are also irrational.

9. We know that
√

2 is irrational. Use this fact and the previous exercise
to prove that if r < s are rational numbers, then there is an irrational
number x with r < x < s.

The following exercises concern Dedekind cuts of the rationals and should be
done using only properties of the rational number system and the definition of
Dedekind cut.

10. Show that if Lx and Ly are Dedekind cuts defining real numbers x and y,
then

Lx + Ly = {r + s : r ∈ Lx and s ∈ Ly}
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is also a Dedekind cut (this is the Dedekind cut determining the sum
x+ y).

11. If Lx and Ly are Dedekind cuts determining positive real numbers x and
y, and if we set

K = {rs : 0 ≤ r ∈ Lx and 0 ≤ s ∈ Ly} ∪ {t ∈ Q : t < 0},

then K is also a Dedekind cut (this is the Dedekind cut determining the
product xy).

12. If L is the Dedekind cut of Example 1.4.2 and L determines the real
number x (so that L = Lx), prove that Lx2 = L2. Thus, the real number
corresponding to L has square 2.

1.5 Sup and Inf

The concept of least upper bound, which appears in the completeness axiom,
will be extremely important in this course. It will be examined in detail in
this section. We first note that there is a companion concept for sets that are
bounded below.

Greatest Lower Bound

We say a set A is bounded below if there is a number m such that m ≤ x for
every x ∈ A. The number m is called a lower bound for A. A greatest lower
bound for A is a lower bound that is larger than any other lower bound.

Theorem 1.5.1. Every non-empty subset of R that is bounded below has a
greatest lower bound.

Proof. SupposeA is a non-empty subset of R which is bounded below . We must
show that there is a lower bound for A which is greater than any other lower
bound for A. If m is any lower bound for A, then Example 1.3.8 (a) implies
that, −m is an upper bound for −A = {−a : a ∈ A}. Since R is a complete
ordered field, there is a least upper bound r for −A. Then

−a ≤ r for all a ∈ A and r ≤ −m.

Applying Example 1.3.8 (a) yields that

−r ≤ a for all a ∈ A and m ≤ −r.

Thus, −r is a lower bound for A and, since m was an arbitrary lower bound,
the inequality m ≤ −r implies that −r is the greatest lower bound.



30 CHAPTER 1. THE REAL NUMBERS

The Extended Real Numbers

For many reasons, it is convenient to extend the real number system by adjoining
two new points ∞ and −∞. The resulting set is called the extended real number
system. We declare that ∞ is greater than and −∞ less than every other
extended real number. This makes the extended real number system an ordered
set. We also define x+∞ to be ∞ if x is any extended real number other than
−∞. Similarly, x − ∞ = x + (−∞) is defined to be −∞ if x is any extended
real number other than ∞. Of course, there is no reasonable way to make sense
of ∞−∞.

The introduction of the extended real number system is just a convenient
notational convention. For example, it allows us to make the following definition.

Sup and Inf

Definition 1.5.2. Let A be an arbitrary non-empy subset of R. We define the
supremum of A, denoted supA, to be the smallest extended real number M
such that a ≤M for every a ∈ A .

The infimum of A, denoted inf A, is the largest extended real number m
such that m ≤ a for all a ∈ A .

Note that, if A is bounded above, then supA is the least upper bound of A.
If A is not bounded above, then the only extended real number M with a ≤M
for all a ∈ A is ∞, and so supA = ∞ in this case. Similarly, inf A is the greatest
lower bound of A if A is bounded below and is −∞ if A is not bounded below.
Thus, supA and inf A exist as extended real numbers for any non-empty set
A, but they might not be finite. Also note that, even when they are finite real
numbers, they may not actually belong to A, as Example 1.4.6 shows.

Example 1.5.3. Find the sup and inf of the following sets:

A = (−1, 1] = {x ∈ R : −1 < x ≤ 1};
B = (−∞, 5) = {x ∈ R : x < 5}.

C =

{

n2

n+ 1
: n ∈ N

}

(1.5.1)

D =

{

1

n
: n ∈ N

}

(1.5.2)

Solution: Clearly, inf A = −1 and supA = 1. These are finite, supA
belongs to A, but inf A does not.

Also, inf B = −∞ and supB = 5. In this case, the inf is not finite. The sup
is finite but does not belong to B.

Since
n2

n+ 1
≥ n

2
, the set C is unbounded, and so supC = ∞. Also, we have

n+ 1 ≤ n2 + n2 = 2n2, and so

1

2
≤ n2

n+ 1



1.5. SUP AND INF 31

for all n ∈ N. Thus, 1/2 is a lower bound for C. It is the greatest lower bound,

since it actually belongs to C, due to the fact that
n2

n+ 1
=

1

2
when n = 1.

Thus, inf C = 1/2.
Certainly 0 is a lower bound for the set D. It follows from the Archimedean

property (see Example 1.4.9) that there is no x ∈ F with x > 0 which is a
lower bound for this set, and so 0 is the greatest lower bound. Thus, inf D = 0.
Clearly, supD = 1.

If A is a set of numbers and supA actually belongs to A, then it is called
the maximum of A and denoted maxA. Similarly, if inf A belongs to A, then it
is called the minimum of A and is denoted minA.

The following theorem is really just a restatement of the definition of sup,
but it may give some helpful insight. It says that supA is the dividing point
between the numbers which are upper bounds for A (if there are any) and the
numbers which are not upper bounds for A. A similar theorem holds for inf.
Its formulation and proof are left to the exercises.

Theorem 1.5.4. Let A be a non-empty subset of R and x an element of R.
Then

(a) supA ≤ x if and only if a ≤ x for every a ∈ A;

(b) x < supA if and only if x < a for some a ∈ A.

Proof. (a) By definition a ≤ x for every a ∈ A if and only if x is an upper bound
for A. If x is an upper bound for A, then A is bounded above. This implies its
sup is its least upper bound, which is necessarily less than or equal to x.

Conversely, if supA ≤ x, then supA is finite and is the least upper bound
for A. Since supA ≤ x, x is also an upper bound for A. Thus, supA ≤ x if and
only if a ≤ x for every a ∈ A.

(b) If x < supA, then x is not an upper bound for A, which means that
x < a for some a ∈ A. Conversely, if x < a for some a ∈ A, then x < supA,
since a ≤ supA. Thus, x < supA if and only if x < a for some a ∈ A.

Example 1.5.5. If A =

{

4n− 1

6n+ 3
: n ∈ N

}

, find the set of all upper bounds for

A.
Solution: Long division yields

4n− 1

6n+ 3
=

2

3
− 1

2n+ 1
≤ 2

3
.

Thus, 2/3 is an upper bound for A. If x < 2/3, then ǫ = 2/3 − x is positive,
and the Archimedean Property implies we can choose n large enough that

1

2n+ 1
<

1

n
< ǫ.



32 CHAPTER 1. THE REAL NUMBERS

Then

x <
2

3
− 1

2n+ 1
=

4n− 1

6n+ 3

for such an n, which means that x is not an upper bound for A.
We conclude that 2/3 is the least upper bound for A – that is supA = 2/3.

By the previous theorem, the set of all upper bounds for A is the interval
[2/3,∞).

Example 1.5.6. If A =

{

n2

n+ 1
: n ∈ N

}

, find supA and the set of all upper

bounds for A.
Solution: Long division yields

n2

n+ 1
= n− 1 +

1

n+ 1
≥ n− 1.

Then the Archmedean Property implies that there are no upper bounds for A,
since, for every x ∈ R, there is an n ∈ N for which n− 1 is larger than x. Thus,
the set of upper bounds for A is the empty set and supA = ∞.

Properties of Sup and Inf

The next theorem uses the following notation concerning subsets A and B of R:

−A = {−a : a ∈ A};
A+B = {a+ b : a ∈ A, b ∈ B}
A−B = {a− b : a ∈ A, b ∈ B}.

Theorem 1.5.7. Let A and B be non-empty subsets of R. Then

(a) inf A ≤ supA;

(b) sup(−A) = − inf A and inf(−A) = − supA;

(c) sup(A+B) = supA+ supB and inf(A+B) = inf A+ inf B;

(d) sup(A−B) = supA− inf B;

(e) if A ⊂ B, then supA ≤ supB and inf B ≤ inf A.

Proof. We will prove (a), (b), and (c) and leave (d) and (e) to the exercises.
(a) If A is non-empty, then there is an element a ∈ A. Since inf A is a lower

bound and supA an upper bound for A, we have inf A ≤ a ≤ supA.
(b) A number x is a lower bound for the set A (x ≤ a for all a ∈ A) if and

only if −x is an upper bound for the set −A (−a ≤ −x for all a ∈ A). Thus, if
L is the set of all lower bounds for A, then −L is the set of all upper bounds for
−A. Furthermore, the largest member of L and the smallest member of −L are
negatives of each other. That is, − inf A = sup(−A). This is the first equality
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in (b) If we apply this result with −A replacing A, we have − inf(−A) = supA.
If we multiply this by −1, we get the second equality in (b).

(c) Since a ≤ supA and b ≤ supB for all a ∈ A, b ∈ B, we have

a+ b ≤ supA+ supB for all a ∈ A, b ∈ B.

It follows that
sup(A+B) ≤ supA+ supB.

Let x be any number less than supA + supB. We claim that there are
elements a ∈ A and b ∈ B such that

x < a+ b. (1.5.3)

Once proved, this will imply that no number less than supA+supB is an upper
bound for A + B. Thus, proving this claim will establish that sup(A + B) =
supA+ supB.

There are two cases to consider: supB finite and supB = ∞. If supB is
finite, then x − supB < supA, and Theorem 1.5.4 implies there is an a ∈ A
with x − supB < a. Then x − a < supB. Applying Theorem 1.5.4 again, we
conclude there is an b ∈ B with x− a < b. This implies (1.5.3), and proves our
claim in the case where supB is finite.

Now suppose supB = ∞. Let a be any element of A. Then x−a < supB =
∞ and so, as above, we conclude from Theorem 1.5.4 that there is a b ∈ B
satisfying x − a < b. This implies (1.5.3), which establishes our claim in this
case and completes the proof.

Sup and Inf for Functions

If f is a real valued function defined on some set X and if A is a subset of X,
then

f(A) = {f(x) : x ∈ A}
is a set of real numbers, and so we can take its sup and inf.

Definition 1.5.8. If f : X → R is a function and A ⊂ X, then we set

sup
A
f = sup{f(x) : x ∈ A} and inf

A
f = inf{f(x) : x ∈ A}.

Thus, supA f is the supremum of the set of values that f assumes on A and
infA f is the infimum of this set. They themselves may or may not be values
that f assumes on A. If supA f is a value that f assumes on A, then it is called
the maximum of f on A. Similarly, if infA f is a value assumed by f somewhere
on A, then it is called the minimum of f on A.

Example 1.5.9. Find supI f and infI f if

(a) f(x) = sinx and I = [−π/2, π/2);

(b) f(x) = 1/x and I = (0,∞).
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Solution: (a) The function sinx takes on all values in the interval [−1, 1)
on I, but does not take on the value 1. Thus, infI f = −1 and supI f = 1. In
this case, infI f is a value assumed by f on I, but supI f is not.

(b) the function 1/x takes on all values in the open interval (0,∞). Thus,
infI f = 0 and supi f = ∞ in this case. Neither one of these extended real
numbers is a value taken on by f on I.

The following theorem concerning sup and inf for functions follows easily
from Theorem 1.5.7. We leave the details to the exercises.

Theorem 1.5.10. Let f and g be functions defined on a set containing A as a
subset, and let c ∈ R be a positive constant. Then

(a) supA cf = c supA f and infA cf = c infA f ;

(b) supA(−f) = − infA f ;

(c) supA(f + g) ≤ supA f + supA g and infA f + infA g ≤ infA(f + g);

(d) sup{f(x)− f(y) : x, y ∈ A} = supA f − infA f .

Exercise Set 1.5

1. For each of the following sets, find the set of all extended real numbers x
that are greater than or equal to every element of the set. Then find the
sup of the set. Does the set have a maximum?

(a) (−10, 10);

(b) {n2 : n ∈ N};

(c)

{

2n+ 1

n+ 1

}

.

2. Find the sup and inf of the following sets. Tell whether each set has a
maximum or a minimum.

(a) (1, 8];

(b)

{

n+ 2

n2 + 1

}

;

(c) {n/m : n,m ∈ Z, n2 < 5m2};

3. Prove that if supA < ∞, then for each n ∈ N there is an element an ∈ A
such that supA− 1/n < an ≤ supA.

4. Prove that if supA = ∞, then for each n ∈ N there is an element an ∈ A
such that an > n.

5. Formulate and prove the analog of Theorem 1.5.4 for inf.

6. Prove part (d) of Theorem 1.5.7.
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7. Prove (e) of Theorem 1.5.7.

8. if A and B are two non-empty sets of real numbers, then prove that

sup(A ∪B) = max{supA, supB} and inf(A ∪B) = min{inf A, inf B}.

9. Find supI f and infI f for the following functions f and sets I. Which of
these is actually the maximum or the minimum of the function f on I.

(a) f(x) = x2, I = [−1, 1];

(b) f(x) =
x+ 1

x− 1
, I = (1, 2);

(c) f(x) = 2x− x2, I = [0, 1).

10. Prove (a) of Theorem 1.5.10

11. Prove (b) of Theorem 1.5.10

12. Prove (c) of Theorem 1.5.10

13. Prove (d) of Theorem 1.5.10
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Chapter 2

Sequences

In this chapter we have our first encounter with the concept of limit – the
concept that lies at the heart of the calculus. We first study limits of sequences
of real numbers. Limits of functions will be studied in the next chapter.

2.1 Limits of Sequences

Limits make sense in any context in which we have a notion of distance between
objects. Thus, we begin with a discussion of the notion of distance between two
real numbers.

Distance and Absolute Value

Recall that the absolute value |x| of a number x is defined by

|x| =

{

x if x ≥ 0
−x if x < 0.

}

Thus, |x| is always a non-negative number. It can be thought of as the distance
from x to 0. For example,

|3| = | − 3| = 3,

just means that the distance from 3 to 0 and the distance from −3 to 0 are
the same, namely 3. More generally, if x and y are any two real numbers, the
distance from x to y is |x− y|.

We will often need to specify that a number x is close to another number
a. However, this doesn’t mean anything unless we specify how close. If ǫ is a
positive number, then the statement “x is within ǫ of a” does have meaning. It
means that the distance between x and a is less than ǫ – that is

|x− a| < ǫ.

This statement also means that x is in the open interval of radius ǫ, centered at
a, as pointed out in Part (b) of the following theorem.

37
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Theorem 2.1.1. If x, y, a and ǫ are real numbers with ǫ > 0, then

(a) |y| < ǫ if and only if −ǫ < y < ǫ;

(b) |x− a| < ǫ if and only if a− ǫ < x < a+ ǫ.

These statements remain true if “<” is replaced by “≤”.

Proof. To prove (a), we consider two cases:

1. Suppose y ≥ 0. Then |y| = y, and so |y| < ǫ if and only if y < ǫ. The latter
statement means the same as −ǫ < y < ǫ, because −ǫ < y is automatically
true in this case.

2. Suppose y < 0. Then |y| = −y, and so |y| < ǫ if and only if −y < ǫ.
This is true if and only if −ǫ < y, which is true if and only if −ǫ < y < ǫ,
because y < ǫ is automatically true in this case.

Part (b) follows from Part (a). That is, if we apply Part (a) with y = x− a,
then we conclude that |x− a| < ǫ if and only if −ǫ < x− a < ǫ, and this is true
if and only if a− ǫ < x < a+ ǫ.

If “<” is replaced by “≤” the proofs of (a) and (b) remain the same.

The following theorem will be used extensively throughout the text.

Theorem 2.1.2. (Triangle Inequality) If a and b are real numbers, then

(a) |a+ b| ≤ |a| + |b|; and

(b) ||a| − |b|| ≤ |a− b|.

Proof. For part (a), we observe that −|a| ≤ a ≤ |a| and −|b| ≤ b ≤ |b|. If we
add these inequalities, the result is

−(|a| + |b|) ≤ a+ b ≤ |a| + |b|

By the preceding theorem (with “<” replaced by “≤”), this is equivalent to
|a+ b| ≤ |a| + |b|. This proves Part (a).

For part (b), we note that part (a) implies |a| = |b + (a− b)| ≤ |b| + |a− b|
and this yields

|a| − |b| ≤ |a− b| (2.1.1)

when we subtract |b| from both sides. If we interchange b and a, then the right
side of this inequality stays the same and the left side becomes |b| − |a|. Thus,
the inequality

|b| − |a| ≤ |b| + |a− b|

also holds. This, and (2.1.1) together imply Part (b).
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Sequences

A sequence of real numbers is a function from the natural numbers to the real
numbers. That is, it is an assignment of a real number an to each natural
number n. Traditionally, we use the notation

{an}∞n=1 or simply {an},

to denote a sequence, rather than using standard function notation. Alterna-
tively, we may describe a sequence by writing out its first few terms and possibly
its nth term:

a1, a2, a3 · · · or a1, a2, a3, · · · , an, · · · .

Example 2.1.3. Write each of the following sequences in the form

a1, a2, a3, · · · , an, · · · .

(a) the sequence {(−1)n1/n};

(b) the sequence of positive even integers;

(c) the sequence defined inductively by a1 = 2 and an+1 =
an + 1

2
.

Solution: The answers are

(a) −1, 1/2,−1/3, · · · , (−1)n1/n, · · · ;

(b) 2, 4, 6, · · · , 2n, · · · ;

(c) 2, 3/2, 5/4, · · · , 1 + 1/2n−1, · · · .

The first two are obvious. For (c), we prove that an = 1 +1/2n−1 by induction.
This is certainly true for n = 1. If it is correct for an integer n, then an =
1 + 1/2n−1 and so

an+1 = (an + 1)/2 = (1 + 1/2n−1 + 1)/2 = 1 + 1/2n.

Thus, our formula for an is true for n+ 1 if it is true for n. By induction, it is
true for all natural numbers.

It is sometimes convenient to begin the indexing of a sequence at some integer
k other than 1. For example, the sequence

1, 2, 4, 8, · · · , 2n, · · ·

has description n → 2n−1 as a function from the natural numbers to the real
numbers, or, using standard sequence notation, {2n−1}∞n=1, but it is usually
more convenient to think of it as the function n → 2n from the non-negative
integers to the reals, and denote it {2n}∞n=0. Similarly, the sequence

8/3, 4, 32/5, 32/3, 128/7, · · ·
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can be described as the sequence

{

2n+2

n+ 2

}∞

n=1

, but it may be more convenient

to describe it as

{

2n

n

}∞

n=3

. Passing from one notation to the other is a change

of variables in the index – that is, n is replaced by n− 2 and the starting point
for the sequence is changed from n = 1 to n = 3 (since n− 2 is 1 when n is 3).

Limits of Sequences

A sequence {an} converges to a number a if the distance from an to a can be
made less than any given positive number by insisting that n be sufficiently
large. More precisely:

Definition 2.1.4. A sequence {an} of real numbers is said to converge to the
number a, or have limit equal to a, if, for each ǫ > 0, there is a real number N
such that

|an − a| < ǫ whenever n > N.

In this case, we will write lim
n→∞

an = a or lim an = a or simply an → a.

Remark 2.1.5. If we compare what would be required by the above definition
for lim an = a and what would be required for lim |an − a| = 0, then we find
that the requirements are identical. Thus, an → a if and only if |an − a| → 0.

The limit of a sequence (if it exists) is well defined – that is, a sequence
cannot have more than one limit.

Theorem 2.1.6. If an → a and an → b, then a = b.

Proof. If an → a and an → b, then, for each ǫ > 0 there are numbers N1 and
N2 such that

n > N1 implies |an − a| < ǫ/2, and

n > N2 implies |an − b| < ǫ/2.

If n is an integer larger than both N1 and N2, then

|b− a| = |(an − a) + (b− an)| ≤ |an − a| + |b− an| < ǫ/2 + ǫ/2 = ǫ.

This implies that |b−a| is smaller than every positive number ǫ. Since |b−a| ≥ 0,
this is possible only if |b − a| = 0 – that is, only if a = b. (In this argument we
used an important property of the real number system without comment. In
Exercise 2.1.12 you are asked to figure out what property that is.)

Finding the limit of a sequence often involves two steps: (1) make a good
intuitive guess as to what the limit should be, and (2) prove that your guess is
correct by using the above definition or theorems that have been proved using
it. The following example illustrates the first of these steps.
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Example 2.1.7. Make an educated guess as to what the limits are for the
following sequences.

(a) {1/n};

(b)

{

n

2n+ 1

}

;

(c) {(−1)n};
(d) {

√

4 + 1/n}.
Solution:(a) The larger n becomes, the smaller 1/n becomes. Thus, it

appears that lim 1/n = 0.

(b) If we divide the numerator and denominator of
n

2n+ 1
by n, the result

is
1

2 + 1/n
. If 1/n→ 0, then it should be the case that

1

2 + 1/n
→ 1/2. Thus,

we choose 1/2 as our guess.
(c) Since the sequence {(−1)n} alternates between −1 and 1, it does not

appear to converge to any one number. Thus, we guess that it does not converge.
(d) If 1/n→ 0, then it should be the case that

√

4 + 1/n→
√

4 = 2. Thus,
our guess is 2.

Example 2.1.8. Use the definition of limit to verify that the guesses in the
preceding example are correct:

Solution: (a) Given ǫ > 0, we must show that there is an N such that
n > N implies 1/n < ǫ. However, since 1/n < ǫ if and only if n > 1/ǫ, if we
choose N = 1/ǫ, then indeed, n > N implies 1/n < ǫ.

(b) Given ǫ > 0 we must show that there is an N such that

n > N implies

∣

∣

∣

∣

n

2n+ 1
− 1/2

∣

∣

∣

∣

< ǫ.

Some work with the expression in absolute values shows us how to do this:
∣

∣

∣

∣

n

2n+ 1
− 1/2

∣

∣

∣

∣

=

∣

∣

∣

∣

2n− 2n+ 1

4n+ 2

∣

∣

∣

∣

=
1

4n+ 2
<

1

4n
.

Thus,

∣

∣

∣

∣

n

2n+ 1
− 1/2

∣

∣

∣

∣

< ǫ whenever
1

4n
< ǫ – that is, whenever n >

1

4ǫ
. Thus,

it suffices to choose N =
1

4ǫ
.

(c) We will show that there is no number a which satisfies the definition of
the statement lim(−1)n = a. Let a be any real number and choose ǫ = 1/2. If
lim(−1)n = a, then there must be an N such that

n > N implies |(−1)n − a| < 1/2.

Since there are both even and odd integers n > N , this means that

|1 − a| < 1/2 and | − 1 − a| < 1/2.
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Then the triangle inequality (Theorem 2.1.2 (a)) implies

2 = |1 − a+ 1 + a| ≤ |1 − a| + |1 + a| = |1 − a| + | − 1 − a| < 1/2 + 1/2 = 1.

Since it is not true that 2 < 1, our assumption that lim(−1)n = a must be
false. Since this is the case no matter what real number we choose for a, we
conclude that {(−1)n} has no limit. (Once again, as in the proof of Theorem
2.1.6, we used here, without comment, a special property of the real number
system. Exercise 2.1.12 asks you to state what property that is.)

(d) Given ǫ > 0, we must show there is an N such that

n > N implies |
√

4 + 1/n− 2| < ǫ.

We simplify this problem by rationalizing the positive expression
√

4 + 1/n−2:

|
√

4 + 1/n− 2| =
√

4 + 1/n− 2 =
(
√

4 + 1/n− 2)(
√

4 + 1/n+ 2)
√

4 + 1/n+ 2

=
4 + 1/n− 4
√

4 + 1/n+ 2
<

1/n√
4 + 2

=
1

4n
.

(2.1.2)

Thus, if N = 1/(4ǫ), then n > N implies |
√

4 + 1/n− 2| < ǫ.

Exercise Set 2.1

1. Show that

(a) if |x − 5| < 1, then x is a number greater than 4 and less than 6.;

(b) if |x − 3| < 1/2 and |y − 3| < 1/2, then |x− y| < 1;

(c) if |x − a| < 1/2 and |y − b| < 1/2, then |x+ y − (a+ b)| < 1.

2. Use the triangle inequality to prove that there is no number x which
satisfies both |x− 1| < 1/2 and |x− 2| < 1/2.

3. Put each of the following sequences in the form a1, a2, a3, · · · , an, · · · . This
requires that you compute the first 3 terms and find an expression for the
nth term.

(a) the sequence of positive odd integers;

(b) the sequence defined inductively by a1 = 1 and an+1 = −an
2

;

(c) the sequence defined inductively by a1 = 1 and an+1 =
an
n+ 1

.

In each of the next six exercises, first make an educated guess as to what
you think the limit is, then use the definition of limit to prove that your
guess is correct.

4. lim 1/n2.
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5. lim
2n− 1

3n+ 1
.

6. lim(−1)n/n.

7. lim
n

n3 + 4
.

8. lim{
√
n+ 1 −√

n}.

9. Prove that lim(1/n+ (−1)n/n2) = 0.

10. Prove that lim 2−n = 0. Hint: prove first that 2n ≥ n for all natural
numbers n.

11. Prove that if an → 0 and k is any constant, then kan → 0.

12. In the proof of Theorem 2.1.6 we failed to point out that one step is true
only because we are working in the real number system and not some other
ordered field. What special property of the real number system makes
this argument work? This same property is also used without comment
in Example 2.1.8 (c).

2.2 Using the Definition of Limit

It is important that mathematics students become comfortable with the notion
of limit of a sequence. Unfortunately, it is a difficult concept to grasp. Students
almost always have difficulty with it at first and learn to understand it only
through repeated exposure and extensive practice in its use. This section is
designed to provide some of this practice.

Using Identities and Inequalities

In each of the following examples, we wish to show that a certain sequence {an}
has limit a. The strategy for doing this, in each case, is to use identities and
inequalities on the expression |an − a| until we can show that it is less than or
equal to some much simpler expression in n that can clearly be made less than
any given ǫ by choosing n large enough.

Example 2.2.1. Prove that lim
n

2n− 3
= 1/2.

Solution: We have
∣

∣

∣

∣

n

2n− 3
− 1/2

∣

∣

∣

∣

=

∣

∣

∣

∣

2n− 2n+ 3

4n− 6

∣

∣

∣

∣

=

∣

∣

∣

∣

3

4n− 6

∣

∣

∣

∣

.

Now 4n− 6 = n+ (3n− 6) ≥ n whenever n > 1. Thus,

∣

∣

∣

∣

n

2n− 3
− 1/2

∣

∣

∣

∣

≤ 3

4n− 6
≤ 3

n
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provided n > 1. Given ǫ > 0, if we choose N = max{1, 3/ǫ}, then
∣

∣

∣

∣

n

2n− 3
− 1/2

∣

∣

∣

∣

≤ 3

n
< ǫ whenever n > N.

This completes the proof that lim
n

2n− 1
= 1/2.

Example 2.2.2. Prove that lim(2 + 1/n)2 = 4.
Solution: We have

|(2 + 1/n)2 − 4| = |2 + 1/n+ 2||2 + 1/n− 2| =
4 + 1/n

n
≤ 5

n
.

Thus, given ǫ > 0, if we set N = 5/ǫ we have

|(2 + 1/n)2 − 4| ≤ 5

n
< ǫ whenever n > N.

This proves that lim(2 + 1/n)2 = 4.

Using Information About a Limit

Knowing that a sequence converges or that it converges to a specific number
always provides a great deal of other information. We give some examples below.

Theorem 2.2.3. If lim an = a and a < c, then there exists an N such that

an < c for all n > N.

Similarly, if b < a, then there is an N such that

b < an for all n > N.

Proof. If a < c, then c − a > 0. Since lim an = a, for each ǫ > 0, there is an N
such that

|an − a| < ǫ whenever n > N.

If we use this in the case where ǫ = c − a it tells us there is an N such that

|an − a| < c− a whenever n > N.

This implies

a− c + a < an < a+ c− a whenever n > N,

by Theorem 2.1.1(b). Thus, an < c for all n > N .
The second statement of the theorem is proved in the same way.

A sequence {an} is bounded above (or below) if the set of numbers which
appear as terms of {an} is bounded above (or below) as a set of numbers.
A sequence which is bounded above and bounded below is simply said to be
bounded.

The following corollary follows directly from the preceding theorem. We
leave the details to the exercises.
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Corollary 2.2.4. If a sequence {an} converges, then it is bounded.

Theorem 2.2.5. If {an} is a sequence and lim an = a, then lim |an| = |a|.
Proof. We use the second form of the triangle inequality (Theorem 2.1.2(b)) to
write

||an| − |a|| ≤ |an − a|. (2.2.1)

Since lim an = a, given ǫ > 0, there is an N such that

|an − a| < ǫ whenever n > N.

Then, by (2.2.1), it is also true that

||an| − |a|| < ǫ whenever n > N,

Thus, lim |an| = |a|.

Example 2.2.6. For a sequence {an} with lim an = a, prove lim a2
n = a2.

Solution: We first note that

|a2
n − a2| = |a+ an||an − a| ≤ (|an| + |a|)|an − a| (2.2.2)

We know that lim |an| = |a| by the previous theorem. Since |a| < |a| + 1,
Theorem 2.2.3 implies that there is an N1 such that |an| < |a| + 1 for all
n > N1. This and (2.2.2) together imply that

|a2
n − a2| < (2|a| + 1)|an − a| whenever n > N1.

Given ǫ > 0 we choose N2 such that |an − a| < ǫ

2|a| + 1
whenever n > N2. We

can do this because lim an = a. If we set N = max(N1,N2), then

|a2
n − a2| < ǫ whenever n > N.

Hence, lim a2
n = a2.

An Equivalent Definition of Limit

The following theorem rephrases the definition of limit in a way that may provide
some additional insight.

Theorem 2.2.7. A sequence {an} converges to a if and only if, for each ǫ > 0,
there are only finitely many n for which |an − a| ≥ ǫ.

Proof. Given ǫ > 0, set

Aǫ = {n ∈ N : |an − a| ≥ ǫ}.

If lim an = a and ǫ > 0, there is an N such that |an − a| < ǫ whenever n > N .
This means that Aǫ is contained in the set {1, 2, · · · ,N} and, hence, is finite.

Conversely, suppose that, for each ǫ > 0, the set Aǫ is finite. Then given
ǫ > 0, the set Aǫ has a largest element N . This means n /∈ Aǫ if n > N – that
is, |an − a| < ǫ if n > N . This implies that lim an = a.
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Negating the Limit Definition

What does it mean for it not to be true that lim an = a? That is, what is the
negation of the statement “for each ǫ > 0 there is an N such that |an − a| < ǫ
whenever n > N” ? If it is not true that for each ǫ > 0, there is an N such that
· · · , then for some ǫ > 0, there is no N such that · · · . If we fill in the dots we
get the following statement:

The sequence {an} does not converge to a if and only for some ǫ > 0 there
is no N such that |an − a| < ǫ for all n > N .

We may rephrase the second half of this statement to obtain:

The sequence {an} does not converge to a if and only for some ǫ > 0 and
for every N there is an n > N such that |an − a| ≥ ǫ.

Negating the equivalent definition of limit given in Theorem 2.2.7 yields a
somewhat simpler statement:

The sequence {an} does not converge to a if and only for some ǫ > 0 there
are infinitely many n ∈ N for which |an − a| ≥ ǫ.

Example 2.2.8. Show that the sequence {2−n + (1 + (−1)n)2−50} does not
converge to 0.

Solution: Try computing a few terms of this sequence on a calculator. It
appears to be converging to 0. However, if we choose ǫ = 2−49, then for every
even n ∈ N

|2−n + (1 + (−1)n)2−50 − 0| = 2−n + 2 · 2−50 ≥ 2−49.

Since this inequality holds for infinitely many n, the sequence does not converge
to 0.

Exercise Set 2.2

In each of the following six exercises, first make an educated guess as to what
you think the limit is, then use the definition of limit to prove that your guess
is correct.

1. lim
3n2 − 2

n2 + 1
.

2. lim
n

n2 + 2
.

3. lim
1√
n

.
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4. lim

(

n

n+ 1

)2

.

5. lim(
√
n2 + n− n).

6. lim(1 + 1/n)3.

7. Prove Corollary 2.2.4.

8. Prove that if lim an = a, then lim a3
n = a3;

9. Does the sequence {cos (nπ/3)} have a limit? Justify your answer.

10. Give an example of a sequence {an} which does not converge, but the
sequence {|an|} does converge.

11. Prove that if {an} and {bn} are sequences with |an| ≤ bn for all n and if
lim bn = 0, then lim an = 0 also.

12. Prove the following partial converse to Theorem 2.2.3: Suppose {an} is
a convergent sequence. If there is an N such that an ≤ c for all n > N ,
then lim an ≤ c. Also, if there is an N such that b ≤ an for all n > N ,
then b ≤ lim an.

2.3 Limit Theorems

We reiterate that the strategy to use in proving a statement of the form

lim an = a

directly from the definition is to use a string of identities and inequalities to
conclude that |an − a| is less than or equal to a simpler expression in n that we
can easily force to be less than ǫ by making n sufficiently large. This strategy was
used throughout the previous two sections. The following theorem formalizes
this strategy in a way that will lead us to use the right approach to many limit
proofs.

Theorem 2.3.1. Let {an} and {bn} be sequences of real numbers and suppose
lim bn = 0. If a ∈ R and there is an N1 such that

|an − a| ≤ bn for all n > N1, (2.3.1)

then lim an = a.

Proof. Since lim bn = 0, given any ǫ > 0, there is an N2 such that

bn = |bn − 0| < ǫ whenever n > N2.

It now follows from (2.3.1) that

|an − a| < ǫ whenever n > N = max{N1,N2}.
Thus, lim an = a.
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Of course, to prove that lim an = a using this theorem one must establish an
inequality of the form (2.3.1), where {bn} is a sequence of non-negative terms
that we know converges to 0. The proof of the next theorem uses this technique.
The proof is easy and is left to the exercises.

A sequence {bn} for which there is a number k such that bn ≤ k for all n
is said to be bounded above. If there is a number m such that m ≤ bn for all
n, then the sequence is said to be bounded below. A sequence which is bounded
above and below is simply said to be bounded. Note that a sequence {bn} is
bounded if and only if {|bn|} is bounded above (Exercise 2.3.6). Recall from
Corollary 2.2.4 that convergent sequences are bounded.

Theorem 2.3.2. Let {an} be a sequence of real numbers such that lim an = 0,
and let {bn} be a bounded sequence. Then lim anbn = 0.

The following theorem is often called the squeeze principle.

Theorem 2.3.3. If {an}, {bn}, and {cn} are sequences for which there is a
number K such that

bn ≤ an ≤ cn for all n > K,

and if bn → a and cn → a, then an → a.

Proof. Since bn → a and cn → a, given ǫ > 0 there are numbers N1 and N2

such that

a− ǫ < bn < a+ ǫ for all n > N1;and

a− ǫ < cn < a+ ǫ for all n > N2.
(2.3.2)

Then for n > N = max{N1,N2,K} we have

a− ǫ < bn ≤ an ≤ cn < a+ ǫ.

This implies |an − a| < ǫ. Thus, lim an = a.

Example 2.3.4. Prove that if {an} is a sequence of positive numbers converging
to a positive number a, then lim

√
an =

√
a.

Solution: We will use Theorem 2.3.1. Rationalizing the numerator gives us

|√an −√
a| =

|an − a|√
an +

√
a
<

1√
a
|an − a|.

Since an → a, Remark 2.1.5 implies |an − a| → 0. Then Theorems 2.3.2 and
2.3.1 imply

√
an → √

a.

Example 2.3.5. Prove that if |a| < 1, then lim an = 0.
Solution: The result is trivial in the case a = 0. If a 6= 0, we set b =

|a|−1 − 1. Then b > 0 and |a|−1 = 1 + b. We use the Binomial Theorem
(Theorem 1.2.12) to expand |a|−n = (1 + b)n:

(1 + b)n = 1 + nb+
n(n− 1)

2
b2 + · · · + bn.
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Since all the terms involved are positive, it follows that |a|−n = (1 + b)n ≥ nb.
Inverting this yields

|an| ≤ 1

nb
=

1

b

1

n

Since 1/n→ 0, it follows from Theorems 2.3.2 and 2.3.1 that an → 0.

The Main Limit Theorem

This is the theorem that tells us that the limit concept behaves well with regard
to the usual algebraic operations.

Theorem 2.3.6. Suppose an → a, bn → b, c is a real number, and k is a
natural number. Then

(a) can → ca;

(b) an + bn → a+ b;

(c) anbn → ab;

(d) an/bn → a/b if b 6= 0 and bn 6= 0 for all n;

(e) akn → ak;

(f) a
1/k
n → a1/k if an ≥ 0 for all n;

Proof. Part (a) follows immediately from Theorem 2.3.2 applied to the sequence
{c(an−a)}. We will prove (c), and (e) and leave (b), (d), and (f) to the exercises.

(c) We use the strategy suggested by Theorem 2.3.1. We have

|anbn − ab| = |anbn − abn + abn − ab| ≤ |an − a||bn| + |a||bn − b|,

by the triangle inequality. Furthermore, we have {bn} is bounded by 2.2.4,
and so {|bn|} is bounded above. We also have |an − a| → 0, by Remark 2.1.5.
Therefore, by Theorem 2.3.2, |an − a||bn| → 0. By Part (a), |a||bn − b| → 0. By
Part (b) the sum |an − a||bn|+ |a||bn − b| converges to 0 and, hence, anbn → ab
by Theorem 2.3.1.

(e) We use the identity

akn − ak = (an − a)(ak−1
n + ak−2

n a+ ak−3
n a2 + · · · + ak−1) = (an − a)bn,

where
bn = ak−1

n + ak−2
n a+ ak−3

n a2 + · · · + ak−1.

Now, because the sequence {an} converges, it is bounded and, hence, {|an|} is
bounded above. We choose an upper bound m for {|an|} which also satisfies
|a| ≤ m. Then

|bn| ≤ kmk.

Since k and m are fixed, the sequence {|bn|} is bounded above.
We conclude from Theorem 2.3.2 that |an − a||bn| → 0 and from Theorem

2.3.1 that akn → ak.
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Example 2.3.7. Use the main limit theorem to find lim
n2 + 3n+ 1

3n2 − 7n+ 2
.

Solution: In a problem of this type, we divide the numerator and denomi-
nator by the highest power of n that appears in either one. In this case, that is
the second power. The result is

1 + 3/n+ 1/n2

3 − 7/n+ 2/n2
.

The main limit theorem then tells us that

lim
1 + 3/n+ 1/n2

3 − 7/n+ 2/n2
=

lim(1 + 3(1/n) + 2(1/n)2)

lim(3 − 7(1/n) + 2(1/n)2)

=
1 + 3 lim(1/n) + 2 lim(1/n)2

3 − 7 lim(1/n) + 2 lim(1/n)2
=

1 + 3 lim(1/n) + 2(lim1/n)2

3 − 7 lim(1/n) + 2(lim1/n)2

=
1 + 3 · 0 + 2(0)2

3 − 7 · 0 + 2(0)2
= 1/3.

(2.3.3)

Here, we didn’t explicitly refer to the parts of the Main Limit Theorem as we
used them, but it is clear that the first equality uses (d), the second (a) and (b),
the third (e), and the fourth the fact that lim 1/n = 0 (Example 2.1.8).

Theorem 2.3.8. If {an} → a and {bn → b} are convergent sequences and if
there is a number K such that an ≤ bn whenever n > K, then a ≤ b.

Proof. The sequence cn = bn− an is a sequence with b− a as its limit and with
terms that are non-negative for n > K. If b − a were negative, then Theorem
2.2.3 would imply bn − an < 0 for all sufficiently large n. Since this is not the
case, we conclude that a ≤ b.

Exercise Set 2.3

1. Use the Main Limit Theorem to find lim
2n3 − n+ 1

3n3 + n2 + 6
.

2. Use the Main Limit Theorem to find lim
n2 − 5

n3 + 2n2 + 5
.

3. Use the Main Limit Theorem to find lim
2n

2n + 1
.

4. Prove that lim
sinn

n
= 0.

5. Prove Theorem 2.3.2.

6. Prove that a sequence {an} is both bounded above and bounded below if
and only if its sequence of absolute values {|an|} is bounded above.

7. Prove Part (b) of Theorem 2.3.6.
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8. Prove that if {bn} is a sequence of positive terms and bn → b > 0, then
there is a number m > 0 such that bn ≥ m for all n.

9. Prove Part (d) of Theorem 2.3.6. Hint: use the previous exercise.

10. Prove Part (f) of Theorem 2.3.6. Hint: use the identity

xk − yk = (x− y)(xk−1 + xk−2y + · · · + yk−1)

with x = a
1/k
n and y = a1/k.

11. For each natural number n, let bn = n1/n − 1. Then bn is positive and
n = (1+ bn)

n. Use the Binomial Theorem (Theorem 1.2.12) to prove that

n ≥ n(n− 1)

2
b2n and, hence, that bn ≤

√

2

n− 1
.

12. Prove that limn1/n = 1. Hint: use the result of the previous exercise.

13. Prove that if a > 0, then lim a1/n = 1. Hint: do this first for a ≥ 1; use
the result of the previous exercise and the squeeze principle.

2.4 Monotone Sequences

A sequence of real numbers {an} is said to be non-decreasing if an+1 ≥ an for
each n. The sequence is said to be non-increasing if an+1 ≤ an for each n. If
it is one or the other (either non-decreasing or non-increasing), the sequence is
said to be monotone.

Convergence of Monotone Sequences

In this section and the next, we will develop powerful tools for proving that
a sequence converges. These tools work even in situations where we have no
idea what the limit might be. It is the completeness axiom for the real number
system that makes these results possible.

Theorem 2.4.1. (Monotone Convergence Theorem) Each bounded mono-
tone sequence converges.

Proof. A non-decreasing sequence {an} is bounded if and only if it is bounded
above, since it is automatically bounded below by a1. Similarly, a non-increasing
sequence is bounded if and only if it is bounded below.

We will prove that every non-decreasing sequence that is bounded above
converges. The proof that every non-increasing sequence that is bounded below
converges is the same but with all the inequalities reversed.

Thus, suppose {an} is non-decreasing and bounded above. Then the set

A = {an : n ∈ N}
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is a non-empty set which is bounded above. By the completeness axiom C, this
set has a least upper bound a. That is,

sup
n
an = supA = a

is finite. We will show that a is the limit of the sequence {an}.
Given ǫ > 0, the number a− ǫ is less than a and so it is not an upper bound

for A. This means there is some natural number N such that a − ǫ < aN . If
n > N , then aN ≤ an since {an} is a non-decreasing sequence. This implies
a− ǫ < an. We also have an ≤ a < a+ ǫ, since a is an upper bound for {an}.
Combining these inequalities yields

a− ǫ < an < a+ ǫ for all n > N.

By Theorem 2.1.1(b), this is equivalent to

|an − a| < ǫ for all n > N.

We conclude that lim an = a.

Example 2.4.2. Let a sequence be defined inductively by a1 = 0 and

an+1 =
an + 1

2
. (2.4.1)

Prove that this sequence converges and find its limit.
Solution: This is a non-decreasing sequence (Exercise 1.2.13). Also, a

simple induction argument shows that it is bounded above by 1. Therefore it is
a bounded monotone sequence, and it converges by the previous theorem. Let
lim an = a. If we take the limit of both sides of (2.4.1), the result is a = (a+1)/2,
or a/2 = 1/2. Thus, a = 1.

A less trivial example is the following:

Example 2.4.3. Let a sequence {an} be defined inductively by a1 = 2 and

an+1 =
a2
n + 2

2an
. (2.4.2)

Prove that this sequence converges and then find its limit.
Solution: We first note that a trivial induction argument shows that an > 0

for all n. This is true when n = 1 and true for n+ 1 whenever it is true for n
by (2.4.2).

We will prove that the sequence is non-increasing. To show that an+1 ≤ an,

we must show that
a2
n + 2

2an
≤ an. If we assume that an > 0, then we may

multiply this inequality by 2an to obtain the equivalent inequality

a2
n + 2 ≤ 2a2

n or a2
n ≥ 2.
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We conclude that an+1 ≤ an as long as an is positive and a2
n ≥ 2 – that is, as

long as an ≥
√

2. Now a1 = 2 and so the sequence starts out with a number
greater than or equal to

√
2. Every other number in this sequence has the form

x2 + 2

2x
.

for some positive x. We claim every such number is greater than or equal to√
2. In fact

0 ≤ (x−
√

2)2 = x2 − 2
√

2 x+ 2, and so 2
√

2 x ≤ x2 + 2.

This implies
√

2 ≤ x2 + 2

2x
. Thus every an is greater than or equal to

√
2.

We now know that the sequence {an} is non-increasing and bounded below
by

√
2. Thus, it is a bounded monotone sequence and has a limit by the previous

theorem. Call the limit a. By (2.4.2), we have

2anan+1 = a2
n + 2.

If we take the limit of both sides of this equation and note that lim an =
lim an+1 = a, then the result is

2a2 = a2 + 2 or a2 = 2.

Thus, a =
√

2.

Infinite Limits

Definition 2.4.4. If {an} is a sequence of real numbers, then lim an = ∞ if,
for every real number M , there is a number N such that

an > M whenever n > N.

Similarly, we say lim an = −∞ if for every real number M there is an N such
that

an < M whenever n > N.

Example 2.4.5. If r > 0 prove that limnr = ∞.
Solution: To prove that limnr = ∞ we must show that for every M there

is an N such that

nr > M whenever n > N.

Clearly, we need only choose N to be M1/r.

With +∞ and −∞ as possible limits of a sequence, we can now assert that:

Theorem 2.4.6. Every monotone sequence has a limit.
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The proof of this is left to the exercises.
Note that we must now make a distinction between a sequence converging

and a sequence having a limit. A sequence may have a limit which is infinite,
but a sequence which converges must have a finite limit.

Theorem 2.4.7. Let {an} and {bn} be sequences of real numbers. Then

(a) if an > 0 for all n, then lim an = ∞ if and only if lim 1/an = 0;

(b) if {bn} is bounded below, then lim an = ∞ implies lim(an + bn) = ∞.

(c) lim an = ∞ if and only if lim(−an) = −∞;

(d) if an ≤ bn for all n, then lim an = ∞ implies lim bn = ∞;

(e) if there is a positive constant k such that k ≤ bn for all n, then lim an = ∞
implies lim anbn = ∞;

Proof. We will prove (a) and (b) and leave (c), (d), and (e) to the exercises.
(a) If we are given an ǫ, we will set M = 1/ǫ. Conversely, if we are given an

M , we will set ǫ = 1/M . Then the statements

|1/an| < ǫ and an > M

mean the same thing (since an is positive) so that, if there is an N such that
one of these statements is true for all n > N then the other statement is also
true for all n > N . Thus, lim 1/an = 0 if and only if lim an = ∞.

(b) Let bn be bounded below by, say, K. Assuming lim an = ∞, we wish to
show that lim(an + bn) = ∞. Given M ∈ R, the number M −K is also in R

and so, by our assumption that lim an = ∞, we know there is an N such that

an > M −K whenever n > N.

then
an + bn > M −K +K = M whenever n > N.

Thus, lim(an + bn) = ∞.

Example 2.4.8. Find the following limits:

(a) lim
2n2 + 3

n+ 1
;

(b) lim an for a > 1;

(c) lim(
√
n+ (−1)n).

Solution: (a) We factor the largest power of n that occurs out of each of
the denominator and the numerator. The result is

2n2 + 3

n+ 1
=
n2(2 + 3/n2)

n(1 + 1/n)
= n

2 + 3/n2

1 + 1/n
.
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Now limn = ∞ and
2 + 3/n2

1 + 1/n
≥ 1 for all n. Thus,

lim
2n2 + 3

n+ 1
= ∞,

by Theorem 2.4.7 (e).
(b) Since |1/a| < 1, it follows from Example 2.3.5 that lim 1/an = 0. Then

lim an = +∞ by Theorem 2.4.7(a). Another proof of this fact is suggested in
Exercise 2.4.7.

(c) Since
√
n = n1/2, Example 2.4.5 implies that lim

√
n = ∞. Then Theo-

rem 2.4.7 (b) implies that lim(
√
n+ (−1)n) = ∞.

Exercise Set 2.4

1. Tell which of the following sequences are non-increasing, non-decreasing,
bounded? Justify your answers.

(a) {n2};

(b)

{

1√
n

}

;

(c)

{

(−1)n

n

}

;

(d)
{ n

2n

}

;

(e)

{

n

n+ 1

}

.

2. Prove that the sequence of Example 1.2.11 converges and decide what
number it converges to.

3. If a1 = 1 and an+1 = (1 − 2−n)an, prove that {an} converges.

4. Let {dn} be a sequence of 0’s and 1’s and define a sequence of numbers
{an} by

an = d12
−1 + d22

−2 + · · · + dn2
−n.

Prove that this sequence converges to a number between 0 and 1.

5. Let {sn} be the sequence of partial sums of a series with positive terms.
That is,

sn =
n
∑

k=1

ak with all ak ≥ 0.

Prove that lim sn exists (though it may not be finite).

6. Give an alternate proof to the result of Example 2.3.5 that does not use
the Binomial theorem. Instead, first show that {|a|n} is a non-increasing
sequence. Then show that 0 is the only possible value for the limit.
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7. Give an alternate proof of the result of Example 2.4.8(b) that does not
use Example 2.3.5. Use the method of the previous exercise.

8. Prove that lim
n5 + 3n3 + 2

n4 − n+ 1
= ∞.

9. Prove that lim
2n

n
= ∞.

10. Prove Theorem 2.4.6.

11. Prove Part (c) of Theorem 2.4.7.

12. Prove Part (d) of Theorem 2.4.7.

13. Prove Part (e) of Theorem 2.4.7.

14. Suppose {an} and {bn} are non-decreasing sequences that are interlaced in
the sense that each term of the sequence {an} is less than or equal to some
term of the sequence {bn} and vice-versa. Prove that lim an = lim bn.

2.5 Cauchy Sequences

In this section we will prove two of the most important theorems about conver-
gence of sequences. The proofs are based on the nested interval property, which
we describe below.

Nested Intervals

A nested sequence of closed bounded intervals is a sequence

I1 ⊃ I2 ⊃ I3 ⊃ · · ·

in which each In is a closed bounded interval, and each interval in the sequence
contains the next one. Thus, each of the intervals In has the form [an, bn] for
real numbers an < bn. The nested condition means that In ⊃ In+1 for each n –
that is,

an ≤ an+1 < bn+1 ≤ bn

for each n.

Theorem 2.5.1. (Nested Interval Property) If I1 ⊃ I2 ⊃ I3 ⊃ · · · is a
nested sequence of closed bounded intervals, then

⋂

n In 6= ∅. That is, there is
at least one point x that is in all the intervals In.

Proof. Let In = [an, bn], as above. Then the sequence {an} of left endpoints is
a non-decreasing sequence which is bounded above (by b1), and the sequence
{bn} of right endpoints is a non-increasing sequence which is bounded below (by
a1). The Monotone Convergence Theorem (2.4.1) implies that both sequences
converge.
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If a = lim an and b = lim bn, then a ≤ b by Theorem 2.3.8. In fact,

an ≤ a ≤ b ≤ bn

for each n. This means that [a, b] ⊂ In for every n and, hence, that [a, b] ⊂
⋂

n In.
The set [a, b] is a closed interval if a < b and a single point if a = b. In either

case, it is non-empty.

We leave to the exercises the problem of showing that this theorem is false
if we don’t insist that the intervals are closed or if we don’t insist that they are
bounded.

The Bolzano-Weierstrass Theorem

A sequence {bk} is a subsequence of the sequence {an} if it is made up of some of
the terms of {an}, taken in the order that they appear in {an}. More precisely:

Definition 2.5.2. A sequence {bk} is a subsequence of the sequence {an} if there
is a strictly increasing sequence of natural numbers {nk} such that bk = ank

.

Example 2.5.3. Give three examples of subsequences of the sequence

0, 3/2, −2/3, 5/4, −4/5, 7/6, −6/7, 9/8 · · · , (−1)n + 1/n, · · · .

Does the original sequence converge? How about the three subsequences?
Solution:

(a) 3/2, 5/4, 7/6, · · · , 1 + 1/(2k), · · · ;
(b) 0, −2/3, −4/5, · · · ,−1 + 1/(2k − 1), · · · ;
(c) 3/2, 5/4, 9/8, · · · , 1 + 1/2k, · · · .

The original sequence clearly does not converge, but sequence (a) converges to
1, (b) converges to −1 and (c) converges to 1.

Theorem 2.5.4. If {an} has a limit (possibly infinite), then each of its subse-
quences has the same limit.

Proof. We will prove this in the case of a finite limit, the other cases are similar
and are covered in the exercises.

Suppose {ank
} is a subsequence of {an}. Then {nk} is an increasing sequence

of natural numbers, and this implies that nk ≥ k for all k (Exercise 2.5.4).
Now suppose lim an = a. Given ǫ > 0, there is an N such that

|an − a| < ǫ whenever n > N.

Then k > N implies nk > N , since nk ≥ k. Thus,

|ank
− a| < ǫ whenever k > N.

By definition, this means that lim ank
= a.
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Theorem 2.5.5. (Bolzano-Weierstrass Theorem) Every bounded sequence
of real numbers has a convergent subsequence.

Proof. If {an} is a bounded sequence, then it has an upper boundM and a lower
bound m. This means that every an is contained in the interval I1 = [m,M ].
We will construct a nested sequence of closed bounded intervals

I1 ⊃ I2 ⊃ I3 ⊃ · · · (2.5.1)

such that Ik contains infinitely many of the terms of {an} for each k and Ik+1

is either the left or the right half of the interval Ik, for each n. We do this by
induction.

Certainly I1 contains infinitely many terms of {an} – in fact, it contains all of
them. Suppose I1 ⊃ I2 ⊃ I · · · ⊃ Ik can be chosen with the required properties.
Then we cut Ik into two closed intervals by dividing it at its midpoint. One of
the two halves must contain infinitely many terms of {an} since Ik does. Let
Ik+1 be the right half if it has this property; otherwise let it be the left half. This
shows that a nested sequence of k+1 intervals with the required properties can
be chosen provide one with k terms can be chosen. By induction, there exists
an infinite sequence 2.5.1 with the required properties.

By the Nested Interval Theorem, there is a point a that is in every one of the
intervals Ik. Also, each interval Ik contains infinitely many terms of the sequence
{an}. We will inductively define a subsequence {ank

} of {an} with the property
that ank

∈ Ik for each k. We choose n1 = 1 and define nk+1 in terms of nk by
the rule that nk+1 is the first integer greater than nk such that ank+1

∈ Ik+1.
This is the basis for an inductive definition of the sequence we seek. Once this
sequence of integers has been chosen, then {ank

} is a subsequence of {an}. We
will show that this subsequence converges to a.

For each k, a and ank
both belong to Ik. This means the distance between

them can be no greater than the length of Ik, which is (M −m)21−k. That is,

|ank
− a| ≤ M −m

2k−1
.

Since
M −m

2k−1
→ 0, Theorem 2.3.1 implies that lim ank

= a.

Example 2.5.6. Construct a sequence {an} as follows: for each n let an be
the number obtained by replacing by 0 all digits to the left of the decimal
point in the decimal expansion of 10nπ. Does this sequence have a convergent
subsequence?

Solution: This is a crazy sequence and it certainly does not appear to
converge. However, each number in this sequence lies between 0 and 1 and so it
is a bounded sequence. By the Bolzano-Weierstrass Theorem it has a convergent
subsequence.
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Cauchy Sequences

Definition 2.5.7. A sequence {an} is said to be a Cauchy Sequence if, for every
ǫ > 0, there is an N such that

|an − am| < ǫ whenever n,m > N.

Intuitively, this means we can make the terms of the sequence arbitrarily
close to each other by going far enough out in the sequence. It is by no means
obvious that this means that the sequence converges, but it does.

Theorem 2.5.8. A sequence of real numbers {an} is a Cauchy sequence if and
only if it converges.

Proof. There are two things to prove here – the “if” and the “only if”. First we
do the “if” – that is, we will prove that a sequence is Cauchy if it converges.

Assume {an} converges to a number a. Then, given ǫ > 0 there is an N
such that

|an − a| < ǫ/2 whenever n > N.

If n,m > N , then

|an − am| = |an − a+ a− am| ≤ |an − a| + |am − a| < ǫ/2 + ǫ/2 = ǫ.

Therefore, {an} is Cauchy.
Now for the “only if”. Suppose {an} is Cauchy. We first prove that {an} is

bounded. In fact, there is an N such that

|an − am| < 1 whenever n,m > N.

In particular, |an − aN+1| < 1 for all n > N . This implies that

aN+1 − 1 < an < aN+1 + 1 whenever n > N.

Then max{a1, · · · , aN , aN+1+1} is an upper bound for {an}. Similarly, we have
min{a1, · · · , aN , aN+1 − 1} is a lower bound for {an}. Thus, {an} is a bounded
sequence.

We next use the Bolzano-Weierstrass Theorem to conclude there is a sub-
sequence {ank

} of {an} which converges to a number a. Finally, we use the
definition of Cauchy sequence and what it means for ank

to converge to a.
Given ǫ > 0, there are numbers N1 and N1 such that

|an − am| < ǫ/2 whenever n > N1,

and,
|ank

− a| < ǫ/2 whenever k > N2.

If n > N1 and we choose a k > max{N1,N2}, then

|an − a| = |an − ank
+ ank

− a| ≤ |an − ank
| + |ank

− a| < ǫ/2 + ǫ/2 = ǫ.

This completes the proof that every Cauchy sequence is convergent.
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Example 2.5.9. Show that the sequence {sn} of partial sums of the series
∞
∑

k=1

(−1)k
k

4k
converges.

Solution: We have sn =
n
∑

k=1

(−1)k
k

4k
and so, for m > n,

|sm − sn| =

∣

∣

∣

∣

∣

m
∑

k=n+1

(−1)k
k

4k

∣

∣

∣

∣

∣

≤
m
∑

k=n+1

1

2k
≤ 1

2n+1

∞
∑

k=0

1

2k
=

1

2n
.

Here we have used the fact that k ≤ 2k for all k and the fact that the geometric

series
∞
∑

k=0

2−k has sum
1

1 − 1/2
= 2.

Since lim 1/2n = 0, by Example 2.3.5, given ǫ > 0, there is an N such that
n > N implies 1/2n < ǫ. Then |sm− sn| < ǫ for all n,m with m > n > N . This
means that {sn} is Cauchy and, hence, converges.

Exercise Set 2.5

1. Give an example of a nested sequence of bounded open intervals that does
not have a point in its intersection.

2. Give an example of a nested sequence of closed but unbounded intervals
which does not have a point in its intersection.

3. Prove that if I is a closed, bounded interval which is contained in the
union of some collection of open intervals, then I is contained in the union
of some finite subcollection of these open intervals.

4. Prove by induction that if {nk} is an increasing sequence of natural num-
bers, then nk ≥ k for all k.

5. Which of the following sequences {an} have a convergent subsequence?
Justify your answer.

(a) an = (−2)n;

(b) an =
5 + (−1)nn

2 + 3n
;

(c) an = 2(−1)n

6. For each of the following sequences {an}, find a subsequence which con-
verges. Justify your answer.

(a) an = (−1)n;

(b) an = sinnπ/4;

(c) an =
n

2k
− 1 with k an integer chosen so that 2k ≤ n < 2k+1.



2.6. LIM INF AND LIM SUP 61

7. For each of the following sequences, determine how many different limits
of subsequences there are. Justify your answer.

(a) {1 + (−1)n};
(b) {cosnπ/3};
(c) 1, 1/2, 1, 1/2, 1/3, 1, 1/2, 1/3, 1/4, 1, 1/2, 1/3, 1/4, 1/5, · · · ;

8. Does the sequence sinn have a convergent subsequence? Why?

9. Prove that a sequence which satisfies |an+1 − an| < 2−n for all n is a
Cauchy sequence.

10. Suppose a sequence {an} has the property that for every ǫ > 0, there is
an N such that

|an+1 − an| < ǫ whenever n > N.

Is {an} necessarily Cauchy? Prove it is or give an example where it is not.

11. Let sn =

n
∑

k=1

1

k2k
be the sequence of partial sums of the series

∞
∑

k=1

1

k2k
.

Prove that {sn} converges. Hint: show that it is a Cauchy sequence.

12. Given a series
∞
∑

k=1

ak, set sn =
n
∑

k=1

ak and tn =
n
∑

k=1

|ak|. Prove that {sn}

converges if {tn} is bounded.

2.6 lim inf and lim sup

A bounded sequence has a convergent subsequence according to the Bolzano-
Weierstrass Theorem. In fact, a bounded sequence has many convergent sub-
sequences and these may converge to many different limits, as is illustrated by
some of the exercises in the previous section. Here we will show that there is a
smallest closed interval that contains all of these limits. The endpoints of this
interval are the lim inf and the lim sup of the sequence.

Given a sequence {an}, we construct two monotone sequences {in} and {sn}
with {an} trapped in between. They are defined as follows:

in = inf{ak : k ≥ n}
sn = sup{ak : k ≥ n}. (2.6.1)

Note the in will all be −∞ if {an} is not bounded below and the sn will
all be +∞ if {an} is not bounded above. However, if {an} is bounded, say
m ≤ an ≤ M for all n, then m ≤ in ≤ sn ≤ M for each n. Hence, in this case,
the numbers in and sn are all finite and {in} and {sn} are bounded sequences.
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Theorem 2.6.1. Given a bounded sequence {an}, if {in} and {sn} are defined
as above, then

(a) {in} is a non-decreasing sequence;

(b) {sn} is a non-increasing sequence;

(c) in ≤ an ≤ sn for all n.

Proof. If An = {ak : k ≥ n}, then An+1 ⊂ An for each n. It follows from
Theorem 1.5.7(e) that, for all n,

sn+1 = supAn+1 ≤ supAn = sn and

in+1 = inf An+1 ≥ inf An = in.
(2.6.2)

Also, since an ∈ An, in = inf An ≤ an ≤ supAn = sn.

Since the sequences {in} and {sn} are monotone, their limits exist.

Definition 2.6.2. If {an} is a sequence and {in} and {sn} are defined as above,
then we set

lim inf an = lim in,

lim sup an = lim sn.
(2.6.3)

Note that If {an} is not bounded below, then lim inf an = −∞, while if {an}
is not bounded above, then lim sup an = +∞.

Example 2.6.3. Find lim inf an and lim sup an if an = (−1)n + 1/n.

Solution: As before, we let in = inf{ak : k ≥ n} and sn = sup{ak : k ≥ n}.
We claim in = −1 for all n. In fact,

−1 ≤ (−1)k + 1/k for all k

implies

ik = inf{(−1)k + 1/k : k ≥ n} ≥ −1.

Furthermore, (−1)k+1/k approaches −1 for large odd k, so no number greater
than −1 is a lower bound for {ak : k ≥ n}. Thus, in = −1, as claimed. This
implies that lim inf an = lim in = −1.

We claim, 1 ≤ sn ≤ 1 + 1/n. In fact, the set {(−1)k + 1/k : k ≥ n} contains
numbers greater than 1 no matter what n is, and so

sn = sup{(−1)k + 1/k : k ≥ n} ≥ 1.

Furthermore, (−1)k + 1/k ≤ 1 + 1/n if k ≥ n. Thus, 1 ≤ sn ≤ 1 + 1/n. This
implies that lim sup an = lim sn = 1.
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Subsequential Limits

If {an} is a sequence, then by a subsequential limit of {an} we mean a number
which is the limit of some subsequence of {an}.

Theorem 2.6.4. Every subsequential limit of {an} lies between lim inf an and
lim sup an.

Proof. If {ank
} is a convergent subsequence of {an}, Theorem 2.6.1 (c) implies

ink
≤ ank

≤ snk
,

where in = inf{ak : k ≥ n} and sn = sup{ak : k ≥ n}. The sequences {ink
}

and {snk
} are subsequences of {in} and {sn}, respectively, and, hence, have the

same limits, namely lim inf an and lim sup an, by Theorem 2.5.4. It follows from
Theorem 2.3.8 and the above inequalities that

lim inf an ≤ lim ank
≤ lim sup an.

Theorem 2.6.5. If {an} is a sequence, then lim sup an and lim inf an are sub-
sequential limits of {an}.

Proof. We will show that lim sup an is a subsequential limit of {an}. The same
statement for lim inf has a similar proof. We will assume that lim sup an is a
finite number s. The case where lim sup an = ∞ is left as an exercise.

We must show that there is some subsequence of {an} which converges to
s = lim sup an. We will construct such a sequence inductively. As before, we
let sn = sup{ak : k ≥ n}. For each ǫ > 0, the number sn− ǫ is less than sn and
so it is not an upper bound for {ak : k ≥ n}. This means there is an element of
{ak : k ≥ n} which is greater than sn − ǫ but less than or equal to sn. We will
choose a sequence of such elements by induction.

We choose n1 such that s1 − 1 < an1
≤ s1. Suppose n1 < n2 < · · · < nm

have been chosen so that

sj − 1/j < anj
≤ sj for j = 1, · · · ,m. (2.6.4)

We may then choose nm+1 > nm such that snm+1
−1/(m+1) < anm+1

≤ snm+1
.

However, nm+1 ≥ m + 1 and so snm+1
≤ sm+1. In other words (2.6.4) holds

with m replaced by m+ 1. This completes the induction step and proves that
there is an increasing sequence of natural numbers {nj} such that (2.6.4) holds
for all j.

Since both sj − 1/j → s and sj → s, the subsequence {anj
} also converges

to s by the squeeze principle.
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A Criterion for Convergence

Theorem 2.6.6. A sequence {an} has limit a if and only if lim sup an =
lim inf an = a.

Proof. We first prove that if lim sup an = lim inf an = a, then lim an exists and
equals a. By Theorem 2.6.1(c),

in ≤ an ≤ sn,

where in and sn are as before. Since lim in = lim sn = a, it follows from the
squeeze principle that lim an = a.

Next we assume lim an = a. By Theorem 2.5.4 each subsequence of {an}
also has limit a. Since lim sup an and lim inf an are subsequential limits of {an},
they must both be equal to a. This completes the proof.

Exercise Set 2.6

1. Find lim sup an and lim inf an for the following sequences:

(a) an = (−1)n;

(b) an = (−1/n)n;

(a) an = sinnπ/3.

2. Find lim inf and lim sup for the sequence of Exercise 2.5.6(c).

3. Find lim inf and lim sup for the sequence of Exercise 2.5.7(c).

4. If lim sup an and lim sup bn are finite, prove that

lim sup (an + bn) ≤ lim sup an + lim sup bn.

5. If lim sup an is finite, prove that lim inf(−an) = − lim sup an.

6. If k ≥ 0 and lim sup an is finite, prove that lim sup kan = k lim sup an.

7. If an ≥ 0 and bn ≥ 0, prove that lim sup anbn ≤ (lim sup an)(lim sup bn).

8. If {an} and{bn} are non-negative sequences and {bn} converges, prove
that lim sup anbn = (lim sup an)(lim bn).

9. Let {rn}∞n=1 be an enumeration of the rational numbers between 0 and
1. Show that, for each x ∈ [0, 1], there is a subsequence of this sequence
which converges to x. Hint: use Exercise 1.4.7.

10. Prove Theorem 2.6.5 for lim sup in the case where lim sup an = +∞.

11. Prove that c is lim sup an if and only if there is a subsequence of {an}
which converges to c, but there is no subsequence of {an} which converges
to a number greater than c.

12. Which numbers do you think are subsequential limits of the sequence
{sinn}∞n=1? Can you prove that your guess is correct?



Chapter 3

Continuous Functions

In this chapter we begin our study of functions of a real variable. The concepts
of limit and continuity for such functions are of critical importance.

3.1 Continuity

We will be dealing with functions from a subset of R to R. Usually in this
chapter, the domain of a function will be an interval – closed, open, or half-open,
bounded or unbounded – or a finite union of intervals. However, it is certainly
possible to consider functions which have much more complicated subsets of R

as domain.
To define a function from a subset of R to R, we must specify a domain

for the function and the rule or formula that specifies the value of the function
at each point of that domain. For example, the following are descriptions of
functions:

1. f(x) = 1/x on (0,∞);

2. g(x) = 1/x on R \ {0};
3. h(x) = sin x on [0, 2π];

4. k(x) = sinx on R;

5. e(x) = ex on [0, 1).

Although a function may have a natural domain – that is, a largest subset of
R on which the formula describing it makes sense – we are at liberty to choose
a smaller domain for the function if we wish.

There are a number of special types of functions that we will deal with on a
regular basis

1. Polynomials: functions of the form anx
n + an−1x

n−1 + · · · + a0, where
the ak are constants for k = 0, · · · , n. If an 6= 0, then the degree of the
polynomial is n. The natural domain of a polynomial is R;

65
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2. Rational functions: functions of the form p/q with p and q polynomials.
The natural domain of a function of this form is the set of all real numbers
where the denominator q is non-zero;

3. Trigonometric functions: sin, cos, tan, cot, sec, csc;

4. Inverse trigonometric functions: sin−1, tan−1, etc;

5. Exponential and log functions: ex and lnx.

6. Power functions: xa for a ∈ R. The natural domain is {x ∈ R;x ≥ 0}
unless a is a rational number with an odd denominator – in this case xa

is defined for all real numbers x.

Elementary functions are functions that can be constructed from functions
of the above types using addition, multiplication, quotients and composition.
It is not the case that all the functions we wish to consider are elementary
functions.

Continuity

Definition 3.1.1. Let f be a function with domain D ⊂ R and let a be an
element of D. We will say that f is continuous at a if, for each ǫ > 0, there is
a δ > 0, such that

|f(x) − f(a)| < ǫ whenever x ∈ D and |x− a| < δ. (3.1.1)

There is a subtle difference between the definition of continuity given above
and the one that is usually given in calculus courses. The difference is that our
definition depends on the domain of the function. A given expression may not
be continuous at a point a if given one domain containing a, and yet it may be
continuous at a if it is given a smaller domain.

Example 3.1.2. Give an example of a function which is not continuous at a
certain point of its domain, but it is continuous at this point if a smaller domain
is chosen for the function.

Solution: Each x ∈ R is in exactly one of the intervals [n, n+ 1) for n ∈ Z.
Consider the function defined on R by

f(x) = x− n if x ∈ [n, n + 1), n ∈ Z.

The graph of this function is shown in Figure 3.1, which shows why this function
is called the sawtooth function. We will show that this function is not continuous
at 0 (or at any other integer for that matter). However, if its domain is restricted
to be the interval [0, 1), then it is continuous at 0.

Now f(x) = x on [0, 1) and f(x) = x + 1 on [−1, 0). Suppose ǫ is greater
than 0 but less than 1/2. Then, for any δ > 0, the interval (−δ, δ) will contain
points of (−1/2, 0) and for any such point x,

|f(x)− f(0)| = |x + 1 − 0| > 1/2 > ǫ.
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Figure 3.1: The Sawtooth Function.

Thus, there is no way to choose δ such that |f(x)−f(0)|< ǫ whenever |x−0| < δ.
This means that f is not continuous at 0. The same argument works at any
other integer n.

On the other hand, suppose we define a new function g which is the same
as f , but with domain cut down to be just D = [0, 1). Then g(x) = x on D. If,
for a given ǫ > 0, we choose δ = ǫ, then

|g(x) − g(0)| = |x| < ǫ whenever x ∈ D, and |x− 0| = |x| < δ.

Thus, g is continuous at 0.

Definition 3.1.3. We will simply say that a function with domain D is con-
tinuous if it is continuous at every point of D.

Example 3.1.4. Prove that f(x) = x2 is continuous at x = 2.
Solution: We have

|f(x)− f(2)| = |x2 − 4| = |x+ 2||x− 2|.

If we insist that |x − 2| < 1, then 1 < x < 3 and so |x + 2| < 5. Thus, given
ǫ > 0, if we choose δ = min{1, ǫ/5}, then

|f(x) − f(2)| = |x+ 2||x− 2| < 5|x− 2| < ǫ whenever |x− 2| < δ.

This proves that f is continuous at 2.

An Alternate Characterization of Continuity

There is an alternate characterization of continuity that will allow us to use
the theorems of the previous chapter to easily prove the standard theorems
concerning continuous functions:

Theorem 3.1.5. Let f be a function with domain D and suppose a ∈ D. Then
f is continuous at a if and only if, whenever {xn} is a sequence in D which
converges to a, then the sequence {f(xn)} converges to f(a).



68 CHAPTER 3. CONTINUOUS FUNCTIONS

Proof. We first prove the ”only if” – that is, we assume f is continuous and
proceed to prove the statement about sequences. Let {xn} be a sequence in D
with xn → a. Given ǫ > 0, there is a δ > 0 such that

|f(x)− f(a)| < ǫ whenever x ∈ D and |x− a| < δ.

For this δ, there is an N such that

|xn − a| < δ whenever n > N.

On combining these statements, we conclude

|f(xn)− f(a)| < ǫ whenever n > N.

Thus, f(xn) → f(a). This completes the proof of the ”only if” half of the
theorem.

We will prove the ”if” part, by proving the contrapositive – that is, we will
prove that if f is not continuous at a, then there is a sequence {xn} in D such
that xn → a but {f(xn)} does not converge to f(a).

The assumption that f is not continuous at a means that there is an ǫ > 0
for which no δ can be found for which (3.1.1) is true. This means that, no
matter what δ we choose, there is always an x ∈ D such that

|x− a| < δ but |f(x)− f(a)| ≥ ǫ.

In particular, for each of the numbers 1/n for n ∈ N we may choose an xn ∈ D
such that

|xn − a| < 1/n but |f(xn) − f(a)| ≥ ǫ.

These numbers form a sequence {xn} which converges to a (since 1/n → 0),
but the image sequence {f(xn)} does not converge to f(a). This completes the
proof of the ”if” part of the theorem.

Combining this with the Main Limit Theorem yields the following:

Theorem 3.1.6. If r is a positive rational number, then the function f(x) = xr

is continuous on its natural domain.

Proof. The natural domain D of f(x) = xr is R if r has an odd denominator
and is the set of non-negative real numbers if r has an even denominator when
written in lowest terms. In either case, if a ∈ D and {xn} is a sequence in D
which converges to a, then {xrn} converges to ar by parts (e) and (f) of the
Main Limit Theorem (Theorem 2.3.6). This implies that xr is continuous by
the previous theorem.

Remark 3.1.7. We will eventually prove that the functions xa for a ∈ R,
ex, lnx, and the inverse trigonometric functions are all continuous. In the
meantime, we will assume this is true whenever it is convenient to do so in an
exercise or example. The continuity of the trigonometric functions is usually
proved adequately in elementary calculus and so we will use the continuity of
these functions whenever it is needed.
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Combinations of Continuous Functions

If f and g are functions with domains Df and Dg, then f + g and fg have
domain D = Df ∩Dg, and f/g has domain {x ∈ D : g(x) 6= 0}.

Theorem 3.1.8. Let f and g be functions with domains Df and Dg. Assume f
and g are both continuous at a point a ∈ D = Df ∩Dg, and let c be a constant.
Then

(a) cf is continous at a;

(b) f + g is continous at a;

(c) fg is continous at a;

(d) f/g is continous at a, provided g(a) 6= 0;

Proof. These are all proved using the same technique used to prove the previous
theorem – combine Theorem 3.1.5 with the corresponding part of the Main Limit
Theorem. We will do (b) to illustrate this technique, pose part (d) as an exercise,
and let it go at that.

If f and g are continuous at a and {xn} is any sequence in D which converges
to a, then Theorem 3.1.5 tells us that {f(xn)} converges to f(a) and {g(xn)}
converges to g(a). By part (b) of the Main Limit Theorem (Theorem 2.3.6),
{f(xn) + g(xn)} converges to f(a) + g(a). Therefore, by Theorem 3.1.5 again,
f + g is continuous at a.

Example 3.1.9. Prove that each polynomial is continuous on all of R and each
rational function is continuous at all points where its denominator is not zero.

Solution: Every positive integral power of x is continuous on R by Theorem
3.1.6. By (a) of the above theorem, each constant times a power of x is also
continuous. Then (b) of the theorem implies that every polynomial is continuous
on R and (d) implies that every rational function is continuous at points where
its denominator is not zero.

Composition of Continuous Functions

If f is a function with domain Df and g is a function with domain Dg, then the
composite function f ◦ g has domain Df◦g = {x ∈ Dg : g(x) ∈ Df}. Suppose
a is in this set, so that a ∈ Dg and g(a) ∈ Df . Then we can ask if f ◦ g is
continuous at a. The following theorem answers this question. Its proof is left
to the exercises.

Theorem 3.1.10. With f and g as above, let a be in the domain of f ◦g. Then
f ◦ g is continuous at a if g is continuous at a and f is continuous at g(a).

Example 3.1.11. Prove that f(x) =
1√

1 − x2
is continuous as a function on

its natural domain.
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Solution: The function f has as natural domain the interval (−1, 1), since
it is for points in this interval and those points alone that

√
1 − x2 is defined and

non-zero. The function 1−x2 is continuous on (−1, 1) because it is a polynomial.
The square root function is continuous on [0,∞) by Theorem 3.1.6. Thus, the
composition

√
1 − x2 is continuous by Theorem 3.1.10. Finally, f is continuous

by part (d) of Theorem 3.1.8.

Exercise Set 3.1

1. If f is a function with domain [0, 1], what is the domain of f(x2 − 1)?

2. What is the natural domain of the function
x2 + 1

x2 − 1
. With this as its

domain, is this function continuous? Why?

3. We know
√
x is continuous at all a ≥ 0, by Theorem 3.1.6. Give another

proof of this fact using only the definition of continuity (Definition 3.1.1).

4. Prove that
1

1 + x2
has natural domain R and is continuous.

5. Show that the function f(x) = |x| is continuous on all of R.

6. Assuming sin is continuous, prove that sin(x3 − 4x) is continuous.

7. Prove (d) of Theorem 3.1.8.

8. Prove Theorem 3.1.10.

9. Consider the function

f(x) =

{

1 if x ≥ 0

−1 if x < 0.

Is this function continuous if its domain is R? Is it continuous if its
domain is cut down to {x ∈ R : x ≥ 0}? How about if its domain is
{x ∈ R : x ≤ 0}?

10. Let f be a function with domain D and suppose f is continuous at some
point a ∈ D. Prove that, for each ǫ > 0, there is a δ > 0 such that

|f(x)− f(y)| < ǫ whenever x, y ∈ D ∩ (a− δ, a+ δ).

11. Prove that the function f(x) =

{

sin 1/x if x 6= 0

0 if x = 0
is not continuous

at 0.

12. Prove that the function f(x) =

{

x sin 1/x if x 6= 0

0 if x = 0
is continuous at

0.
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3.2 Properties of Continuous Functions

Continuous functions on closed bounded intervals have a number of highly useful
properties. We explore some of these in this section.

Maximum and Minimum Values

A function f with domain D is said to be be bounded above on S ⊂ D if and
only if the set f(S) = {f(x) : x ∈ S} is bounded above. This is true if and only
if

sup
S
f = sup{f(x) : x ∈ S}

is finite. Similarly, f is bounded below on S if f(S) is bounded below and this
is true if and only if

inf
S
f = inf{f(x) : x ∈ S}

is finite. If f is bounded above and below on S, then we say f is bounded on S.
If f is bounded on its domain D, then it is said to be a bounded function.

Just as a bounded set may have a finite sup, but may not have a maximum
element (the sup may not belong to the set), a function f may be bounded
above on S without having a maximum value (this happens if supS f is not a
value that f assumes on S). However, if f is a continuous function on a closed
bounded interval, then the situation is particularly nice.

Theorem 3.2.1. If f is a continuous function on a closed bounded interval I,
then f is bounded on I and, in fact, it assumes both a minimum and a maximum
value on I.

Proof. We will prove that M = supx∈I f(x) is finite and, in fact, is a value that
f takes on somewhere on I. The proof of the analogous fact for infx∈I f(x) has
the same proof.

We will inductively construct a nested sequence of closed intervals {In} with
the following properties:

(1) I1 = I;

(2) Ik is the closed left or right half of Ik−1 for each k > 1;

(3) supIk
f(x) = M for each k.

The first condition tells us how to pick I1. Suppose that I1, · · · , In have been
chosen satisfying (1), (2), (3) for k ≤ n. we choose In+1 as follows: If In
is cut in half at its midpoint, yielding two closed intervals with union In and
with intersection the midpoint of In, then the sup of f on at least one of these
intervals must be the same as the sup of f on In. This is M by our induction
assumption. If this is true of only one of the two halves of In, we choose this
half to be In+1. If it is true of both halves, then we choose In+1 to be the right
half of In. This completes the induction step of the definition and proves that
a sequence {In} satisfying (1), (2), (3) can be constructed.
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Given a nest of intervals {In} as above, the Nested Interval Property (Theo-
rem 2.5.1) implies that there is a point a ∈ ⋂n In. This is, in particular, a point
of I = I1. We know f is continuous at this point and so, given ǫ > 0, there is a
δ > 0 such that

f(a) − ǫ < f(x) < f(a) + ǫ whenever x ∈ I, |x− a| < δ. (3.2.1)

Now the length of In is L/2n−1, where L is the length of I. Since limL/2n−1 =
2L lim(1/2)n = 0, the length of In will be less than δ for n sufficiently large.
Suppose n is this large. Then |x− a| < δ for all x ∈ In, since a ∈ In. By (3.2.1)

f(a)− ǫ < sup
In

f ≤ f(a) + ǫ.

That is,
f(a)− ǫ < M ≤ f(a) + ǫ.

This implies that M is finite and that |f(a)−M | ≤ ǫ for every positive ǫ. This
is possible only if f(a) = M . Thus we have proved that supx∈I f(x) is finite
and that it is a value assumed by f at some point a of I.

Each of the hypotheses of the above theorem is necessary in order for the
conclusion to hold. This is illustrated by the following example and some of the
exercises.

Example 3.2.2. Give examples of functions on [0, 1] which are

(1) unbounded;

(2) bounded, but with no maximum value.

Solution: (1) Let

f(x) =







1 if x ≤ 1/2
1

2x− 1
if x > 1/2.

;

this function is clearly unbounded on [0, 1] since it blows up as x approaches
1/2 from the right. Note that f is not continuous at 1/2.

(2) Let

f(x) =

{

2x if x < 1/2

0 if x ≥ 1/2.
;

this function is bounded on [0, 1] and its sup on this interval is 1, but it never
takes on the value 1 on the interval. Again, this function is not continuous at
1/2.

Exercises 3.2.4 and 3.2.5 ask the student to come up with examples showing
that the conclusion of the theorem fails for a function which is continuous on
an interval I, but I is not closed or is not bounded.



3.2. PROPERTIES OF CONTINUOUS FUNCTIONS 73

Intermediate Value Theorem

The next theorem says that if a continuous function on an interval takes on two
values, then it takes on every value in between. Its proof is almost identical to
the proof of the previous theorem.

Theorem 3.2.3. (Intermediate Value Theorem) Let f be defined and con-
tinuous on an interval containing the points a and b and assume that a < b. If
y is any number between f(a) and f(b), then there is a number c with a ≤ c ≤ b
such that f(c) = y.

Proof. Let a1 = a and b1 = b and consider the closed interval I1 = [a1, b1].
We are given that y lies between f(a1) and f(b1). We will construct a nested
sequence of closed intervals with the same property. That is, we will prove by
induction that there is a sequence of closed intervals {Ik = [ak, bk]} such that,
for all k > 1,

(1) [ak, bk] is the closed left or right half of the interval [ak−1, bk−1];

(2) y lies between f(ak) and f(bk).

Suppose it is possible to choose {I1, · · · , In} so that (1) and (2) hold for k ≤ n.
Then we cut In into two halves that have only the midpoint cn of In in common.
If y lies between f(an) and f(bn) then it either lies between f(an) and f(cn)
or it lies between f(cn) and f(bn). If only one of these is true, then choose
In+1 to be the corresponding half of In. If both are true, then choose In+1 to
be the right half of In. This results in a choice for In+1 that satisfies (1) and
(2) for k = n + 1. This completes the induction step of the construction and,
hence, the proof that a nested sequence of intervals satisfying (1) and (2) can
be constructed.

By the Nested Interval Property, there is a point c in the intersection of all
the intervals In. By hypothesis f is continuous at c and so, given ǫ > 0, there
is a δ > 0 such that

f(c) − ǫ < f(x) < f(c) + ǫ whenever x ∈ I, |x− c| < δ. (3.2.2)

Now the length of In is L/2n−1, where L is the length of I. Since limL/2n−1 =
2L lim(1/2)n = 0, the length of In will be less than δ for n sufficiently large.
Suppose n is this large. Then |x− c| < δ for all x ∈ In, since c ∈ In. By (3.2.2)

f(c) − ǫ < f(an) < f(c) + ǫ and f(c) − ǫ < f(bn) < f(c) + ǫ.

Taken together with the fact that y lies between f(an) and f(bn), these inequal-
ities imply that

f(c) − ǫ < y < f(c) + ǫ or |f(c) − y| < ǫ.

This is only possible for all positive ǫ if f(c) = y. This completes the proof.

This is another example of a theorem which is not true if the function is not
required to be continuous (see Exercise 3.2.6).



74 CHAPTER 3. CONTINUOUS FUNCTIONS

Image of an Interval

Theorem 3.2.4. If f is a continuous function defined on a closed bounded
interval I = [a, b], then f(I) is also a closed, bounded interval or it is a single
point.

Proof. By Theorem 3.2.1, f has a maximum value M and a minimum value
m on I. By Theorem 3.2.3 f takes on every value between m and M on I.
Therefore the image of I is exactly [m,M ]. This is a closed interval if m 6= M ,
and is a point otherwise.

Inverse Functions

We learn in calculus that a function which is monotone increasing or monotone
decreasing on an interval has an inverse function. Here a function f is monotone
increasing on I if f(x) < f(y) whenever x, y ∈ I and x < y. A function f is
monotone decreasing on I if f(x) > f(y) whenever x, y ∈ I and x < y. A
function which is monotone increasing or monotone decreasing on I is said to
be strictly monotone on I. For strictly monotone functions, there is a converse
to the previous theorem.

Theorem 3.2.5. If f is strictly monotone on I and its range f(I) is an interval,
then f is continuous on I.

Proof. Suppose f is monotone increasing. Let f(I) = [s, t]. Given c ∈ I, we
will prove that f is continuous at c. We do this first in the case where c is not
an endpoint of I = [a, b].

Given ǫ > 0, let u = max{s, f(c)− ǫ} and v = min{t, f(c) + ǫ}. Then u and
v are points of [s, t] and

f(c)− ǫ ≤ u ≤ f(c) ≤ v ≤ f(c) + ǫ.

Note that the only way one of the inequalities u ≤ f(c) ≤ v can be an equality
is if f(c) is one of the endpoints s or t. However, this cannot happen, since c is
not an endpoint of I. Thus, u < f(c) < v.

Since f(I) = [s, t], there are points p, q ∈ I such that f(p) = u and f(q) = v.
Since f is monotone increasing,

p < c < q.

We choose δ = min{q − c, c − p}. Then |x − c| < δ implies p < x < q and this
implies

f(c)− ǫ ≤ u < f(x) < v ≤ f(c) + ǫ that is |f(x) − f(c)| < ǫ.

This proves that f is continuous at c in the case where c is not an endpoint of
I.

If c is an endpoint of I, then the argument is the same except that we only
have to concern ourselves with points that lie to one side of c and of f(c). The
details are left to the exercises.
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It remains to prove that a monotone decreasing function on I with a closed
interval for its range is continuous. However, if g is monotone decreasing, then
f = −g is monotone increasing, also has a closed interval as image and, hence, is
continuous by the above. But if −g is continuous, then so is g = (−1)(−g).

Theorem 3.2.6. A continuous, strictly monotone function f on a closed in-
terval I has a continuous inverse function defined on J = f(I). That is, there
is a continuous function g, with domain J , such that g(f(x)) = x for all x ∈ I
and f(g(y)) = y for all y ∈ J .

Proof. Since f is strictly monotone, for each y ∈ J there is exactly one x ∈ I
such that f(x) = y. We set g(y) = x. Then, by the choice of x, we have
f(g(y)) = f(x) = y and g(f(x)) = g(y) = x.

The function g is strictly monotone because f is strictly monotone. Fur-
thermore, the range of g is I. By the previous theorem, this implies that g is
continuous.

Exercise Set 3.2

1. Find the maximum and minumum values of the function f(x) = x2 − 2x
on the interval [0, 3).

2. Prove that if f is a continuous function on a closed bounded interval I
and if f(x) is never 0 for x ∈ I, then there is a number m > 0 such that
f(x) ≥ m for all x ∈ I or f(x) ≤ −m for all x ∈ I.

3. Prove that if f is a continuous function on a closed bounded interval [a, b]
and if (x0, y0) is any point in the plane, then there is a closest point to
(x0, y0) on the graph of f .

4. Find an example of a function which is continuous on a bounded (but not
closed) interval I, but is not bounded. Then find an example of a function
which is continuous and bounded on a bounded interval I, but does not
have a maximum value.

5. Find an example of a function which is continuous on a closed (but not
bounded) interval I, but is not bounded. Then find an example of a
function which is continuous and bounded on a closed interval I, but does
not have a maximum value.

6. Give an example of a function defined on the interval [0, 1] , which does
not take on every value between f(0) and f(1).

7. Show that if f and g are continuous functions on the interval [a, b] such
that f(a) < g(a) and g(b) < f(b), then there is a number c ∈ (a, b) such
that f(c) = g(c).

8. Let f be a continuous function from [0, 1] to [0, 1]. Prove there is a point
c ∈ [0, 1] such that f(c) = c – that is, show that f has a fixed point. Hint:
apply the Intermediate Value Theorem to the function g(x) = f(x)− x.
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9. Use the Intermediate Value Theorem to prove that, if n is a natural num-
ber, then every positive number a has a positive nth root.

10. Prove that a polynomial of odd degree has at least one real root.

11. Use the Intermediate Value Theorem to prove that if f is a continuous
function on an interval [a, b] and if f(x) ≤ m for every x ∈ [a, b), then
f(b) ≤ m.

12. Prove that if f is strictly increasing on [a, b], then its inverse function is
strictly increasing on [f(a), f(b)].

3.3 Uniform Continuity

Compare the definition of continuity given in Definition 3.1.1 with the following
definition.

Definition 3.3.1. If f is a function with domain D, then f is said to be
uniformly continuous on D if for each ǫ > 0 there is a δ > 0 such that

|f(x) − f(a)| < ǫ whenever x, a ∈ D and |x− a| < δ. (3.3.1)

By contrast, Definition 3.1.1 tells us that f is continuous on D if for each
a ∈ D and each ǫ > 0 there is a δ > 0 such that

|f(x) − f(a)| < ǫ whenever x ∈ D and |x− a| < δ.

These two definitions appear to be identical until one examines them closely.
The difference is subtle but extremely important. In the definition of uniform
continuity, given ǫ, a single δ must be chosen that works for all points a ∈ D,
while in the definition of continuity, δ is allowed to depend on a.

Example 3.3.2. Find a function which is continuous on its domain, but not
uniformly continuous.

Solution: We claim that the functiion f(x) = 1/x with domain (0, 1] is
continuous but not uniformly continuous on (0, 1].

It is continuous because x is continuous on (0, 1] and is never 0 on this set.
Thus, Theorem 3.1.8(d) implies that 1/x is continuous at each point of (0, 1].

On the other hand, if we attempt to verify that f is uniformly continuous,
we run into trouble. Given ǫ > 0, we try to find a δ > 0 such that

|1/x− 1/a| < ǫ whenever a, x ∈ (0, 1] and |x− a| < δ.

However, for any δ > 0, if x and a are chosen so that 0 < x < a < δ, then it
will be true that

|x − a| < δ.

However, we can make 1/x and, hence, |1/x−1/a| as large as we want by simply
keeping a < δ fixed and choosing x < a small enough. In particular, |1/x− 1/a|
can be made larger than ǫ regardless of what ǫ we start with. Thus, f(x) = 1/x
is not uniformly continuous on (0, 1]
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Figure 3.2: The Function 1/x on (0, 1].

Example 3.3.3. Prove that f(x) = 1/x is uniformly continuous on any interval
of the form [r, 1], where r > 0.

Solution: If x and a are in the interval [r, 1], then
∣

∣

∣

∣

1

x
− 1

a

∣

∣

∣

∣

=
|x− a|
ax

≤ |x − a|
r2

.

Thus, given ǫ > 0, if we choose δ = r2ǫ, then
∣

∣

∣

∣

1

x
− 1

a

∣

∣

∣

∣

< ǫ whenever |x − a| < δ.

This implies that f(x) = 1/x is uniformly continuous on [r, 1].

Conditions Ensuring Uniform Continuity

In the last example, the domain of the function f was a closed, bounded interval.
It turns out that, in this case, continuity implies uniform continuity. This is the
main theorem of the section.

Theorem 3.3.4. If f is a continuous function on a closed, bounded interval I,
then f is uniformly continuous on I.

Proof. We will prove the contrapositive. Suppose f is not uniformly continuous
on [a, b]. Then there is an ǫ > 0 for which no δ can be found which satisfies
(3.3.1). In particular, none of the numbers 1/n for n ∈ N will suffice for δ. This
means that, for each n, there are numbers xn, an ∈ I such that

|xn − an| < 1/n but |f(xn) − f(an)| ≥ ǫ.
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By the Bolzano-Weierstrass Theorem, some subsequence {xnk
} of the se-

quence {xn} converges to a point x of I. The inequality |xnk
−ank

| < 1/nk ≤ 1/k
implies that {ank

} converges to the same number. Since |f(xnk
)− f(ank

)| ≥ ǫ,
the sequences {f(xnk

)} and {f(ank
)} cannot converge to the same number.

However, they would both have to converge to f(x) if f were continuous at x,
by Theorem 3.1.5. Thus, we conclude that f is not continuous at every point
of I.

Consequences of Uniform Continuity

Theorem 3.3.5. If f is uniformly continuous on its domain D, and if {xn} is
any Cauchy sequence in D, then {f(xn)} is also a Cauchy sequence.

Proof. Given ǫ > 0, by uniform continuity there is a δ > 0 such that

|f(x)− f(y)| < ǫ whenever x, y ∈ D and |x− y| < δ.

Since {xn} is Cauchy, there is an N such that

|xn − xm| < δ whenever n,m > N.

Combining these two statements tells us that

|f(xn) − f(xm)| < ǫ whenever n,m > N.

Thus, {f(xn)} is a Cauchy sequence.

An interval may be closed, open or half open. If I is an interval, we denote
by I the closed interval consisting of I along with any endpoints of I that may be
missing from I. If I is a bounded interval, then I is a closed, bounded interval.

Given a continuous function f on a bounded interval I that is not closed, it
may or may not be possible to extend f to a continuous function on I . That
is, it may or may not be possible to give f values at the missing endpoint(s)
that make the new function continuous. The next theorem tells when this can
be done.

Theorem 3.3.6. If f is a continuous function on a bounded interval I , which
may not be closed, then f has a continuous extension to I if and only if f is
uniformly continuous on I.

Proof. If f has a continuous extension f̃ to I , then f̃ is uniformly continuous on
I by Theorem 3.3.4. But if a function is uniformly continuous on a set, then it
is also uniformly continuous when restricted to any smaller set. Since f is just
f̃ restricted to the smaller domain I, f is uniformly continuous on I.

Conversely, suppose f is uniformly continuous on I. Let a be a missing
endpoint of I (left or right). There are lots of sequences in I which converge to
a. Let {an} be one of these. Then {an} is a Cauchy sequence in I and so the
previous theorem implies that {f(an)} is also a Cauchy sequence. Since Cauchy
sequences converge, we know that there is a y such that f(an) → y.



3.3. UNIFORM CONTINUITY 79

We claim that if {bn} is any other sequence in I converging to a, then {f(bn)}
converges to the same number y. We prove this by constructing a new sequence
{cn} in I, which also converges to a, by interlacing the terms of {an} and {bn}.
That is, we set

c2k−1 = ak;

c2k = bk.

Since cn → a, we may argue as before, that {f(cn)} converges to some number.
But one of its subsequences, {f(c2k−1)}, converges to y. This implies that
{f(cn)} must converge to y as must any of its subsequences. In particular
{c2k} = {bk} converges to y. This proves our claim. That is, the number
y = lim f(an) is the same no matter what sequence {an} in I converging to a
is chosen.

We now define a new function f̃ on I ∪ {a}, by setting f̃(a) = y and f̃(x) =
f(x) for each x ∈ I. It is clear from the construction that f̃ will be continuous
at a, since f̃(xn) → y = f(a) for every sequence {xn} in I ∪ {a} that converges
to a.

This proves that a uniformly continuous function on a bounded interval I
can be extended to be continuous on the interval obtained by adjoining one
missing endpoint to I. If the other endpoint is also missing, we simply repeat
the process to get an extension to all of I .

This theorem often provides a quick way to see that a function on a bounded
interval is not uniformly continuous.

Example 3.3.7. Show that the function f(x) =
1

1 − x2
is not uniformly con-

tinuous on the interval (−1, 1).
Solution: If f is uniformly continuous on this interval, then the previous

theorem implies that f has a continuous extension to [−1, 1]. However, a con-
tinuous function on a closed bounded interval is bounded. The function f is not
bounded on (−1, 1), and so no extension of it to [−1, 1] can be bounded. Thus,
f is not uniformly continuous.

If the interval I is unbounded, then it is possible for a function on I to be
uniformly continuous and yet unbounded.

Example 3.3.8. Show that the function f(x) =
√
x is uniformly continuous

on [1,+∞).
Solution: If x, y ∈ [1,+∞), then

|√x−√
y| =

|x − y|√
x+

√
y
< |x− y|,

since
√
x ≥ 1 > 1/2 and

√
x ≥ 1 > 1/2 if x, y ∈ [1,+∞). This clearly implies

that f is uniformly continuous on [1,+∞). In fact, given ǫ > 0, it suffices to
choose δ = ǫ to obtain

|f(x)− f(y)| < ǫ whenever x, y ∈ [1,+∞) and |x − y| < δ.
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Exercise Set 3.3

1. Is the function f(x) = x2 uniformly continuous on (0, 1)? Justify your
answer.

2. Is the function f(x) = 1/x2 uniformly continuous on (0, 1)? Justify your
answer.

3. Is the function f(x) = x2 uniformly continuous on (0,+∞)? Justify your
answer.

4. Using only the ǫ−δ definition of uniform continuity, prove that the function

f(x) =
x

x+ 1
is uniformly continuous on [0,∞).

5. In Example 3.3.8 we showed that
√
x is uniformly continuous on [1,+∞).

Show that it is also uniformly continuous on [0, 1].

6. Prove that if I and J are overlapping intervals in R (I ∩ J 6= ∅) and
f is a function, defined on I ∪ J , which is uniformly continuous on I
and uniformly continuous on J , then it is also uniformly continuous on
I ∪ J . Use this and the previous exercise to prove that

√
x is uniformly

continuous on [0,+∞)

7. Prove that if I is a bounded interval and f is an unbounded function
defined on I, then f cannot be uniformly continuous.

8. Let f be a function defined on an interval I and suppose that there are
positive constants K and r such that

|f(x) − f(y)| ≤ K|x − y|r for all x, y ∈ I.

Prove that f is uniformly continuous.

9. Is the function f(x) = sin 1/x continuous on (0, 1)? Is it uniformly con-
tinuous on (0, 1). Justify your answers.

10. Is the function f(x) = x sin 1/x uniformly continuous on (0, 1)? Justify
your answer.

3.4 Uniform Convergence

Uniform convergence is a subject that is both similar to and very different from
uniform continuity. Uniform continuity is a condition on the continuity of a
single function, while uniform convergence is a condition on the convergence of
a sequence of functions.
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Sequences of Functions

In calculus we often encounter sequences of functions as opposed to sequences
of numbers. They occur as partial sums of power series, for example. Other
examples are the following (note that x is a variable):

1. {x/n}, x ∈ R;

2. {xn}, x ∈ R;

3.

{

1

1 + nx

}

, x > 0;

4.

{

1 − xn

1 − x

}

, x ∈ (−1, 1);

5. {sinnx}, x ∈ [0, 2π).

It is important to have methods to show that various things are preserved by
passing to the limit of a sequence of functions. If the functions in the sequence
are all continuous on a certain set D, is the limit continuous on D? Is the
integral of the limit equal to the limit of the integrals if we are integrating over
some interval on which all the functions are defined? The answer to both of
these questions is “yes” provided the convergence is uniform.

Uniform Convergence

Let {fn} be a sequence of functions on a setD ⊂ R. We say that {fn} converges
pointwise to a function f on D if, for each x ∈ D, the sequence of numbers
{fn(x)} converges to the number f(x). If we write out what this means in
terms of the definition of convergence of a sequence of numbers we get the
statement in (a) of the following definition. Statement (b) is the definition of
uniform convergence.

Definition 3.4.1. Let {fn} be a sequence of functions on a set D ⊂ R. Then

(a) {fn} is said to converge pointwise to a function f on D if, for each x ∈ D
and each ǫ > 0, there is an N such that

|f(x)− fn(x)| < ǫ whenever n > N.

(b) {fn} is said to converge uniformly on D to a function f if, for each ǫ > 0,
there is an N such that

|f(x) − fn(x)| < ǫ whenever x ∈ D and n > N ;

As with continuity and uniform continuity, the definitions of pointwise con-
vergence and uniform convergence seem identical until one studies them closely.
In fact, they are very different. In the case of pointwise convergence, x is given
along with ǫ before N is chosen. Here N may well depend on both ǫ and x. In
the case of uniform convergence, only ǫ is given initially; then an N must be
chosen which works for all x. That is, N does not depend on x in this case.
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Figure 3.3: The Sequence {xn} does not Converge Uniformly on [0, 1].

Example 3.4.2. Give an example of a sequence of functions defined on [0, 1]
which converges pointwise on [0, 1] but not uniformly.

Solution: An example is the sequence {fn} on [0, 1] defined by fn(x) = xn,
which is illustrated in Figure 3.3. This sequence of functions converges to the
function f which is 0 if x < 1 and is 1 if x = 1. Since the sequence {fn(x)}
converges to f(x) for each value of x, the sequence {fn} converges pointwise to
f on [0, 1]. However, the convergence is not uniform on [0, 1]. In fact,

|fn(x)− f(x)| = xn if x ∈ [0, 1),

and so, given ǫ > 0, in order for it to be true that |fn(x) − f(x)| < ǫ for all
x ∈ [0, 1] and some n, we would need that

xn < ǫ for all x ∈ [0, 1).

However, since xn is continuous on [0, 1], this would imply that 1 = 1n ≤ ǫ
(Exercise 3.2.11). Obviously, there are positive numbers ǫ for which this is not
true (any positive ǫ < 1). This shows that the convergence of {fn} on [0, 1] is
not uniform.

The problem in the above example is due to what is happening near x = 1.
If we stay away from 1, the situation improves.

Example 3.4.3. If 0 < r < 1, prove that the sequence {fn}, defined by fn(x) =
xn, converges uniformly to 0 on [0, r].

Solution: We have

|xn − 0| = xn ≤ rn for all x ∈ [0, r]. (3.4.1)
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Now, given ǫ > 0, we choose N so that

rn < ǫ whenever n > N,

This is possible because rn → 0 if 0 ≤ r < 1. Combining this with (3.4.1) yields

|xn − 0| < ǫ whenever x ∈ [0, r] and n > N.

This proves that {xn} converges uniformly to 0 on [0, r].

Uniform Convergence and Continuity

Theorem 3.4.4. Let {fn} be a sequence of functions, all of which are defined
and continuous on a set D. If {fn} converges uniformly to a function f on D,
then f is continuous on D.

Proof. If a ∈ D, we will show that f is continuous at a. Given ǫ > 0, we first
use the uniform convergence to choose an N such that

|fn(x)− f(x)| < ǫ/3 whenever x ∈ D,n > N.

We then fix a natural number n > N and use the fact that each fn is continuous
at a to choose a δ > 0 such that

|fn(x)− fn(a)| < ǫ/3 whenever x ∈ D and |x− a| < δ.

On combining these and using the triangle inequality, we conclude that

|f(x)− f(a)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(a)| + |fn(a)− f(a)|
< ǫ/3 + ǫ/3 + ǫ/3 = ǫ,

whenever x ∈ D and |x − a| < δ. This proves that f is continuous at a. Since
a was an arbitrary point of D, f is continuous on D.

Example 3.4.5. Analyze the convergence of the sequence of functions {fn}
defined on [0,∞) by

fn(x) =
1

1 + nx

Does the sequence converge pointwise? Does it converge uniformly?
Solution: Since fn(0) = 1 for all n, the sequence {fn(x)} converges to 1 at

x = 0. Since each fn can be re-written as

fn(x) =
1/n

1/n+ x
,

and the denominator of this expression converges to x, the sequence {fn(x)}
converges to 0 if x 6= 0. Thus, {fn(x)} converges pointwise to the function f on
[0,∞) defined by f(x) = 0 if x > 0 and f(0) = 1.

It follows from the previous theorem that the convergence is not uniform,
because f is not continuous on [0,∞) although each of the functions fn is
continuous on this interval.
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Tests For Uniform Convergence

A sequence {fn} converges uniformly to f on a set D if and only if {|fn − f |}
converges uniformly to 0 on D. Thus, it is useful to have simple tests for when
a sequence converges uniformly to 0. We will give two such tests. One gives
conditions which guarantee that a sequence converges uniformly to 0 and the
other gives a condition, which if not true, guarantees that a sequence does not
converge uniformly to 0. Both theorems have very simple proofs which are left
to the exercises.

The following theorem is useful for showing that a sequence converges uni-
formly.

Theorem 3.4.6. Let {fn} be a sequence of functions defined on a set D. If
there is a sequence of numbers bn, such that bn → 0, and

|fn(x)| ≤ bn for all x ∈ D,

then {fn} converges uniformly to 0 on D.

The following theorem provides a useful test for proving a sequence does not
converge uniformly.

Theorem 3.4.7. Let {fn} be a sequence of functions defined on a set D. If
{fn} converges uniformly to 0 on D, then {fn(xn)} converges to 0 for every
sequence {xn} of points of D.

Example 3.4.8. If fn(x) =
n

x+ n
, prove that {fn} converges uniformly to 1 on

the interval [0, r] for each positive number r, but does not converge uniformly
on [0,∞).

Solution: We have

|fn(x)− 1| =
x

x+ n
≤ x

n
≤ r

n
,

if x ∈ [0, r]. Since r/n → 0, Theorem 3.4.6 implies that
x

x+ n
converges

uniformly to 0 on [0, r] and, hence, that {fn} converges uniformly to 1 on [0.r].
On the other hand if we set xn = n, then {xn} is a sequence of numbers in

[0,∞) and fn(xn) = 1/2. Since fn(xn) − 1 does not converge to 0, Theorem
3.4.7 implies that {fn − 1} does not converge uniformly to 0 on [0,∞) and,
hence, that {fn} does not converge uniformly to 1 on [0,∞).

Uniformly Cauchy Sequences

Definition 3.4.9. A sequence of functions {fn} on a set D is said to be uni-
formly Cauchy on D if for each ǫ > 0, there is an N such that

|fn(x)− fm(x)| < ǫ whenever x ∈ D and n,m > N.
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If {fn} is a uniformly Cauchy sequence, then {fn(x)} is a Cauchy sequence
for each x ∈ D. By Theorem 2.5.8, {fn(x)} converges. Thus, {fn} converges
pointwise to some function f on D. The next theorem tells us that the conver-
gence is uniform. Its proof is left to the exercises.

Theorem 3.4.10. A sequence of functions {fn} on D is uniformly convergent
on D if and only if it is uniformly Cauchy on D.

Exercise Set 3.4

1. Prove that the sequence {x/n} converges uniformly to 0 on each bounded
interval, but does not converge uniformly on R.

2. Prove that the sequence
1

x2 + n
converges uniformly to 0 on R.

3. Prove that the sequence {sin(x/n)} converges to 0 pointwise on R, but it
does not converge uniformly on R.

4. Prove that the sequence
sinnx

n
converges uniformly to 0 on [0, 1].

5. Prove that {xn(1−x)} converges uniformly to 0 on [0, 1]. Hint: find where
each of these functions has its maximum on [0, 1].

6. Prove Theorem 3.4.6.

7. Prove Theorem 3.4.7.

8. Prove that if {fn} is a sequence of uniformly continuous functions on a
set D and if this sequence converges uniformly to f on D, then f is also
uniformly continuous.

9. For x ∈ (−1, 1) set sn(x) =
n
∑

k=0

xk. This is the nth partial sum of a

geometric series. Prove that sn(x) =
1 − xn+1

1 − x
.

10. Prove that the sequence {sn} of the previous exercise converges uniformly

to
1

1 − x
on each interval of the form [−r, r] with r < 1, but it does not

converge uniformly on (−1, 1).

11. Prove Theorem 3.4.10. Hint: use an argument like the one in the proof of
Theorem 2.5.8.

12. Prove that if {ak} is a bounded sequence of numbers and a sequence {sn}
is defined on (−1, 1) by

sn(x) =
n
∑

k=0

akx
k,
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then {sn} converges to a continuous function on (−1, 1). Hint: prove this
sequence is uniformly Cauchy on each interval [−r, r] for 0 < r < 1.



Chapter 4

The Derivative

In this chapter we will prove the standard theorems from calculus concerning
differentiation – theorems such as the Chain Rule, the Mean Value Theorem,
and L’Hôpital’s Rule.

We begin with the concept of the limit of a function.

4.1 Limits of Functions

Definition 4.1.1. Let I be an open interval, a a point of I, and f a function
defined on I except possibly at a itself. Then we will say the limit of f(x) as x
approaches a is L and write

lim
x→a

f(x) = L

if, for each ǫ > 0, there is a δ > 0 such that

|f(x)− L| < ǫ whenever x ∈ I and 0 < |x− a| < δ.

Note that the condition 0 < |x − a| in the above definition means that, in
defining the limit of f as x approaches a, we only care about values of f at
points of I other than a itself.

Note also, that the domain of f may be larger than I and may not be an
interval at all, but, in order to define the limit of f at a we want f to be defined
at least at all points, except a itself, in some open interval containing a.

Remark 4.1.2. On comparing the above definition with the definition of con-
tinuity (Definition 3.1.1), we conclude that, if f is defined on an open interval
containing a, then f is continuous at a if and only if limx→a f(x) = f(a).

This means that if f is not continuous at a (or not defined at a), but it has
a limit L as x approaches a, then we can make f continuous at a by redefining
(or defining) it at a by setting f(a) = L.

Example 4.1.3. Find lim
x→1

f(x) if f(x) is the function
x3 − 1

x− 1
on R \ {1}.

87
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Solution: For x ∈ R \ {1}, we have

f(x) =
x3 − 1

x− 1
= x2 + x+ 1.

The function on the right is continuous at 1 (since it is a polynomial) and has
the value 3 there. Thus, if we extend f to all of R by giving it the value 3 at
x = 1, then it becomes the continuous function x2+x+1. By the above remark,
limx→1 f(x) = 3.

Example 4.1.4. Can the function
sinx

x
on R \ {0} be defined at 0 in such a

way that it becomes continuous at 0?

Solution: We learned in calculus that lim
x→0

sinx

x
= 1. Thus, if

sinx

x
is given

the value 1 at x = 0, it will be continuous there.

One Sided Limits, Limits at ±∞
Example 4.1.5. Give an intuitive discussion of the behavior of the function
f(x) = x/|x| as x approaches 0.

Solution: We have f(x) = 1 if x > 0 and f(x) = −1 if x < 0. Thus, as
x approaches 0, f(x) approaches 1 if we keep x to the right of 0, while f(x)
approaches −1 if we keep x to the left of 0. However, limx→0 f(x) does not
exist, since in the definition of limit, we allow x to be on either side of a.

The above example suggests that it may be useful to define one-sided limits
that depend only on the behavior of the function on one side of the point a. If
a function is defined on an unbounded interval, then it may also be useful to
discuss its limit at +∞ or −∞. Correctly formulated, the same definition can
be used to cover the cases of one sided limits and of limits at ±∞.

Definition 4.1.6. Let f be a function defined on an open interval (a, b), where
a could be −∞ and b could be +∞. We say that the limit from the right of
f(x) as x approaches a is L and write

lim
x→a+

f(x) = L

if for every ǫ > 0 there is an m ∈ (a, b) such that

|f(x) − L| < ǫ whenever a < x < m.

Similarly, we say the limit of f(x) as x approaches b from the left is L, and
write

lim
x→b−

f(x) = L

if for every ǫ > 0 there is a m ∈ (a, b) such that

|f(x) − L| < ǫ whenever m < x < b.
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Note that, if a is finite, then to say that there is a m ∈ (a, b) such that
|f(x)−L| < ǫ whenever a < x < m is the same thing as saying there is a δ > 0
such that |f(x) − L| < ǫ whenever |x− a| < δ and x ∈ (a, b) (this is clear if we
let m and δ determine each other by the formula δ = m − a). This is just like
the ordinary definition of limit of f at a except x is restricted to lie to the right
of a. A similar analysis holds for the limit from the left at b in the case where
b is finite.

In the case where b = ∞, the condition m < x < b just means that m < x,
while in the case where a = −∞, the condition a < x < m just means that
x < m . Stated this way, the above definition is the traditional definition of
limit at ∞ or at −∞.

For limits at ∞ or −∞, we will simply write “ lim
x→∞

f(x)” or “ lim
x→−∞

f(x)”

rather than “ lim
x→∞−

f(x)” or “ lim
x→−∞+

f(x)” .

In view of the above discussion, the following theorem is almost obvious. Its
proof is left to the exercises.

Theorem 4.1.7. Let I be an open interval and a a point of I. If f is defined
on I except possibly at a then

lim
x→a

f(x) = L if and only if lim
x→a+

f(x) = L = lim
x→a−

f(x).

In other words the limit of f(x) as x approaches a exists if and only if the
limits from the left and the right both exist and are equal. Of course, the limit
is then this common value of the limits from the left and right.

Example 4.1.8. For the function

f(x) =

{

1 − x if x < 0

sinx if x > 0,

Find limx→0− f(x), limx→0+ f(x), and limx→0 f(x) if they exist.

Solution: Since, to the left of 0, f agrees with the continuous function 1−x,
its limit from the left is limx→0(1 − x) = 1. On the other hand, to the right of
0, f agrees with the continuous function sinx, and so its limit from the right is
limx→0 sinx = sin 0 = 0. Because the limits from the left and the right are not
the same, limx→0 f(x) does not exist.

Example 4.1.9. Find lim
x→∞

x2 + 3x+ 1

2x2 − 4
.

Solution: We do this just as we would if we were finding the limit of a
sequence as n→ ∞. We divide both numerator and denominator by the highest
power of x that occurs. This yields

x2 + 3x+ 1

2x2 − 4
=

1 + 3/x+ 1/x2

2 − 4/x2
.
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From this, we guess that the limit is 1/2. If we want to prove this is true, using
only the above definition, we proceed as follows:

∣

∣

∣

∣

x2 + 3x+ 1

2x2 − 4
− 1

2

∣

∣

∣

∣

=

∣

∣

∣

∣

3x+ 3

2x2 − 4

∣

∣

∣

∣

.

Now if x ≥ 3, then 2x2 − 4 ≥ x2 and 3x+ 3 < 4x. In this case, it follows from
the above that

∣

∣

∣

∣

x2 + 3x+ 1

2x2 − 4
− 1

2

∣

∣

∣

∣

≤ 4x

x2
=

4

x
.

Thus, given ǫ > 0, if we choose m = max(3, 4/ǫ), then

∣

∣

∣

∣

x2 + 3x+ 1

2x2 − 4
− 1

2

∣

∣

∣

∣

≤ 4

x
< ǫ whenever m < x.

This proves that the limit is 1/2, as we expected.

Of course, once we prove some theorems about limits, it becomes much easier
to do limit problems like the one above. It turns out that all the theorems
about limits of sequences, proved in the last chapter, have analogues for limits
of functions.

Limit Theorems

As was the case with continuity, the limit of a function can be characterized in
terms of limits of sequences. The following theorem is just like Theorem 3.1.5
and is proved the same way. The only difference is that L replaces f(a). We
will not repeat the proof

Theorem 4.1.10. Let (a, b) be a (possibly infinite) interval and let u be a+ or
b− or a point in the interval (a, b). If f is a function, defined on (a, b), then

lim
x→u

f(x) = L

if and only if f(an) → L whenever {an} is a sequence of points in (a, b), distinct
from u, with an → u.

As was the case with continuity in section 3.1, this theorem means that
each theorem about convergence of sequences yields a theorem about limits of
functions. For example, the Main Limit Theorem for sequences, together with
the previous theorem implies the Main Limit Theorem for functions:

Theorem 4.1.11. (Main Limit Theorem) Let (a, b) be a (possibly infinite)
interval, let u = a+ or b− or a point in the interval (a, b), and let c be a
constant. Let f and g be functions defined on (a, b). If limx→u f(x) = K and
limx→u g(x) = L, then

(a) limx→u c = c;
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(b) limx→u cf(x) = cK;

(c) limx→u(f(x) + g(x)) = K + L;

(d) limx→u f(x)g(x) = KL;

(e) limx→u f(x)/g(x) = K/L, provided L 6= 0.

There is also a theorem about the limit of a composite function which is
similar to Theorem 3.1.10 and has the same proof.

Theorem 4.1.12. Let (a, b) be a (possibly infinite) interval and let u = a+ or
b−. If g is defined on (a, b) and limx→u g(x) = L, f is defined on an interval
containing L and the image of g, and f is continuous at L, then

lim
x→u

f(g(x)) = f(L).

Proof. Let {an} be a sequence in I converging to u. Then, by Theorem 4.1.10,
limx→u g(x) = L implies g(an) → L. Then, by Theorem 3.1.5, the continuity of
f at L implies that f(g(an)) → f(L). Again using Theorem 4.1.10, we conclude
that limx→u f(g(x)) = f(L).

Example 4.1.13. Prove that if g is a non-negative function, defined on an
interval I except possibly at one point a ∈ I, and if limx→a g(x) = L, then

lim
x→a

gr(x) = Lr for all rational r > 0.

Solution: If r > 0 is rational and we set f(x) = xr, then f is continuous
on [0,∞) by Theorem 3.1.6. Since gr(x) = f(g(x)), it follows immediately from
the previous theorem that limx→a g

r(x) = Lr.

Infinite Limits

Just as with sequences, for a function f it is sometimes useful to know that,
even though f may not have a finite limit as x→ u, it does approach either +∞
or −∞. In analogy with Definition 2.4.4, we define infinite limits as follows.

Definition 4.1.14. If f is a function defined on an interval (a, b), then we say
limx→a+ f(x) = ∞ if, for each M , there is an m ∈ (a, b) such that

f(x) > M whenever a < x < m.

Infinite limits at b− and what it means for the limit to be −∞ are defined
analogously (see the exercises).

If c ∈ (a, b) and limx→c− f(x) and limx→c+ f(x) are both ∞, then we write
limx→c f(x) = ∞. The analogous statement holds if the limits are both −∞.

The following theorem reduces statements about infinite limits to statements
about finite limits. Its proof is left to the exercises.
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Theorem 4.1.15. Let f be defined on (a, b) and let u = a+ or b− or a point
in the interval (a, b). If f is positive on (a, b), then

lim
x→u

f(x) = ∞ if and only if lim
x→u

1

f(x)
= 0.

Similarly, if f is negative on (a, b), then

lim
x→u

f(x) = −∞ if and only if lim
x→u

1

f(x)
= 0.

Example 4.1.16. Analyze the behavior of f(x) =
x

1 − x
as x approaches 1.

Solution: We have lim
x→1

1

f(x)
= lim

x→1

1 − x

x
= 0, and so the limits of this

function from the left and the right at 1 are both 0. On (0, 1) the function f
is positive and so limx→1− f(x) = ∞ by the previous theorem. On (1,∞) the
function f is negative and so limx→1+ f(x) = −∞, also by the previous theorem.

Exercise Set 4.1

In each of the next 6 exercises find the indicated limit and prove that your
answer is correct.

1. lim
x→1

x2 − 1

x− 1
.

2. lim
x→2

x2 + x− 2

x− 1
.

3. lim
x→2

(

x2 − 4

x− 2

)3/2

.

4. lim
x→0

cos(x2 − x).

5. lim
x→2

x2 − 3x+ 1

2x2 + 1
.

6. lim
x→∞

x2 − 3x+ 1

2x2 + 1
.

7. If f(x) =
sin x

|x| , find lim
x→0+

f(x) and lim
x→0−

f(x). Does lim
x→0

f(x) exist?

8. If f(x) = sin 1/x, do lim
x→0+

f(x) and lim
x→0−

f(x) exist?

9. If, in Example 4.1.8, f is defined to be −x for x < 0 instead of 1−x, does
lim
x→0

f(x) exist? Why?

10. Prove Theorem 4.1.7.



4.2. THE DERIVATIVE 93

11. Let f be defined on a bounded interval (a, b) and let u be a+, b− or a
point of (a, b). Prove that if limx→u f(x) exists and is positive, then there
is a δ > 0 such that f(x) > 0 whenever |x − u| < δ and x ∈ (a, b). Hint:
recall the proof of Theorem 2.2.3.

12. Let f be a non-negative function on an interval (a, b) and let u = a+ or
b−. If limx→u f(x) exists, prove that it is a non-negative number.

13. Prove that if f is a bounded, non-decreasing function on the interval (a, b),
then lim

x→a+
f(x) and lim

x→b−
f(x) both exist and are finite.

14. State an appropriate definition for the statement limx→b− f(x) = −∞.

15. Prove Theorem 4.1.15

4.2 The Derivative

The definition of the derivative is familiar from calculus.

Definition 4.2.1. Let f be a function defined on an open interval containing
a ∈ R. If

lim
x→a

f(x)− f(a)

x− a

exists and is finite, then we denote it by f ′(a), and we say f is differentiable at
a with derivative f ′(a). If f is defined and differentiable at every point of an
open interval I, then we say that f is differentiable on I.

The derivative f ′ of f is a new function with domain consisting of those
points in the domain of f at which f is differentiable.

Remark 4.2.2. When convenient, we will make the change of variables h =
x− a and write the derivative in the form

f ′(a) = lim
h→0

f(a+ h) − f(a)

h
. (4.2.1)

Equivalently, when it is convenient to use x for the independent variable in the
function f ′, we will write the derivative in the form

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

We don’t intend to repeat the computation of the derivatives of all the el-
ementary functions. This is done in calculus. We will assume the student
knows how to differentiate polynomials, rational functions, trigonometric func-
tions, inverse trigonometric functions, and exponentials and logarithms. We
will, however, compute a couple of derivatives directly from the above defini-
tion, just to remind the student of how this is done, and we will occasionally
compute a derivative, as an example, to illustrate the use of some theorem.
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Example 4.2.3. If f(x) = x3, find the derivative of f using just Definition
4.2.1.

Solution: We have

f ′(a) = lim
x→a

x3 − a3

x− a
= lim
x→a

(x− a)(x2 + xa+ a2)

x− a

= lim
x→a

(x2 + xa+ a2) = 3a2.

Thus, f ′(a) = 3a2.

Example 4.2.4. If f(x) =
√
x, find f ′(x) for x > 0 using just Definition 4.2.1.

Solution: We have

f ′(x) = lim
h→0

√
x+ h−√

x

h
= lim
h→0

x+ h− x

h(
√
x+ h+

√
x)

= lim
h→0

1√
x+ h+

√
x

=
1

2
√
x
.

Thus, f ′(x) =
1

2
√
x

.

Differentiation Theorems

We will use what we know about limits to prove the main theorems concerning
differentiation. Some of these are proved in the typical calculus course and some
are not.

Theorem 4.2.5. If f is differentiable at a, then f is continuous at a.

Proof. If f is defined in an open interval containing a and x, and if x 6= a, then

f(x) = f(a) +
f(x)− f(a)

x− a
(x− a).

We take the limit of both sides as x → a. If f is differentiable at a, then

lim
x→a

f(x)− f(a)

x− a
exists and is finite. Since limx→a(x− a) = 0, this implies that

limx→a f(x) = f(a). Thus, f is continuous at a.

Theorem 4.2.6. Let f and g be functions defined on an open interval I con-
taining a and suppose f and g are both differentiable at a and c is a constant.
Then cf , f + g, fg are differentiable at a, as is f/g provided g(a) 6= 0, and

(a) (cf)′(a) = cf ′(a);

(b) (f + g)′(a) = f ′(a) + g′(a);

(c) (fg)′(a) = f ′(a)g(a) + f(a)g′(a);

(d)

(

f

g

)′
(a) =

f ′(a)g(a)− f(a)g′(a)

g2(a)
.
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Proof. We will prove (c) and (d) and leave (a) and (b) to the exercises.
To prove (c), we write

f(x)g(x)− f(a)g(a)

x− a
=
f(x)− f(a)

x− a
g(x) + f(a)

g(x)− g(a)

x− a
(4.2.2)

By the previous theorem, limx→a g(x) = g(a), and so the Main Limit Theorem
implies that the limit of the right side of (4.2.2) as x→ a exists and is equal to
f ′(a)g(a) + f(a)g′(a). Thus, the limit of the left side of this equality as x → a
exists as well. Hence, (fg)′(a) exists and is equal to f ′(a)g(a) + f(a)g′(a).

To prove part (d), we first prove that 1/g is differentiable at a and

(

1

g

)′
(a) = − g′(a)

g2(a)
.

In fact

1/g(x)− 1/g(a)

x− a
=

g(a) − g(x)

g(a)g(x)(x− a)
=
g(a) − g(x)

x− a

1

g(a)g(x)
.

If we take the limit of both sides and use the Main Limit Theorem, the conclusion

is that (1/g)′(a) exists and is equal to − g′(a)

g2(a)
, as claimed.

Now part (d) of the theorem follows from the computation

(

f

g

)′
(a) =

(

f
1

g

)′
(a) = f ′(a)

1

g(a)
− f(a)

g′(a)

g2(a)

=
f ′(a)g(a)− f(a)g′(a)

g2(a)
.

The Chain Rule

Theorem 4.2.7. Suppose g is defined in an open interval I containing a and
f is defined in an open interval containing g(I). If g is differentiable at a and
f is differentiable at g(a), then f ◦ g is differentiable at a and

(f ◦ g)′(a) = f ′(g(a))g′(a).

Proof. We let b = g(a) and we define a function h by

h(y) =







f(y)− f(b)

y − b
if y 6= b

f ′(y) if y = b.

Then, since

lim
y→b

f(y) − f(b)

y − b
= f ′(b),



96 CHAPTER 4. THE DERIVATIVE

the function h is continuous at b = g(a). Furthermore,

f(g(x))− f(g(a))

x− a
= h(g(x))

g(x)− g(a)

x− a
.

Since h is continuous at b = g(a) and g is continuous at a, we conclude that
h(g(x)) is continuous at x = a. Thus, if we take the limit of both sides of the
above identity, we conclude that

(f ◦ g)′(a) = lim
x→a

f(g(x))− f(g(a))

x− a
= h(g(a)) lim

x→a

g(x) − g(a)

x− a
= f ′(g(a))g′(a).

Example 4.2.8. Find (sin
√
x)′ using the Chain Rule.

Solution: The derivative of sin is cos and the derivative of
√
x is

1

2
√
x

.

Thus, by the Chain Rule,

(sin
√
x)′ = (cos

√
x)

1

2
√
x

=
cos

√
x

2
√
x
.

Derivative of an Inverse Function

If f is continuous and strictly monotone on an interval I, then it has a continuous
inverse function g, defined on J = f(I), such that g(J) = I (Theorem 3.2.6). If
I is an open interval and a is a point of I, then J is also an open interval and
b = f(a) ∈ J (Exercise 4.2.5).

Theorem 4.2.9. If f is strictly monotone on an open interval I containing
a, f is differentiable at a, and f ′(a) 6= 0, then the inverse function g of f is
differentiable at b = f(a) and

g′(b) =
1

f ′(a)
=

1

f ′(g(b))
.

Proof. For y ∈ J , we set x = g(y) ∈ I. Then f(x) = y. We also have b = f(a)
and a = g(b). Then

g(y) − g(b)

y − b
=

x− a

f(x)− f(a)
.

If we denote by h the function of x on the right, then, since f is strictly monotone

on I, h is defined everywhere on I except at x = a. Since lim
x→a

h(x) =
1

f ′(a)
,

the function h will be defined and continuous at a if we give it the value
1

f ′(a)
at x = a. Then

g(y) − g(b)

y − b
= h(g(y)).
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If we pass to the limit as y → b, then, by Theorem 4.1.12, the expression on

the right has limit h(g(b)) =
1

f ′(g(b))
, since g is continuous at b. This implies

the expression on the left has the same limit, which means that g′(b) exists and

equals
1

f ′(g(b))
.

Example 4.2.10. Find the derivative of sin−1(x).
Solution: The function sinx, when restricted to the domain [−π/2, π/2]

is strictly increasing. Its inverse function sin−1(x) is also increasing and has
domain [−1, 1] – the image of [−π/2, π/2] under sin. Thus, sin−1 has a non-
negative derivative on (−1, 1) and by Theorem 4.2.9, it is given by

(sin−1 x)′ =
1

cos(sin−1 x)
=

1
√

1 − sin2(sin−1 x)
=

1√
1 − x2

,

since sin(sin−1 x) = x.

Exercise Set 4.2

1. Using just the definition of the derivative, show that the derivative of 1/x
is −1/x2.

2. Using just the definition of the derivative, find (x2 + 3x)′.

3. Show how to derive the expression for the derivative of tanx if you know
the derivatives of sinx and cosx.

4. Using theorems from this section, find the derivative of tan

(

x

x2 + 1

)

.

5. We know that the image of a closed interval under a continuous function
is a closed interval or a point (Theorem 3.2.4). Show that the image of an
open interval under a continuous, strictly monotone function is an open
interval.

6. If f ◦ g ◦ h(x) = f(g(h(x))) is the composition of three functions, find an
expression for its derivative. You may use the Chain Rule.

7. Using Theorem 4.2.9, derive the expression for the derivative of
√
x.

8. Using Theorem 4.2.9, derive the expression for the derivative of tan−1 x.

9. Prove that if f is defined on an open interval I and has a positive derivative
at a point a ∈ I, then there is an open interval J , containing a and
contained in I, such that f(x) < f(a) < f(y) whenever x, y ∈ J and
x < a < y. Hint: see Exercise 4.1.11.
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10. If f is a monotone function on an interval and g is its inverse function,
then

f ◦ g(y) = y

for every y in the domain J of g. Use the Chain Rule on this identity
to derive the expression for the derivative of the inverse function g. This
argument is not a substitute for the proof in Theorem 4.2.9. Why?

11. Is the function defined by

f(x) =

{

x sin 1/x if x 6= 0

0 if x = 0

differentiable at 0? How about the function

f(x) =

{

x2 sin 1/x if x 6= 0

0 if x = 0
?

12. Is the function defined by

f(x) =

{

x2 if x > 0

0 if x ≤ 0

differentiable at 0?

4.3 The Mean Value Theorem

Critical Points

The proof of the Mean Value Theorem rests on the fact that a continuous
function on a closed bounded interval [a, b] takes on its maximum and minimum
values only at critical points. A critical point for f on [a, b] is a point c ∈ [a, b]
which satisfies one of the following:

1. c is an endpoint (a or b);

2. c is a stationary point, meaning c ∈ (a, b) and f ′(c) = 0; or

3. c is a singular point, meaning c ∈ (a, b) and f ′(c) does not exist.

Theorem 4.3.1. If f is a continuous function on a closed bounded interval
[a, b] and c ∈ [a, b] is a point at which f assumes a maximum or a minumum
value on [a, b], then c is a critical point for f on [a, b].

Proof. Assume f has a maximum at c. The proof in the case where it has a
minimum is the same, except that the inequalities reverse.

We will prove that if c is not an endpoint or a singular point, then it must
be a stationary point. This implies that it has to be one of the three.
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If c is not an endpoint and not a singular point, then a < c < b and f has a
derivative at c. Since f(x) ≤ f(c) for all x ∈ [a, b], we have

f(x)− f(c)

x− c

{

≤ 0 for x > c,

≥ 0 for x < c.

It follows from Exercise 4.1.12 that

lim
x→c+

f(x)− f(c)

x− c
≤ 0 and lim

x→c−

f(x)− f(c)

x− c
≥ 0.

Since these two one-sided limits must be equal if the limit itself exists, we
conclude that the limit must be 0. That is, f ′(c) = 0. Hence c is a stationary
point.

The Mean Value Theorem

The Mean Value Theorem is one of the most heavily used tools of calculus. It
says that if f is continuous on [a, b] and differentiable on (a, b), then for at least
one point between a and b the graph of f has tangent line parallel to the line
joining (a, f(a)) to (b, f(b); this may happen at several points (see Figure 4.1).
More precisely,

Theorem 4.3.2. If a function f is continuous on the closed interval [a, b] and
differentiable on the open interval (a, b), then there is at least one point c ∈ (a, b)
such that

f ′(c) =
f(b)− f(a)

b− a
. (4.3.1)

Proof. The function whose graph is the line joining (a, f(a)) to (b, f(b)) is

g(x) = f(a) +
f(b) − f(a)

b− a
(x− a).

If we subtract this from f the result is the function s, where

s(x) = f(x)− f(a) − f(b)− f(a)

b− a
(x− a).

The function s is also continuous on [a, b] and differentiable on (a, b). By The-
orem 3.2.1, s assumes both a maximum value and a minimum value on [a, b].
However,

s(a) = s(b) = 0,

and so s is either identically zero or it assumes a non-zero maximum or a non-
zero minimum on (a, b). In each of these cases, s has a critical point in (a, b).
Let c be such a critical point. Since s is differentiable on (a, b), c must be a
point at which s′ is 0. Thus,

s′(c) = f ′(c)− f(b) − f(a)

b − a
= 0,

which implies that c satisfies (4.3.1).
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Figure 4.1: Three choices for the c in the Mean Value Theorem.

The Mean Value Theorem has a wide variety of applications. Many of the
frequently used facts that we take for granted in calculus are direct consequences
of this theorem. It is also used to prove many new facts that go beyond standard
calculus material.

Functions with Vanishing Derivative

Theorem 4.3.3. If f is a differentiable function on an open interval (a, b) and
f ′ is identically 0 on (a, b), then f is a constant.

Proof. let x, y be any two points of (a, b) with x < y. Then the Mean Value
Theorem implies that there is a number c between x and y such that

f ′(c) =
f(y) − f(x)

y − x
.

Since f ′(c) = 0, this implies that f(x)− f(y) = 0, or f(x) = f(y). Thus, f has
the same value at any two points of (a, b) and this means that it is constant.

Corollary 4.3.4. If f and g are differentiable functions on (a, b) and f ′(x) =
g′(x) for all x ∈ (a, b), then there is a constant c such that f(x) = g(x) + c on
(a, b).

Proof. We apply the previous theorem to f − g.

Another way to say this corollary is: If a function h has an antiderivative on
(a, b), then any two of its antiderivatives differ by a constant. We use this fact
all the time in integration theory.

Monotone Functions

Theorem 4.3.5. If f is a function which is continuous on a closed interval
[a, b] and differentiable on the open interval (a, b), then f is strictly increasing
on [a, b] if f ′(x) > 0 for all x ∈ (a, b), while f is strictly decreasing on [a, b] if
f ′(x) < 0 for all x ∈ (a, b).
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Proof. If x and y are any two points of [a, b] with x < y, then the Mean Value
Theorem tells us there is a c ∈ (x, y) ⊂ (a, b) at which

f ′(c) =
f(y) − f(x)

y − x
.

Since the denominator is positive, this means that f ′(c) and f(y) − f(x) have
the same sign. This implies that f is strictly increasing (resp. decreasing) on
[a, b] if f ′(c) is positive (resp. negative) for all c ∈ (a, b) .

This is the basis for the familiar graphing technique which uses the sign of
the derivative of f to determine intervals on which f is increasing or decreasing.

The converse of Theorem 4.3.5 is not true, since a function which is strictly
increasing on an interval (a, b) can have a derivative that is 0 at some points
of (a, b) (for example, f(x) = x3 is strictly increasing on (−∞,+∞), but its
derivative is 0 at 0). However, the following related result is an “if and only if”
Theorem. Its proof is left to the exercises.

Theorem 4.3.6. Let f be a continuous function on [a, b] which is differentiable
on (a, b). Then f is non-decreasing on [a, b] if and only if f ′(x) ≥ 0 for all
x ∈ (a, b), while if f is non-increasing on [a, b] if and only if f ′(x) ≤ 0 for all
x ∈ (a, b).

Example 4.3.7. Find the intervals on which the function f(x) = x3 − 3x + 5
is increasing, decreasing.

Solution: The derivative of f is f ′(x) = 3x2 − 3 = 3(x − 1)(x + 1). This
function is positive for x > 1 and x < −1 and is negative for −1 < x < 1. Thus,
by Theorem 4.3.5, f is increasing on (−∞,−1] and [1,+∞) and it is decreasing
on [−1, 1].

Example 4.3.8. Prove that sinx < x for all x > 0.
Solution: Let f(x) = x − sin x. Then f(0) = 0 and f ′(x) = 1 − cosx ≥ 0

for all x. In fact, f ′(x) > 0 except at multiples of 2π. By Theorem 4.3.5, f is
increasing on [0, 2π]. Since it is 0 at x = 0, it must be positive on (0, 2π]. Thus,
sinx < x for x ∈ (0, 2π]. It is obvious that sinx < x for x > 2π (since sinx ≤ 1
for all x).

Uniform Continuity

We know that a continuous function on a closed, bounded interval I is uniformly
continuous. If the interval I is not closed or not bounded, then continuous
functions on I need not be uniformly continuous. However, we have the following
application of the Mean Value Theorem:

Theorem 4.3.9. If f is a differentiable function on a (possibly infinite) open
interval (a, b), and if f ′ is bounded on (a, b), then f is uniformly continuous on
(a, b).
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Proof. Let M be an upper bound for |f ′| on (a, b). Then |f ′(x)| ≤ M for all
x ∈ (a, b). By the Mean Value Theorem, if x, y ∈ (a, b), then there is a c between
x and y such that

f(x)− f(y)

x− y
= f ′(c).

If we take the absolute value of both sides and multiply by |x − y| and , this
yields

|f(x)− f(y)| = |f ′(c)||x− y| ≤M |x− y|.
Thus, given ǫ > 0, if we choose δ = ǫ/M , then

|f(x)− f(y)| ≤ ǫ whenever |x− y| < δ.

This proves that f is uniformly continuous on (a, b).

Exercise Set 4.3

1. If f is a continuous function on [−1, 1] which is differentiable on (−1, 1)
and satisfies f(−1) = 0, f(0) = 0, and f(1) = 1, then show that f ′ takes
on the values 0, 1/2, and 1 on [−1, 1].

2. Prove that | sin x− sin y| ≤ |x− y| for all x, y ∈ R.

3. If r > 0 prove that ln y − lnx ≤ y − x

r
if r ≤ x ≤ y.

4. Suppose f is a continuous function on [0,∞) which is differentiable on
(0,∞). If f(0) = 0 and |f ′(x)| ≤ M for all x ∈ (0,∞), then prove that
|f(x)| ≤Mx on [0,∞).

5. Prove that if f is a differentiable function on (0,∞) and f and f ′ both
have finite limits at ∞, then limx→∞ f ′(x) = 0. Hint: apply the Mean
Value Theorem to f for large values of a and b.

6. If f(x) = 2x3 + 3x2 − 12x+ 5, find the intervals on which f is increasing
and those on which it is decreasing.

7. Prove that lnx ≤ x − 1 for all x > 0. Hint: analyze where x− 1 − lnx is
increasing and where it is decreasing.

8. Find where e−x xe is increasing and where it is decreasing. Which is bigger
eπ or πe?

9. Prove Theorem 4.3.6.

10. Suppose f is a differentiable function on an interval (a, b) and that f ′

takes on both positive and negative values on (a, b). Prove that f ′ must
take on the value 0 as well. Hint: show that if f ′(x) > 0 and f ′(y) < 0 for
points x, y with a < x < y < b, then the maximum of f on [x, y] occurs at
some point strictly between x and y; the same argument will show that
if f ′(x) < 0 and f ′(y) > 0, then the minimum of f on [x, y] occurs at a
point strictly between x and y.
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11. Use the result of the previous exercise to show that, if f is differentiable
on (a, b) and f ′ takes on two values c and d on (a, b), then it take on
every value between c and d. This is the Intermediate Value Theorem for
Derivatives. Note that we do not assume f ′ is continuous on [a, b].

12. Let f be differentiable on R. Prove that, if there is an r < 1 such that
|f ′(x)| ≤ r for all x ∈ R, then |f(x) − f(y) ≤ r|x − y| for all x, y ∈ R. A
function with this property is called a contraction mapping.

13. Let f satisfy the conditions of the previous exercise. Show there is a fixed
point for f – that is, an x ∈ R such that f(x) = x. Hint: construct a
sequence {xn} inductively by setting x1 = 0 and xn+1 = f(xn). Show
that this sequence is Cauchy and that it converges to a fixed point for f .

14. Prove that if f is increasing on [a, b] and on [b, c], then f is also increasing
on [a, c].

15. The following is a partial converse to Theorem 4.3.9: Prove that if f is
differentiable on a, possibly infinite, interval (a, b) and if lim

x→b
f ′(x) = ∞,

then f is not uniformly continuous on (a, b). The same conclusion holds
if lim
x→a

f ′(x) = ∞.

16. Show that lnx is uniformly continuous on [1,∞), but not on (0, 1].

4.4 L’Hôpital’s Rule

In this section we prove the familiar L’Hôpital’s Rule – a tool from calculus,
useful in calculating limits of indeterminate forms. It has two forms, depending
on whether the indeterminate form is of type 0/0 or of type ∞/∞. The proof
uses the following generalization of the Mean Value Theorem.

Cauchy’s Mean Value Theorem

Theorem 4.4.1. Let f and g be functions which are continuous on a closed,
bounded interval [a, b] and differentiable on (a, b). Assume that g′(x) 6= 0 for all
x ∈ (a, b). Then there exists c ∈ (a, b) such that

f(b)− f(a)

g(b)− g(a)
=
f ′(c)

g′(c)
. (4.4.1)

Proof. We begin by observing that g is strictly monotone on [a, b]. This follows
from the fact that g′ is never 0 on (a, b). If it is never 0, then it cannot take on
both positive and negative values on (a, b) (Exercise 4.3.10). Thus, it is always
positive or always negative, and this implies that it is strictly monotone on [a, b].
In particular, g(b) 6= g(a).

The proof now follows the same strategy as the proof of the ordinary Mean
Value Theorem (Theorem 4.3.2). The only difference is that x − a and b − a
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are replaced by g(x) − g(a) and g(b) − g(a) in the definition of the function s.
Thus, we set

s(x) = f(x)− f(a)− f(b) − f(a)

g(b) − g(a)
(g(x)− g(a)).

Note that s is continuous on [a, b] and differentiable on (a, b). By Theorem 3.2.1,
s assumes both a maximum value and a minimum value on [a, b]. However,

s(a) = s(b) = 0,

and so s is either identically zero or it assumes a non-zero maximum or a non-
zero minimum on (a, b). In any of these cases, s has a critical point in (a, b).
Let c be such a critical point. Since s is differentiable on (a, b), c must be a
point at which s′ is 0. Thus,

s′(c) = f ′(c) − f(b)− f(a)

g(b)− g(a)
g′(c) = 0,

which implies that c satisfies (4.4.1).

Example 4.4.2. Prove that | cosx− 1| ≤ x2

2
for all x.

Solution: We use Cauchy’s Mean Value Theorem with f(x) = cosx and
g(x) = x2. It implies that there is c between 0 and x such that

cosx− 1

x2
=

cosx− cos 0

x2 − 02
=

− sin c

2c
.

Since | sin c| ≤ |c| by Exercise 4.3.2, this implies that

∣

∣

∣

∣

cosx− 1

x2

∣

∣

∣

∣

≤ 1

2
,

which implies that | cosx− 1| ≤ x2

2
.

L’Hôpital’s Rule

The problem of finding

lim
x→1

lnx

x2 − 1

cannot be attacked by using the part of the Main Limit Theorem which deals
with limits of quotients, because the limit of the denominator is 0. In fact, both
numerator and denominator have limit 0. A limit problem of this type is called
a 0/0 form.

Similarly, the problem of finding

lim
x→∞

ex

x2
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cannot be attacked using the limit of quotients part of the Main Limit Theorem.
This time the problem is that both numerator and denominator have limit +∞.
A limit problem of this type is called an ∞/∞ form.

Problems of this type can often be solved by using the following theorem.

Theorem 4.4.3. (L’Hôpital’s Rule) Let f and g be differentiable functions
on a (possibly infinite) interval (a, b) and let u stand for a+ or b−. Suppose,
g(x) and g′(x) are non-zero on all of (a, b) and

1. limx→u f(x) = 0 = limx→u g(x), or

2. limx→u f(x) = ∞ = limx→u g(x).

Then

lim
x→u

f(x)

g(x)
= lim

x→u

f ′(x)

g′(x)
, (4.4.2)

provided the limit on the right exists.

Proof. We will present the proof in the case where u = a+ and the limit on the
right in (4.4.2) is a finite number L. The case where this limit is infinite can
be reduced to the finite case (Exercise 4.4.16). The proof in the case u = b− is
entirely analogous.

If x, y ∈ (a, b), then Cauchy’s Mean Value Theorem tells us that there is a c
between x and y such that

f(x)− f(y) = (g(x)− g(y))
f ′(c)

g′(c)
,

or
f(x)

g(x)
=
f(y)

g(x)
+

(

1 − g(y)

g(x)

)

f ′(c)

g′(c)

On subtracting L and performing some algebra, this becomes

f(x)

g(x)
− L =

f(y)

g(x)
+

(

1 − g(y)

g(x)

)(

f ′(c)

g′(c)
− L

)

− L
g(y)

g(x)
.

On applying the triangle inequality, this yields

∣

∣

∣

∣

f(x)

g(x)
− L

∣

∣

∣

∣

≤
∣

∣

∣

∣

f(y)

g(x)

∣

∣

∣

∣

+

(

1 +

∣

∣

∣

∣

g(y)

g(x)

∣

∣

∣

∣

)
∣

∣

∣

∣

f ′(c)

g′(c)
− L

∣

∣

∣

∣

+

∣

∣

∣

∣

L
g(y)

g(x)

∣

∣

∣

∣

. (4.4.3)

Given ǫ > 0, we will show how to make each of the terms on the right in this
inequality be less than ǫ/3 by choosing x sufficiently close to a.

At this point the proof splits into two cases, depending on whether hypothesis
(1) or (2) holds. If (1) holds, then since limx→a+ f ′(x)/g′(x) = L, Definition
4.1.6 tells us there is an m ∈ (a, b) so that

∣

∣

∣

∣

f ′(c)

g′(c)
− L

∣

∣

∣

∣

< ǫ/6 (4.4.4)
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whenever a < c < m. This condition will be satisfied if x is any number with
a < x < m and y any number with a < y < x (since c is between x and y).
Now, given any x, we can choose a y (depending on x) so that a < y < x and

∣

∣

∣

∣

f(y)

g(x)

∣

∣

∣

∣

<
ǫ

3
, and (4.4.5)

∣

∣

∣

∣

g(y)

g(x)

∣

∣

∣

∣

< min

(

1,
ǫ

3|L|

)

. (4.4.6)

This is possible because limy→a+ f(y) = 0 = limy→a+ g(y) holds by hypothesis
(1). Taken together, inequalities (4.4.3) through (4.4.6) imply that

∣

∣

∣

∣

f(x)

g(x)
− L

∣

∣

∣

∣

< ǫ whenever a < x < m.

This implies that lim
x→a+

f(x)

g(x)
= L and completes the proof in the case where (1)

holds.
In the case where hypothesis (2) holds, the proof is almost the same. We

still use (4.4.3), but the order in which x, y, and m are chosen changes and x
and y reverse positions in the inverval (a, b). We first choose y such that (4.4.4)
holds whenever a < c < y. This is possible because limc→a+ f ′(c)/g′(c) = L.

We then choose m ∈ (a, y) in such a way that (4.4.5) and (4.4.6) hold
whenever a < x < m. This is possible because limx→a+ g(x) = ∞ holds by
hypothesis (2). Because m < y, such a choice of x will force x < y and, hence,
c < y (again, since c is between x and y).

As before, inequalities (4.4.3) through (4.4.6) imply that

∣

∣

∣

∣

f(x)

g(x)
− L

∣

∣

∣

∣

< ǫ whenever a < x < m.

This implies that lim
x→a+

f(x)

g(x)
= L and completes the proof in the case where (2)

holds.

Example 4.4.4. Find lim
x→1

lnx

x2 − 1
.

Solution: This is a 0/0 form since limx→1 lnx = 0 = limx→1(x
2 − 1). If

we differentiate numerator and denominator, and take the limit of the resulting
fraction, we get

lim
x→1

1/x

2x
=

1

2
.

We conclude that

lim
x→1

lnx

x2 − 1
=

1

2

as well.
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Example 4.4.5. Find lim
x→∞

x2

ex
.

Solution: This is an ∞/∞ form since limx→∞ ex = ∞ = limx→∞ x2. If
we differentiate numerator and denominator, and take the limit of the resulting
fraction, we get

lim
x→∞

2x

ex
.

This is still an ∞/∞ form. If we again differentiate numerator and denominator
and pass to the limit, we get

lim
x→∞

2

ex
= 0.

We conclude from L’Hôpital’s Rule that

lim
x→∞

2x

ex
= 0,

and, hence, that

lim
x→∞

x2

ex
= 0.

Example 4.4.6. Find limn→∞(1 + r/n)n.
Solution: This is the limit of a sequence. However, we may compute this

limit by replacing the integer valued variable n with the real valued variable x.
If we find that limx→∞(1+r/x)x has a limit, then limn→∞(1+r/n)n must have
the same limit.

We set f(x) = (1 + r/x)x, g(x) = ln(f(x)) = x ln(1 + r/x), and y = 1/x.
Then

lim
x→∞

g(x) = lim
y→0

g(1/y) = lim
y→0

ln(1 + ry)

y
.

This is a 0/0 form and L’Hôpital’s Rule implies that this limit is

lim
y→0

r

1 + ry
= r.

Then
lim
x→∞

f(x) = lim
x→∞

eg(x) = er .

by Theorem 4.1.12.

Exercise Set 4.4

1. Prove that if r > 0 and x > 1, then lnx ≤ xr − 1

r
. Hint: use Cauchy’s

form of the Mean Value Theorem with f(x) = lnx and g(x) = xr.

2. Prove that | sin x− x| ≤ 1

6
|x|3.

3. Prove that 1 + x2 ≤ ex
2

for all x ∈ R.
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4. If f is a function which is differentiable on an open interval I containing
0 and if f(0) = 0, then prove that there is a c between 0 and x at which

f(x) =
f ′(c)

cn−1

xn

n
.

Hint: apply the Cauchy Mean Value Theorem to f(x) and g(x) = xn.

5. Use the previous exercise and induction to prove that if f is n-times dif-
ferentiable on an open interval I containing 0 and if the kth derivative,
f (k) of f is 0 at 0 for k = 0, 1, · · · , n− 1, then there is a c between 0 and
x at which

f(x) = f (n)(c)
xn

n!
.

Find each of the following limits if they exist:

6. lim
x→∞

ln x

xr
where r > 0.

7. lim
x→0

x ln x.

8. lim
x→0

sinx− x

x3
.

9. lim
x→0

1 + cosx

x2
.

10. lim
x→0

xx.

11. lim
x→∞

x1/x.

12. lim
x→∞

(
√
x+ 1 −√

x).

13. lim
n→∞

ln n√
n

14. Let f be a differentiable function on (0,∞). Prove that if lim
x→∞

f(x) = ∞
and lim

x→∞
f ′(x) = L, then

lim
x→∞

ef(x)

∫ x

0
ef(t) dt

= L.

15. let f be a differentiable function on an interval of the form (a,+∞). Prove
that if there is a number r 6= 0 such that limx→∞(rf ′(x) + f(x)) = L
is finite, then limx→∞ f ′(x) = 0 and limx→∞ f(x) = L. Hint: apply

L’Hôpital’s Rule to
ex/r f(x)

ex/r
.

16. Finish the proof of Theorem 4.4.3 by showing that if the theorem is true
whenever limx→u f

′(x)/g′(x) is finite, then it is also true whenever this
limit is infinite.



Chapter 5

The Integral

In this chapter we define the Riemann integral and develop its most important
properties. We also prove the Fundamental Theorem of Calculus and discuss
improper integrals.

5.1 Definition of the Integral

If [a, b] is a closed, bounded interval, then a partition P of [a, b] is a finite,
ordered set of points

P = {a = x0 < x1 < · · · < xn = b}

of [a, b], beginning with a and ending with b. Such a set of points has the effect
of dividing [a, b] into a collection of n subintervals

[x0, x1], [x1, x2], · · · , [xn−1, xn].

Given a partition P , as above, of [a, b] and a bounded function f , defined on
[a, b], a Riemann Sum for f and P on [a, b] is a sum of the form

n
∑

k=1

f(x̄k)(xk − xk−1) (5.1.1)

where, for each k, x̄k is some point in the interval [xk−1, xk]. For each k, the
term f(x̄k)(xk − xk−1) represents the area (or minus the area, if f(x̄k) < 0) of
a rectangle with width xk − xk−1 and with height |f(x̄k)| (see Figure 5.1).

In calculus, the Riemann Integral of f is defined as a limit of Riemann sums,
although how this limit is defined and how one shows that it actually exists for a
reasonable class of functions are things that are usually left for a more advanced
course. This is that course.

Here we will give a precise definition of the integral and prove that it exists
for a large class of functions on [a, b]. In particular, we will prove that the
integral of every continuous function on [a, b] exists.

109
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Figure 5.1: A Riemann Sum.

Upper and Lower Sums

Given a partition P = {a = x0 < x1 < · · · < xn = b} of [a, b] and a bounded
function f on [a, b], we can write down two sums which have every Riemann
sum for this partition and this function trapped in between them. These are
the upper and lower sums for P and f :

Definition 5.1.1. Given a partition P and function f , as above, for k =
1, · · · , n, we set

Mk = sup{f(x) : x ∈ [xk−1, xk]} and mk = inf{f(x) : x ∈ [xk−1, xk]}.

Then the upper sum for f and P is

U(f, P ) =
n
∑

k=1

Mk(xk − xk−1), (5.1.2)

while the lower sum for f and P is

L(f, P ) =
n
∑

k=1

mk(xk − xk−1). (5.1.3)

Now, for any choice of x̄k ∈ [xk−1, xk], we have

mk ≤ f(x̄k) ≤Mk.

This inequality remains true if we multiply through by the positive number
(xk − xk−1). On summing the resulting inequalities, we conclude that

L(f, P ) ≤
n
∑

k=1

f(x̄k)(xk − xk−1) ≤ U(f, P ). (5.1.4)

Thus, the upper sum U(f, P ) is an upper bound for all Riemann sums for f and
P and the lower sum is a lower bound for all these sums. In fact, it is not hard
to prove that U(f, P ) is the least upper bound for all Riemann sums for f and
P , while L(f, P ) is the greatest lower bound of this set (Exercise 5.1.6).
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Example 5.1.2. Find the upper sum and lower sum for the function f(x) = x2

and the partition P = {0 < 1/4 < 1/2 < 3/4 < 1} of the interval [0, 1].
Solution: The function f is increasing on [0, 1] and so its sup on each

subinterval is achieved at the right endpoint of the interval and its inf is achieved
at the left endpoint. Thus,

L(f, P )

= 0(1/4− 0) + 1/16(1/2− 1/4) + 1/4(3/4− 1/2) + 9/16(1− 3/4) =
7

32

while

U(f, P )

= 1/16(1/4− 0) + 1/4(1/2− 1/4) + 9/16(3/4− 1/2) + 1(1− 3/4) =
15

32
.

Refinement of Partitions

It is useful to think of a partition of [a, b] as simply a finite subset of [a, b]
that contains a and b. The elements of this finite set are then given labels
x0, x1, · · · , xn which are consistent with the order in which these elements occur
in [a, b]. Thus, a = x0 < x1 < · · · < xn = b. To think of partitions as subsets
of [a, b] allows us to use set theoretic relations and operations such as“⊂” and
“∪” on them.

Definition 5.1.3. Let P and Q be partitions of a closed bounded interval [a, b].
Then we say that Q is a refinement of P if P ⊂ Q.

For example, the partition 0 < 1/4 < 1/3 < 1/2 < 2/3 < 3/4 < 1 is a
refinement of the partition 0 < 1/4 < 1/2 < 3/4 < 1.

Theorem 5.1.4. Let f be a bounded function on a closed bounded interval [a, b].
If Q and P are partitions of [a, b] and Q is a refinement of P , then

L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P ). (5.1.5)

Proof. We will prove this in the case where Q is obtained from P by adding
just one additional point to P . The general case then follows from this using
an induction argument on the number of additional points needed to get from
P to Q (Exercise 5.1.7).

Suppose P = {a = x0 < x1 < · · · < xn = b} and Q is obtained by adding
one point y to P . Suppose this new point lies between xj−1 and xj . Then, in
passing from P to Q, the subinterval [xj−1, xj ] is cut into the two subintervals
[xj−1, y] and [y, xj ], while all other subintervals [xk−1, xk] (k 6= j) remain the
same. Thus, in the formulas (5.1.2) and (5.1.1) for the upper and lower sums,
the terms for which k 6= j are unchanged when we pass from P to Q. To prove
the theorem, we just need to analyze what happens to the jth terms in (5.1.2)
and (5.1.1) when P is replaced by Q.
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With mj and Mj as in Definition 5.1.1 for the partition P , we set

m′
j = inf{f(x) : x ∈ [xj−1, y]}, M ′

j = sup{f(x) : x ∈ [xj−1, y]},
m′′
j = inf{f(x) : x ∈ [y, xj ]}, M ′′

j = sup{f(x) : x ∈ [y, xj ]}.

Then mj = min{m′
j ,m

′′
j } and Mj = max{M ′

j,M
′′
j }, and so

mj(xj − xj−1) = mj(y − xj−1) +mj(xj − y)

≤ m′
j(y − xj−1) +m′′

j (xj − y),

while

M ′
j(y − xj−1) +M ′′

j (xj − y)

≤ Mj(y − xj−1) +Mj(xj − y) = Mj(xj − xj−1).

Now (5.1.5) follows from this and the fact that the other terms in the sums
defining U(f, P ) and L(f, P ) are unchanged when P is replaced by Q.

Note that any two partitions P and Q of an interval [a, b] have a common
refinement. In fact, the set theoretic union P ∪Q is a common refinement of P
and Q. This, together with the preceding result leads to the following theorem,
which says that every lower sum is less than or equal to every upper sum.

Theorem 5.1.5. If P and Q are any two partitions of a closed bounded interval
[a, b] and f is a bounded function on [a, b], then

L(f, P ) ≤ U(f,Q).

Proof. We simply apply the previous theorem to P and its refinement P ∪ Q
and to Q and its refinement P ∪Q. This yields

L(f, P ) ≤ L(f, P ∪Q) ≤ U(f, P ∪Q) ≤ U(f,Q).

The Integral

Given a closed bounded interval [a, b] and a bounded function f on [a, b], we set

∫ b

a

f dx = inf{U(f,Q) : Q a partition of [a, b]},
∫ b

a

f dx = sup{L(f,Q) : Q a partition of [a, b]}.

We will call these the upper integral and lower integral, respectively, of f on
[a, b]. Theorem 5.1.5 says that every lower sum for f is less than or equal to
every upper sum for f . Thus, each upper sum U(f, P ) is an upper bound for
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the set of all lower sums. Hence, it is at least as large as the least upper bound
of this set; that is

∫ b

a

f dx ≤ U(f, P ) for all partitions P of [a, b].

This, in turn, means that
∫ b

a
f dx is a lower bound for the set of all upper sums

and, hence, is less than or equal to the greatest lower bound of this set. That
is,

∫ b

a

f dx ≤
∫ b

a

f dx.

Definition 5.1.6. Suppose f is a bounded function on a closed bounded interval
[a, b]. If the upper and lower integrals of f on [a, b] are equal, we will say that f

is integrable on [a, b]. In this case the common value of
∫ b

a
f dx and

∫ b

a
f dx will

be denoted by
∫ b

a

f(x) dx.

and called the Riemann Integral of f on [a, b].

Theorem 5.1.7. The Riemann Integral of f on [a, b] exists if and only if, for
each ǫ > 0, there is a partition P of [a, b] such that

U(f, P )− L(f, P ) < ǫ. (5.1.6)

Proof. Suppose the integral exists. Then

sup
P
L(f, P ) =

∫ b

a

f dx =

∫ b

a

f dx = inf
P
U(f, P ),

where P ranges over all partitions of [a, b]. Thus, given ǫ > 0, the number
∫ b

a
f dx − ǫ/2 is not an upper bound for the set of all L(f, P ) and the number

∫ b

a
f dx+ ǫ/2 is not a lower bound for the set of all U(f, P ). This means there

are partitions Q1 and Q2 of [a, b] such that

∫ b

a

f dx− ǫ/2 < L(f,Q1) ≤ U(f,Q2) <

∫ b

a

f dx+ ǫ/2.

If P is a common refinement of Q1 and Q2, then Theorem 5.1.4 implies that

∫ b

a

f dx− ǫ/2 < L(f,Q1) ≤ L(f, P ) ≤ U(f, P ) ≤ U(f,Q2) <

∫ b

a

f dx+ ǫ/2.

Since
∫ b

a
f dx =

∫ b

a
f dx, this implies that (5.1.6) holds.
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Conversely, suppose that for each ǫ > 0 there is a partition P such that
(5.1.6) holds. Then

L(f, P ) ≤
∫ b

a

f dx ≤
∫ b

a

f dx ≤ U(f, P )

implies that
∫ b

a

f dx−
∫ b

a

f dx ≤ U(f, P )− L(f, P ) < ǫ.

This means that 0 ≤
∫ b

af dx)−
∫ b

a
f dx < ǫ for every positive ǫ, which is possible

only if
∫ b

af dx)−
∫ b

a
f dx = 0. Thus,

∫ b

af dx) =
∫ b

a
f dx.

The above theorem leads to a sequential characterization of the Riemann
Integral which will be highly useful in proving theorems about the integral.

Theorem 5.1.8. The Riemann Integral exists if and only if there is a sequence
{Pn} of partitions of [a, b] such that

lim(U(f, Pn) − L(f, Pn)) = 0. (5.1.7)

In this case,
∫ b

a

f(x) dx = limSn(f)

where, for each n, Sn(f) may be chosen to be U(f, Pn), L(f, Pn) or any Riemann
sum (5.1.1) for f and the partition Pn.

Proof. If, for every ǫ > 0, we can find a partition P of [a, b] such that (5.1.6)
holds, then, in particular, for each n ∈ N we can find a partition Pn such that

U(f, Pn) − L(f, Pn) < 1/n.

Then lim(U(f, Pn) − L(f, Pn)) = 0.
Conversely, if there is a sequence of partitions {Pn} with

lim(U(f, Pn) − L(f, Pn)) = 0,

then, given ǫ > 0, there is an N such that

U(f, Pn) − L(f, Pn) < ǫ whenever n > N.

By the previous theorem, this implies that the Riemann integral exists.
Now given a sequence {Pn} satisfying (5.1.7), we know that

L(f, Pn) ≤
∫ b

a

f(x) dx ≤ U(f, Pn)
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for each n. It follows that the sequences {L(f, Pn)} and {U(f, Pn)} both con-

verge to

∫ b

a

f(x) dx. However, by (5.1.4), we also have

L(f, Pn) ≤ Sn(f) ≤ U(f, Pn)

if Sn(f) is any Riemann sum for f and the partition Pn or is U(f, Pn) or
L(f, Pn). By the squeeze principle (Theorem 2.3.3) , we conclude

∫ b

a

f(x) dx = limSn(f).

Example 5.1.9. Prove that the Riemann Integral of f(x) = x2 on [0, 1] exists
and is equal to 1/3.

Solution: The function is increasing and so its sup on any interval is
achieved at the right endpoint and its inf is achieved at the left endpoint. For
each n ∈ N we define a partition Pn of [0, 1] by

Pn = {0 < 1/n < 2/n < · · · < n/n = 1}.

This divides [0, 1] into n subintervals, each of which has length 1/n. The corre-
sponding upper sum is then

U(f, Pn) =
n
∑

k=1

(

k

n

)2
1

n
=

1

n3

n
∑

k=1

k2,

while the lower sum is

L(f, Pn) =

n
∑

k=1

(

k − 1

n

)2
1

n
=

1

n3

n−1
∑

k=0

k2.

The difference is

U(f, Pn) − L(f, Pn) =
n2

n3
=

1

n
.

This sequence certainly has limit 0 and so, by Theorem 5.1.8, the Riemann
Integral exists. To find what it is, we need a formula for the sum

∑n
k=1 k

2.
Such a formula exists. In fact, it can be proved by induction (Exercise 5.1.3)
that

n
∑

k=1

k2 =
n(n+ 1)(2n+ 1)

6
.

Thus,

U(f, Pn) =
n(n+ 1)(2n+ 1)

6n3
=

(1 + 1/n)(2 + 1/n)

6
.

This expression has limit 1/3 as n→ ∞ and so

∫ 1

0

x3 dx = 1/3.
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Exercise Set 5.1

1. Find the upper sum U(f, P ) and lower sum L(f, P ) if f(x) = 1/x on [1, 2]
and P is the partition of [1, 2] into four subintervals of equal length.

2. Prove that

∫ 1

0

x dx exists by computing U(f, Pn) and L(f, Pn) for the

function f(x) = x and a partition Pn of [0, 1] into n equal subintervals.
Then show that condition (5.1.7) of Theorem 5.1.8 is satisfied. Calculate
the integral by taking the limit of the upper sums. Hint: use Exercise
1.2.10.

3. Prove by induction that

n
∑

k=1

k2 =
n(n+ 1)(2n+ 1)

6
.

4. Prove that

∫ a

0

x2 dx =
a3

3
by expressing this integral as a limit of Riemann

sums and finding the limit.

5. Let f be the function on [0, 1] which is 0 at every rational number and is
1 at every irrational number. Is this function integrable on [0, 1]. Prove
that your answer is correct by using the definition of the integral.

6. Prove that the upper sum U(f, P ) for a partition of [a, b] and a bounded
function f on [a, b] is the least upper bound of the set of all Riemann sums
for f and P .

7. Finish the proof of Theorem 5.1.4 by showing that if the theorem is true
when only one element is added to P to obtain Q, then it is also true no
matter how many elements need to be added to P to obtain Q.

8. Suppose m and M are lower and upper bounds for f on [a, b]; that is
m ≤ f(x) ≤ M for all x ∈ [a, b]. Prove that

m(b− a) ≤
∫ b

a

f(x) dx ≤
∫ b

a

f(x) dx ≤ M(b− a).

What conclusion about

∫ b

a

f(x) dx do you draw from this if the integral

exists?

9. If k is a constant and [a, b] a bounded interval, prove that k is integrable
on [a, b] and

∫ b

a

k dx = k(b− a).



5.2. EXISTENCE AND PROPERTIES OF THE INTEGRAL 117

10. If f is a bounded function on [a, b] and P = {x0 < x1 < · · · < xn} a
partition of [a, b], show that

U(f, P )− L(f, P ) =
n
∑

k=1

(Mk −mk)(xk − xk−1),

where Mk is the sup and mk the inf of f on [xk−1, xk]. What does this
simplify to if P is a partition of [a, b] into n equal subintervals?

11. Suppose f is any non-decreasing function on a bounded interval [a, b]. If
Pn is the partition of [a, b] into n equal subintervals, show that

U(f, Pn) − L(f, Pn) = (f(b)− f(a))
b− a

n
.

What do you conclude about the integrability of f?

5.2 Existence and Properties of the Integral

We first show that the integral exists for a large class of functions, a class which
includes all the functions of interest to us in this course. We then show that the
integral has the properties claimed for it in calculus courses.

Existence Theorems

Theorem 5.2.1. If f is a monotone function on a closed bounded interval [a, b],
then f is integrable on [a, b].

Proof. This was essentially stated as an exercise (Exercise 5.1.11) in the previous
section. In this exercise, it is claimed that, if f is a non-decreasing function on
[a, b] and Pn is the partition of [a, b] into n equal subintervals, then

U(f, Pn) − L(f, Pn) = (f(b)− f(a))
b− a

n
. (5.2.1)

This implies that

lim(U(f, Pn) − L(f, Pn)) = 0

and, by Theorem 5.1.8, this implies that the Riemann Integral of f on [a, b]
exists.

In the case where f is non-increasing, the same proof works. The only
difference is that f(b)− f(a) is replaced by f(a) − f(b) in (5.2.1).

Theorem 5.2.2. If f is a continuous function on a closed, bounded interval
[a, b], then f is integrable on [a, b].
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Proof. Since f is continuous on the closed, bounded interval [a, b], it is uniformly
continuous on [a, b] by Theorem 3.3.4. Thus, given ǫ > 0 there is a δ > 0 such
that

|f(x) − f(y)| < ǫ

b− a
whenever |x− y| < δ.

Then, if P = {a = x0 < x1 < · · · < xn = b} is any partition of [a, b] with the
property that the interval [xk−1, xk] has length less than δ for each k, then the
maximum value Mk of f on this interval and the minimum value mk of f on
this interval differ by less than ǫ/(b− a). By Exercise 5.1.10, this implies that

U(f, P )− L(f, P ) =
n
∑

k=1

(Mk −mk)(xk − xk−1) <
ǫ

b− a

n
∑

k=1

(xk − xk−1) = ǫ,

since
n
∑

k=1

(xk−xk−1) = b− a. It follows from Theorem 5.1.7 that f is integrable

on [a, b].

Linearity of the Integral

In the remainder of this section we adopt the following notation, introduced in
Section 1.5 for the sup and inf of a function f on an interval I:

sup
I
f = sup{f(x) : x ∈ I} and inf

I
f = inf{f(x) : x ∈ I}.

The integral is a linear transformation from the space of integrable functions
on [a, b] to the real numbers. This just means that the following familiar theorem
is true.

Theorem 5.2.3. If f and g are integrable functions on a closed, bounded in-
terval [a, b] and c is a constant, then

(a) cf is integrable and

∫ b

a

cf(x) dx = c

∫ b

a

f(x) dx;

(b) f + g is integrable and

∫ b

a

(f(x) + g(x)) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

Proof. We begin by investigating the upper and lower sums for a partition
P = {a = x0 < x1 < · · · < xn = b} and the functions cf and f + g. We
let Ik = [xk−1, xk] denote the kth subinterval determined by this partition.

If c ≥ 0, then Theorem 1.5.10(a) tells us that

sup
Ik

cf = c sup
Ik

f and inf
Ik

cf = c inf
Ik

f

for k = 1, · · · , n. This implies that

U(cf, P ) = cU(f, P ) and L(cf, P ) = cL(f, P ) if c ≥ 0. (5.2.2)
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On the other hand, by Theorem 1.5.10(b),

sup
Ik

(−f) = − inf
Ik

f and inf
Ik

(−f) = − sup
Ik

f

for each k. This implies that

U(−f, P ) = −L(f, P ) and L(−f, P ) = −U(f, P ). (5.2.3)

For the sum f + g, we have

inf
Ik

f + inf
Ik

g ≤ inf
Ik

(f + g) ≤ sup
Ik

(f + g) ≤ sup
Ik

f + sup
Ik

g

for each k, by 1.5.10(c). These inequalities imply that

L(f, P ) + L(g, P ) ≤ L(f + g, P ) ≤ U(f + g, P ) ≤ U(f, P ) + U(g, P ). (5.2.4)

With these results in hand, the proof of the theorem becomes a relatively
simple matter. We use Theorem 5.1.8. Since f is integrable, there is a sequence
{Pn} of partitions of [a, b] such that

lim(U(f, Pn) − L(f, Pn)) = 0. (5.2.5)

If c ≥ 0, then (5.2.2) implies that

lim(U(cf, Pn) − L(cf, Pn) = lim c(U(f, Pn) − L(f, Pn)) = 0

which implies that cf is integrable. It also follows from (5.2.2) that

∫ b

a

cf(x) dx = limU(cf, Pn) = c limU(f, Pn) = c

∫ b

a

f(x) dx.

Similarly, using (5.2.3) yields

lim(U(−f, Pn) − L(−f, Pn)) = lim(−L(f, Pn) + U(f, Pn)) = 0,

which implies that −f is integrable. It also follows from (5.2.3) that

∫ b

a

−f(x) dx = limU(−f, Pn) = − limL(f, Pn) = −
∫ b

a

f(x) dx.

Combining these results proves part (a) of the theorem.
Since, g is also integrable, there is a sequence of partitions {Qn} such that

(5.2.5) holds with f replaced by g and Pn by Qn. In fact, we may replace {Pn}
and {Qn} by the sequence of common refinements {Pn∪Qn} and get a sequence
of partitions that works for both f and g. Since this is so, we may as well assume
that {Pn} was chosen in the first place to be a sequence of partitions such that
(5.2.5) holds and

lim(U(g, Pn) − L(g, Pn)) = 0. (5.2.6)
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also holds. Then 5.2.4 implies that

0 ≤ U(f + g, Pn) − L(f + g, Pn) ≤ U(f, Pn) − L(f, Pn) + U(g, Pn) − L(g, Pn).

Since the expression on the right has limit 0, so does U(f+g, Pn)−L(f+g, Pn).
Hence, f + g is integrable. Also, on passing to the limit as P ranges through
the sequence of partitions Pn, inequality (5.2.4) implies that

∫ b

a

(f(x) + g(x)) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

This completes the proof of part (b) of the theorem.

The Order Preserving Property

The integral is order preserving:

Theorem 5.2.4. If f and g are integrable functions on [a, b] and f(x) ≤ g(x)
for all x ∈ [a, b], then

∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx.

Proof. We first prove that if h is an integrable function which is non-negative
on [a, b], then

∫ b

a

h(x) dx ≥ 0.

In fact, this is obvious. If h is non-negative, then its inf and sup on any subin-
terval in any partition are also non-negative. This implies that the upper sums
U(h,P ) and lower sums L(h,P ) are non-negative for any partition P . Since the
integral is greater than or equal to every lower sum, it is non-negative.

To finish the proof, we apply the result of the previous paragraph to the
function h = g − f which is non-negative on [a, b] if f(x) ≤ g(x) for x ∈ [a, b].
Using linearity (Theorem 5.2.3) we conclude that

∫ b

a

g(x) dx−
∫ b

a

f(x) dx =

∫ b

a

(g(x)− f(x)) dx ≥ 0.

This proves the theorem.

This has the following useful corollary. Its proof is left to the exercises.

Corollary 5.2.5. Let f be an integrable function on the closed bounded interval
I = [a, b] and set M = supI f , and m = infI f . Then

m(b− a) ≤
∫ b

a

f(x) dx ≤ M(b− a)
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Theorem 5.2.6. If f is integrable on [a, b], then |f | is also integrable on [a, b]
and

∣

∣

∣

∣

∣

∫ b

a

f(x) dx

∣

∣

∣

∣

∣

≤
∫ b

a

|f(x)|dx

.

Proof. Let f be integrable on [a, b]. Suppose we can show that |f | is also inte-
grable on [a, b]. To derive the above inequality is then quite easy. The inequalties
−|f(x)| ≤ f(x) ≤ |f(x)|, together with Theorem 5.2.4, imply that

−
∫ b

a

|f(x)|dx ≤
∫ b

a

f(x) dx ≤
∫ b

a

|f(x)|dx

and this implies that

∣

∣

∣

∣

∣

∫ b

a

f(x) dx

∣

∣

∣

∣

∣

≤
∫ b

a

|f(x)|dx.

To complete the proof, we must show that the integrability of f on [a, b] implies
the integrability of |f |.

Let I be an arbitrary subinterval of [a, b]. Then, by the triangle inequality,

|f(x)| − |f(y)| ≤ |f(x)− f(y)|

for all x, y ∈ I. It follows from this (Exercise 5.2.8) that

sup
I

|f | − inf
I
|f | ≤ sup

I
f − inf

I
f.

If we apply this as I ranges over each subinterval in a partition P , the result
for the upper and lower sums is

U(|f |, P ) − L(|f |, P ) ≤ U(f, P )− L(f, P ).

It now follows from Theorem 5.1.7 that |f | is integrable on [a, b] if f is integrable
on [a, b].

Interval Additivity

Note that, in the following theorem, we do not assume that f is integrable.

Theorem 5.2.7. Suppose a ≤ b ≤ c and f is a bounded function defined on
[a, c]. Then the upper and lower integrals of f satisfy

∫ c

a

f(x) dx =

∫ b

a

f(x) dx+

∫ c

b

f(x) dx,

∫ c

a

f(x) dx =

∫ b

a

f(x) dx+

∫ c

b

f(x) dx.
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Proof. We will prove the result for the lower integral. The proof for the upper
integral is analogous.

Let P = {a = xo ≤ x1 ≤ · · · ≤ xn = c} be a partition of [a, c] which has the
point b as its mth partition point. Then P determines partitions

P ′ = {a = x0 < x1 < · · · < xm = b} of [a, b] and

P ′′ = {b = xm < xm+1 < · · · < xn = c} of [b, c].

In this case,
L(P ′, f) + L(P ′′, f) = L(P, f). (5.2.7)

Each pair consisting of a partition P ′ of [a, b] and a partition P ′′ of [c, d] fit
together to form a partition P of [a, c] of this type.

Now let Q be any partition of [a, c]. Then the union of Q with the singeton
set {b} forms a refinement P of Q which is of the above type. Then

L(f,Q) ≤ L(f, P ) ≤
∫ c

a

f(x) dx.

But
∫ c

a
f(x) dx is the sup of all numbers of the form L(Q, f) for Q a partition

and L(f, P ) = L(f, P ′) + L(L,P ′′). of [a, c], It follows from 1.5.7(c) that

∫ b

a

f(x) dx+

∫ c

b

f(x) dx = sup
P ′

L(P ′, f) + sup
P ′′

L(P ′′, f)

= sup{L(P ′, f) + L(P ′′, f)} =

∫ c

a

f(x) dx.

where P ′ and P ′′ range over arbitrary partitions of [a, b] and [b, c]. This proves
the theorem for lower integrals. The proof for upper integrals is essentially the
same.

This theorem has as a corollary the interval additivity property for the inte-
gral. The details of how this corollary follows from the above theorem are left
to the exercises.

Corollary 5.2.8. With f and a ≤ b ≤ c as in the previous theorem, f is
integrable on [a, c] if and only if it is integrable on [a, b] and on [b, c]. In this
case,

∫ c

a

f(x) dx =

∫ b

a

f(x) dx+

∫ c

b

f(x) dx.

Theorem of the Mean for Integrals

If f is an integrable function on a bounded interval [a, b], then the mean or
average of f on [a, b] is the number

1

b− a

∫ b

a

f(x) dx.
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The following theorem is an easy consequence of the Intermediate Value Theo-
rem. We leave its proof to the exercises.

Theorem 5.2.9. If f is a continuous function on a closed bounded interval
[a, b], then there is a point c ∈ [a, b] such that

f(c) =
1

b− a

∫ b

a

f(x) dx.

Exercise Set 5.2

1. Show that if a function f on a bounded interval can be written in the form
g − h for functions g and h which are non-decreasing on [a, b], then f is
integrable on [a, b].

2. If f is a bounded function defined on a closed bounded interval [a, b] and
if f is integrable on each interval [a, r] with a < r < b, then prove that f
is integrable on [a, b] and

∫ b

a

f(x) dx = lim
r→b

∫ r

a

f(x) dx.

Observe that the analogous result holds if [a, r]is replaced by [r, b] in the
hypothesis and in the integral on the right, and the limit is taken as r → a.
Hint: use Theorem 5.2.7 and Exercise 5.1.8.

3. Suppose f is a bounded function on a bounded interval [a, b] and there is a
partition {a = x0 < x1 < · · · < xn = b} of [a, b] such that f is continuous
on each subinterval (xk−1, xk). Prove that such a function is integrable
on [a, b].

4. Prove Corollary 5.2.5.

5. Prove Corollary 5.2.8.

6. Prove that 1 ≤
∫ 1

−1

1

1 + x2n
dx ≤ 2 for all n ∈ N.

7. Prove that

∫ 1

−1

x2

1 + x2n
dx ≤ 2/3 for all n ∈ N.

8. If f is a bounded function defined on an interval I, then prove that

sup
I

|f | − inf
I
|f | ≤ sup

I
f − inf

I
f

by using Theorem 1.5.10(d) and the triangle inequality |f(x)| − |f(y)| ≤
|f(x)− f(y)|.
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9. Prove that if f is integrable on [a, b] then so is f2. Hint: if |f(x)| ≤M for
all x ∈ [a, b], then show that

|f2(x)− f2(y)| ≤ 2M |f(x)− f(y)|.

for all x, y ∈ [a, b]. Use this to estimate U(f2, P ) − L(f2, P ) in terms of
U(f, P )− L(f, P ) for a given partition P .

10. Prove that if f and g are integrable on [a, b], then so is fg. Hint: write fg
as the difference of two squares of functions you know are integrable and
then use the previous exercise.

11. Give an example of a function f such that |f | is integrable on [0, 1] but f
is not integrable on [0, 1].

12. Prove Theorem 5.2.9.

13. Let {fn} be a sequence of integrable functions defined on a closed bounded
interval [a, b]. If {fn} converges uniformly on [a, b] to a function f , prove
that f is integrable and

∫ b

a

f(x) dx = lim

∫ b

a

fn(x) dx.

14. Is the function which is sin 1/x for x 6= 0 and 0 for x = 0 integrable on
[0, 1]? Justify your answer.

5.3 The Fundamental Theorems of Calculus

There are two fundamental theorems of calculus. Both relate differentiation
to integration. In most calculus courses, the Second Fundamental Theorem is
usually proved first and then used to prove the First Fundamental Theorem.
Unfortunately, this results in a First Fundamental Theorem that is weaker than
it could be. To prove the best possible theorems, one should give independent
proofs of the two theorems. This is what we shall do.

First Fundamental Theorem

The following theorem concerns the integral of f ′ on [a, b] where f is a function
which we assume is differentiable on (a, b) but not necessarily at a or b. The
reason the integral still makes sense is that, for a function that is integrable
on [a, b], changing its value at one point (or at finitely many points) does not
affect its integrability or its integral (Exercise 5.3.9). Thus, a function which
is missing values at a and/or b can be assigned values there arbitrarily and the
integrability and value of the integral will not depend on how this is done.
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Theorem 5.3.1. Let [a, b] be a closed bounded interval and f a function which
is continuous on [a, b] and differentiable on (a, b) with f ′ integrable on [a, b].
Then

∫ b

a

f ′(x) dx = f(b)− f(a).

Proof. Let P = {a = x0 < x1 < · · · < xn = b} be a partition of [a, b]. We apply
the Mean Value Theorem to f on each of the intervals [xk−1, xk]. This tells us
there is a point ck ∈ (xk−1, xk) such that

f ′(ck)(xk − xk−1) = f(xk) − f(xk−1).

If we sum this over k = 1, · · · , n, the result is

n
∑

k=1

f ′(ck)(xk − xk−1) = f(b)− f(a).

The sum on the left is a Riemann sum for f ′ and the partition P and so, by
(5.1.4), it lies between the lower and upper sums for f ′ and P . Thus,

L(f ′, P ) ≤ f(b)− f(a) ≤ U(f ′, P ). (5.3.1)

Since f ′ is integrable on [a, b], there is a sequence of partitions {Pn} for which
the corresponding sequences of upper and lower sums for f ′ both converge to
∫ b

a

f ′(x) dx. However, in view of (5.3.1) the only number both sequences can

converge to is f(b)− f(a).

The above theorem is somewhat stronger than the one usually stated in
calculus, because we only assume that the derivative f ′ is integrable on [a, b],
not that it is continuous. Are there functions which are differentiable with an
integrable derivative which is not continuous?

Example 5.3.2. Find a function f which is differentiable on an interval, with
an integrable derivative which is not continuous.

Solution: Let f(x) = x2 sin 1/x if x 6= 0 and set f(0) = 0. Then, f is
differentiable on all of R and its derivative is

f ′(x) = 2x sin 1/x− cos 1/x if x 6= 0

and is 0 at x = 0. This follows from the Chain Rule and the Product Rule for
derivatives everywhere except at x = 0. At x = 0 we calculate the derivative
using the definition of derivative:

f ′(0) = lim
x→0

x2 sin 1/x

x
= lim

x→0
x sin 1/x = 0.

Now the function f ′(x) is integrable on any closed bounded interval (see
Exercise 5.2.2), but it is not continuous at 0. Thus, f is a function to which the
previous theorem applies, but it does not have a continuous derivative.
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Second Fundamental Theorem

So far we have defined the integral

∫ b

a

f(x) dx only in the case where a < b. We

remedy this by defining the integral to be 0 if a = b and declaring

∫ b

a

f(x) dx = −
∫ a

b

f(x) dx if b < a.

This ensures that the integral in the following theorem makes sense whether x
is to the left or the right of a.

Theorem 5.3.3. Let f be a function which is integrable on a closed bounded
interval [b, c]. For a, x ∈ [b, c] define a function F (x) by

F (x) =

∫ x

a

f(t) dt.

Then F is continuous on [b, c]. At each point x of (b, c) where f is continuous
the function F is differentiable and

F ′(x) = f(x).

Proof. The definition of F makes sense, because it follows from Theorem 5.2.7
that a function integrable on an interval is also integrable on every subinterval.

Since f is integrable on [b, c] it is bounded on [b, c]. Thus, there is an M
such that

|f(t)| ≤M for all t ∈ [b, c].

If x, y ∈ [b, c] then

F (y)− F (x) =

∫ y

a

f(t) dt−
∫ x

a

f(t) dt =

∫ y

x

f(t) dt. (5.3.2)

(see Exercise 5.3.11). Then by Exercise 5.3.12 ,

|F (y) − F (x)| =
∣

∣

∣

∣

∫ y

x

f(t) dt

∣

∣

∣

∣

≤M |y − x|.

Thus, given ǫ > 0, if we choose δ = ǫ/M , then

|F (y)− F (x)| < ǫ whenever |y − x| < δ.

This shows that F is uniformly continuous on [b, c].
Now suppose x ∈ (b, c) is a point at which f is continuous. If y is also in

(b, c), then
∫ y

x

f(x) dt = f(x)(y− x)
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since f(x) is a constant as far as the variable of integration t is concerned. This
and (5.3.2) imply that

F (y)− F (x)

y − x
− f(x) =

1

y − x

(
∫ y

x

f(t) dt−
∫ y

x

f(x) dt

)

=
1

y − x

∫ y

x

(f(t)− f(x)) dt.

(5.3.3)

Since f is continuous at x, given ǫ > 0, we may choose δ > 0 such that

|f(t) − f(x)| < ǫ whenever |x− t| < δ.

Then, for y with |y − x| < δ, it will be true that |x− t| < δ for every t between
x and y. Thus, for such a choice of y, we have

∣

∣

∣

∣

1

y − x

∫ y

x

(f(t)− f(x)) dt

∣

∣

∣

∣

≤ 1

|y − x|ǫ|y − x| = ǫ

In view of (5.3.3), this implies that

lim
y→x

F (y)− F (x)

y − x
= f(x).

Thus, F is differentiable at x and F ′(x) = f(x).

Example 5.3.4. Find
d

dx

∫ sin x

0

e−t
2

dt.

Solution: This is a composite function. If F (u) =

∫ u

0

e−t
2

dt, then the

function we are asked to differentiate is F (sinx). By the Chain Rule, the deriva-
tive of this composite function is

F ′(sinx) cosx.

By the previous theorem, F ′(u) = e−u
2

. Thus,

d

dx

∫ sinx

0

e−t
2

dt = F ′(sinx) cosx = e− sin2 x cosx.

Example 5.3.5. Find
d

dx

∫ 2x

x

sin t2 dt.

Solution: We begin by writing

G(x) =

∫ 2x

x

sin t2 dt =

∫ 2x

0

sin t2 dt−
∫ x

0

sin t2 dt.

Then using the previous theorem and the Chain Rule yields

G′(x) = 2 sin 4x2 − sinx2.
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Substitution

We will not rehash all the integration techniques that are taught in the typical
calculus class. However, two of these techniques are of such great theoretical
importance, that it is worth discussing them again. The techniques in ques-
tion are substitution and integration by parts. Each of these follows from the
Fundamental Theorems and an important theorem from differential calculus –
the chain rule in the case of substitution and the product rule in the case of
integration by parts. We begin with substitution.

Theorem 5.3.6. Let g be a differentiable function on an open interval I with
g′ integrable on I and let J = g(I). Let f be continuous on J . Then for any
pair a, b ∈ I,

∫ b

a

f(g(t))g′(t) dt =

∫ g(b)

g(a)

f(u) du. (5.3.4)

Proof. The composite function f ◦ g is continuous on I since g is continuous on
I and f is continuous on J . By Exercise 5.2.10, this implies that f(g(t))g′(t) is
an integrable function of t on I. We set

F (v) =

∫ v

g(a)

f(u) du.

Then F ′(v) = f(v) by the Second Fundamental Theorem, and so, by the Chain
Rule,

(F (g(x)))′ = f(g(x))g′(x).

Thus, F ◦ g is a differentiable function on I with an integrable derivative
f(g(x))g′(x). By the First Fundamental Theorem,

F (g(b))− F (g(a)) =

∫ b

a

f(g(x))g′(x) dx.

By the definition of F , F (g(a)) = 0 and F (g(b)) =

∫ g(b)

g(a)

f(u) du. Thus,

∫ b

a

f(g(x))g′(x) dx =

∫ g(b)

g(a)

f(u) du,

as claimed.

Note that the above theorem states formally what happens when we make
the substitution u = g(t) in the integral on the left in (5.3.4).

Integration by Parts

The integration by parts formula is a direct consequence of the Fundamental
Theorems and the product rule for differentiation.
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Theorem 5.3.7. Suppose f and g are continuous functions on a closed bounded
interval [a, b] and suppose that f and g are differentiable on (a, b) with deriva-
tives that are integrable on [a, b]. Then fg′ and f ′g are integrable on [a, b] and

∫ b

a

f(x)g′(x) dx = f(b)g(b)− f(a)g(a)−
∫ b

a

g(x)f ′(x) dx. (5.3.5)

Proof. We have f and g integrable because they are continuous on [a, b], while
f ′ and g′ are integrable by hypothesis. By Exercise 5.2.10, fg′ and gf ′ are both
integrable.

The product fg is differentiable on (a, b) and

(fg)′ = fg′ + gf ′.

Thus, (fg)′ is also integrable and, by the First Fundamental Theorem,

f(b)g(b)− f(a)g(a) =

∫ b

a

(f(x)g(x))′dx =

∫ b

a

f(x)g′(x) dx+

∫ b

a

g(x)f ′(x) dx.

Formula (5.3.5) follows immediately from this.

Example 5.3.8. Suppose f is a continuous function on [−π, π] which is differ-
entiable on (−π, π) with an integrable derivative. Also suppose f(−π) = f(π).
Prove that, for each n ∈ N,

∫ π

−π
f ′(x) sinnx dx = −n

∫ π

−π
f(x) cosnx dx

∫ π

−π
f ′(x) cosnx dx = n

∫ π

−π
f(x) sinnx dx.

(5.3.6)

Solution: These are the equations relating the Fourier coefficients of the
derivative of a function f to the Fourier coefficients of f itself.

The first equation is proved using the integration by parts formula (5.3.5)
for f(x) and g(x) = sinx. Since sin(−nπ) = sin(nπ) = 0, the terms f(b)g(b)−
f(a)g(a) are 0. The first equation then follows directly from (5.3.5).

The second equation follows from (5.3.5) for f(x) and g(x) = cosx. However,
this time the terms f(b)g(b) − f(a)g(a) contribute 0 because cos is an even
function and f(−π) = f(π).

Exercise Set 5.3

1. Find

∫ 2/π

4/π

(2x sin 1/x− cos 1/x) dx. Hint: see Example 5.3.2.

2. Find
d

dx

∫ x

1

cos 1/t dt for x > 0.

3. Find
d

dx

∫ 2x

0

sin t2 dt.
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4. Find
d

dx

∫ x

1/x

e−t
2

dt.

5. If f(x) = −1/x then f ′(x) = 1/x2. Thus, Theorem 5.3.1 seems to imply
that

∫ 1

−1

1/x2 dx = f(1)− f(−1) = −1 − 1 = −2.

However, 1/x2 is a positive function, and so its integral over [−1, 1] should
be positive. What is wrong?

6. If f is a differentiable function on [a, b] and f ′ is integrable on [a, b], then
find

∫ b

a

f(x)f ′(x) dx.

7. Let f be a continuous function on the interval [0, 1]. Express

∫ π/2

0

f(sin θ) cosθ dθ

as an integral involving only the function f .

8. Find

∫ x

0

tn ln t dt where n is an arbitrary integer.

9. Prove that if f is integrable on [a, b] and c ∈ [a, b], then changing the value
of f at c does not change the fact that f is integrable or the value of its
integral on [a, b].

10. The function f(x) = x/|x| has derivative 0 everywhere but at x = 0. Its
derivative f ′(x) = 0 is integrable on [−1, 1] and has integral 0. However
f(1) − f(−1) = 1 − (−1) = 2. This seems to contradict Theorem 5.3.1.
Explain why it does not.

11. The interval additivity property (Theorem 5.2.7) is stated for three points
a, b, c satisfying a < b < c. Show that it actually holds regardless of how
the points a, b, and c are ordered. Hint: you will need to consider various
cases.

12. Suppose f is integrable on an interval containing a and b and |f(x)| ≤M
on I. Prove that

∣

∣

∣

∣

∣

∫ b

a

f(x) dx

∣

∣

∣

∣

∣

≤ M |b− a|.

Note that we do not assume that a < b.
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5.4 Logs, Exponentials, Improper Integrals

The following development of the log and exponential functions is the one pre-
sented in most calculus classes these days. It is such a beautiful application of
the Second Fundamental Theorem that we felt obligated to include it here.

The Natural Logarithm

One consequence of the Second Fundamental Theorem is that every function f
which is continuous on an open interval I has an anti-derivative on I. In fact,
if a is any point of I, then

F (x) =

∫ x

a

f(t) dt

is an anti-derivative for f on I (that is, F ′(x) = f(x) on I).

Now
xn+1

n+ 1
is an antiderivative for xn for all integers n with the exception

of n = −1. However, since x−1 is continuous on (0,+∞) and on (−∞, 0), it has
an antiderivative on each of these intervals. There is no mystery about what
the antiderivatives are. On (0,+∞) the function

∫ x

1

1

t
dt

is an antiderivative for 1/x. Obviously, this function is important enough to
deserve a name.

Definition 5.4.1. We define the natural logarithm to be the function ln, defined
for x ∈ (0,+∞) by

lnx =

∫ x

1

1

t
dt.

This is the unique antiderivative for 1/x on (0,+∞) which has the value 0 when
x = 1.

On (−∞, 0) an antiderivative for 1/x is given by

∫ x

−1

1

t
dt.

Note that the x that appears in this integral is negative, and so −x = |x|. If we
make the substitution s = −t, then Theorem 5.3.6 implies that

∫ x

−1

1

t
dt =

∫ −x

1

1

s
ds = ln(−x) = ln |x|.

Thus, ln |x| is an antiderivative for 1/x on both (0,+∞) and (−∞, 0).
The next two theorems show that ln has the key properties that we expect

of a logarithm.
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Theorem 5.4.2. For all a, b ∈ (0,+∞), ln ab = ln a+ ln b.

Proof. By the Chain Rule, the derivative of ln ax is
1

ax
a =

1

x
. Thus, ln ax and

lnx have the same derivative on the interval (0,+∞). By Corollary 4.3.4

ln ax = lnx+ c

for some constant c. The constant may be evaluated by setting x = 1. Since
ln 1 = 0, this tells us that c = ln a. Thus,

ln ax = lnx+ ln a.

This gives ln ab = ln a+ ln b when we set x = b.

Theorem 5.4.3. If a > 0 and r is any rational number, then ln ar = r ln a.

Proof. The proof of this is similar to the proof of the previous theorem. The
key is to compute the derivative of the function lnxr. We leave the details to
Exercise 5.4.1.

Theorem 5.4.4. The natural logarithm is strictly increasing on (0,+∞). Also,

lim
x→∞

ln x = +∞ and lim
x→0

ln x = −∞.

Proof. The function lnx is strictly increasing on (0,+∞) because its derivative
is positive on this interval.

Since ln 1 = 0 and ln is increasing, ln 2 is positive. Given any number M ,
choose an integer m such that m ln 2 > M and set N = 2m. Then

lnx > ln 2m = m ln 2 > M whenever x > N.

This implies that limx→∞ lnx = +∞. The fact that limx→0 lnx = −∞ follows
easily from limx→∞ lnx = +∞ and properties of ln. The details are left to the
exercises.

The Exponential Function

The function ln is strictly increasing on (0,+∞) and, therefore, it has an inverse
function. The image of (0,+∞) under ln is an open interval by Exercise 4.2.5.
By Theorem 5.4.4 this open interval must be the interval (−∞,∞). Therefore,
the inverse function for ln has domain (−∞,∞) and image (0,∞).

Definition 5.4.5. We define the exponential function to be the function with
domain (−∞,∞) which is the inverse function of ln. We will denote it by expx.

The theorems we proved about ln immediately translate into theorems about
exp.

Theorem 5.4.6. The function exp is its own derivative – that is, exp′(x) =
exp(x).
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Proof. By Theorem 4.2.9 we have

exp′(x) =
1

ln′(exp(x))
=

1

1/ exp(x)
= exp(x).

Theorem 5.4.7. The exponential function satisfies

(a) exp(a+ b) = exp a exp b for all a, b ∈ R;

(b) exp(ra) = (exp(a))r for all a ∈ R and r ∈ Q.

Proof. Let x = exp a and y = exp b, so that a = lnx and b = ln y. Then

exp(a+ b) = exp(lnx+ ln y) = exp(lnxy) = xy = exp a exp b

by Theorem 5.4.2. This proves (a). The proof of (b) is similar and is left to the
exercises.

We define the number e to be exp 1, so that ln e = 1. It follows from (b) of
the above theorem that, if r is a rational number, then

er = (exp 1)r = exp r. (5.4.1)

Now at this point, ar is defined for every positive a and rational r. We have
not yet defined ax if x is a real number which is not rational. However, expx is
defined for every real x. Since (5.4.1) tells us that er = exp r if r is rational, it
makes sense to define ex for any real x to be expx.

More generally, if a is any positive real number, then

ar = (exp ln a)r = exp(r ln a),

and so it makes sense to define ax for any real x to be exp(x lna). The following
definition formalizes this discussion.

Definition 5.4.8. If x is any real number and a is a positive real number, we
define ax by

ax = exp(x ln a).

In particular,

ex = expx.

With this definition of ax, the laws of exponents

ax+y = axay and axy = (ax)y

are satisfied. The proofs are left to the exercises.
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The General Logarithm

We define the logarithm to the base a, loga, to be the inverse function of the
function ax. The following theorem gives a simple description of it in terms of
the natural logarithm lnx. The proof is left to the exercises.

Theorem 5.4.9. For each a > 0, we have loga x =
ln x

ln a
.

Improper Integrals

So far, we have defined the integral

∫ b

a

f(x) dx only for bounded intervals [a, b]

and bounded functions f on [a, b]. Thus, our definition does not allow for
integrals such as

∫ ∞

0

1

1 + x2
dx or

∫ 1

0

1√
x
dx.

It turns out that a perfectly good meaning can be attached to each of these
integrals. To do so requires extending our definition of the integral.

We first consider an integral of the form

∫ ∞

a

f(x) dx where a is finite. We

assume that f is integrable on each interval of the form [a, s] for a ≤ s < ∞.
Then we set

∫ ∞

a

f(x) dx = lim
s→∞

∫ s

a

f(x) dx,

provided this limit exists and is finite. In this case, we say that the improper

integral

∫ ∞

a

f(x) dx converges.

Integrals of the form

∫ b

−∞
f(x) dx are treated similarly. Assuming f is inte-

grable on each interval of the form [r, b] with −∞ < r ≤ b, we set

∫ b

−∞
f(x) dx = lim

r→−∞

∫ b

r

f(x) dx,

provided this limit exists and is finite. In this case, we say that the improper

integral

∫ b

−∞
f(x) dx converges.

For an integral of the form

∫ ∞

−∞
f(x) dx, we simply break the integral up

into a sum of improper integrals involving only one infinite limit of integration.
That is, we write

∫ ∞

−∞
f(x) dx =

∫ 0

−∞
f(x) dx+

∫ ∞

0

f(x) dx

If the two improper integrals on the right converge, we then say the improper
integral on the left converges – it converges to the sum on the right.
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Example 5.4.10. Find

∫ ∞

−∞

1

1 + x2
or show that it fails to converge.

Solution: We write
∫ ∞

−∞

1

1 + x2
dx =

∫ 0

−∞

1

1 + x2
dx+

∫ ∞

0

1

1 + x2
dx.

Then, since arctan′(x) =
1

1 + x2
, the First Fundamental Theorem implies that

∫ 0

−∞

1

1 + x2
dx = lim

r→−∞

∫ 0

r

1

1 + x2
dx

= lim
r→−∞

(arctan0 − arctanr) = π/2,

and
∫ ∞

0

1

1 + x2
dx = lim

s→∞

∫ s

0

1

1 + x2
dx

= lim
s→∞

(arctans − arctan0) = π/2,

Thus,

∫ ∞

−∞

1

1 + x2
converges to π.

Functions With Singularities

If a function f is integrable on [r, b] for every r with a < r ≤ b, but unbounded
on the interval (a, b], then it is not integrable on [a, b]. It is said to have a
singularity at a. Still, its improper integral over [a, b] may exist in the sense
that

lim
r→a+

∫ b

r

f(x) dx

may exist and be finite. In this case we say that the improper integral

∫ b

a

f(x) dx

converges. Its value, of course, is the indicated limit.
Similarly, a function f may be integrable on [a, s] for every s with a ≤ s < b,

but not bounded on [a, b). In this case, its improper integral over [a, b] is

lim
s→b−

∫ s

a

f(x) dx

provided this limit converges.
It may be that the singular point for f is an interior point c of the interval

over which we wish to integrate f . That is, it may be that a < c < b and f is
integrable on closed subintervals of [a, b] that don’t contain c, but f blows up
at c. In this case, we write

∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx.
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If the two improper integrals on the right converge, then we say the improper
integral on the left converges and it converges to the sum on the right.

Example 5.4.11. Find

∫ 1

−1

x−1/3 dx.

Solution: Here the integrand blows up at 0. An antiderivative for x−1/3 is
3

2
x2/3. Thus,

∫ 0

−1

x−1/3 dx = lim
s→0−

3

2
(s2/3 − (−1)2/3) = −3

2
,

while
∫ 1

0

x−1/3 dx = lim
r→0+

3

2
((1)2/3 − (r)2/3) =

3

2
.

Thus,
∫ 1

−1

x−1/3 dx =

∫ 0

−1

x−1/3 dx+

∫ 1

0

x−1/3 dx

converges to − 3
2 + 3

2 = 0.

The following is a theorem which can be used to conclude that an improper
integral converges without actually carrying out the integration.

Theorem 5.4.12. Let

∫ b

a

f(x) dx be an improper integral – improper due to

the fact that a = −∞ or b = ∞ or f has a singularity at a or f has a singularity
at b. If g is a non-negative function such that |f(x)| ≤ g(x) for all x ∈ (a, b)
and if

∫ b

a

g(x) dx

converges, then
∫ b

a

f(x) dx

also converges.

Proof. We will prove this in the case where the bad point is b – either b = ∞
or f blows up at b. The case where a is the bad point is entirely analogous.

Let h(x) = f(x) + |f(x)|. Then 0 ≤ h(x) ≤ 2g(x) for all x ∈ (a, b) . So

H(s) =

∫ s

a

h(x) dx and

∫ s

a

g(x) dx

are non-decreasing functions of s (Exercise 5.4.14) and

H(s) ≤ 2

∫ s

a

g(x) dx ≤ 2

∫ b

a

g(x) dx.
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The integral on the right is finite by hypothesis. It follows that the non-
decreasing function H(s) is bounded above. By Exercise 4.1.13, lims→b− H(s)

converges, Hence, the improper integral

∫ b

a

h(x) dx converges.

The same argument, with h replaced by |f(x)| shows that

∫ b

a

|f(x)|dx con-

verges. Since f = h− |f |, it follows that

∫ b

a

f(x) dx also converges.

Example 5.4.13. Determine whether

∫ ∞

−∞
e−x

2

dx converges.

Solution: Since e−x
2 ≤ 1

1 + x2
(by Exercise 4.4.3) and each of

∫ 0

−∞

1

1 + x2
dx and

∫ ∞

0

1

1 + x2
dx

converges by Example 5.4.10, the same is true of the corresponding integrals for

e−x
2

. It follows that

∫ ∞

−∞
e−x

2

dx converges.

Cauchy Principal Value

Note that we break an improper integral of the form
∫ ∞

−∞
f(x) dx (5.4.2)

up into the sum of
∫ 0

−∞ f(x) dx and
∫∞
0
f(x) dx and then require that each

of these improper integrals converges before we are willing to say that (5.4.2)
converges. This ensures that

lim
a,b→∞

∫ b

−a
f(x) dx

exists and is the same number, independently of how a and b approach ∞. This
is a strong requirement. In many situations, the improper integral in this sense
will fail to converge even though the limit may exist if (a, b) is constrained to
lie along some line in the plane. Of special interest is the case when a and b are
constrained to be equal. This leads to

lim
a→∞

∫ a

−a
f(x) dx.

If this limit exists then we say that the Cauchy Principal Value of the improper
integral (5.4.2) exists. Similarly, the Cauchy Principal Value of an integral over
an inteval [a, b] on which f has a singularity at an interior point c is

lim
r→0

[

∫ c−r

a

f(x) dx+

∫ b

c+r

f(x) dx

]
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if this limit exists. The existence of the Cauchy principal value is much weaker
than ordinary convergence for an improper integral.

Example 5.4.14. Show that the improper integral

∫ ∞

−∞

x

1 + x2
dx,

does not converge but it does have a Cauchy principal value.
Solution: We have

∫ ∞

−∞

x

1 + x2
dx = lim

a→∞

∫ 0

−a

x

1 + x2
dx+ lim

b→∞

∫ b

0

x

1 + x2
dx

The first of the above limits is lima→∞ −1/2 ln(1 + a2) = −∞ while the second
is limb→∞ 1/2 ln(1 + b2) = ∞. Neither of these converges and so the improper
integral does not converge. However, the Cauchy principal value is

lim
a→∞

∫ a

−a

x

1 + x2
dx = lim

a→∞
1/2(lna− ln a) = 0.

Exercise Set 5.4

1. Supply the details for the proof of Theorem 5.4.3.

2. Prove that ln
(a

b

)

= ln a− ln b for all a, b ∈ (0,+∞).

3. Finish the proof of Theorem 5.4.4 by showing that limx→0 ln x = −∞.
Hint: this follows easily from limx→∞ lnx = +∞ and properties of ln.

4. Prove Part (b) of Theorem 5.4.7.

5. Using Definition 5.4.8 and the properties of exp prove the laws of expo-
nents:

ax+y = axay and axy = (ax)y.

6. Compute the derivative of ax for each a > 0.

7. Find an antiderivative for ax for each a > 0.

8. Prove Theorem 5.4.9.

9. For which values of p > 0 does the improper integral

∫ ∞

1

1

xp
dx converge.

Justify your answer.

10. For which values of p > 0 does the improper integral

∫ 1

0

1

xp
dx converge.

Justify your answer.
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11. Show that

∫ ∞

−∞

sinx

1 + x2
converges. Can you tell what it converges to?

12. Does the improper integral

∫ 1

0

lnx dx converge? If so, what does it con-

verge to?

13. Prove that the improper integral

∫ ∞

−∞

x1/3

√
1 + x2

dx does not converge, but

it has Cauchy principal value 0.

14. Prove that if f is an integrable function on every interval [a, s) with s < b
and if f(x) ≥ 0 on [a, b], then the function

F (s) =

∫ s

a

f(x) dx

is a non-decreasing function on [a, b).



140 CHAPTER 5. THE INTEGRAL



Chapter 6

Infinite Series

Infinite series play a fundamental role in mathematics. They are used to approx-
imate complicated or uncomputable quantities or functions by simpler quanti-
ties or functions. They are widely used by engineers and scientists in real world
applications of mathematics.

6.1 Convergence of Infinite Series

An infinite series of numbers is a formal sum

∞
∑

k=1

ak = a1 + a2 + a3 + · · · + ak + · · · (6.1.1)

of an infinite sequence of numbers ak called the terms of the series. We say
formal sum, because the actual sum may or may not exist. What does it mean
for the actual sum to exist? To answer this, we proceed in much the same way
that we did in defining improper integrals. We cut off the sum after some finite
number n of terms and then take the limit as n→ ∞. That is, we set

sn =
n
∑

k=1

ak = a1 + a2 + a3 + · · · + an. (6.1.2)

The number sn is called the nth partial sum of the series.

Definition 6.1.1. The series (6.1.1) is said to converge to the number s if
lim sn = s. In this case we write

∞
∑

k=1

ak = s.

The number s is called the sum of the series. If the sequence {sn} diverges,
then we say the series (6.1.1) diverges.

141
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It is important to keep firmly in mind the difference between a sequence and
a series. A series is a formal sum of a sequence of numbers. Each series

a1 + a2 + a3 + · · · + ak + · · ·

has two sequences associated to it: the sequence of terms {ak} and the sequence
of partial sums {sn}, where sn = a1 + a2 + · · · + an.

A series (6.1.1) converges if and only if its sequence of partial sums converges.
What about the sequence of terms {an}? What is the relationship between
convergence of the series and convergence of its sequence of terms? The following
theorem gives a partial answer.

Theorem 6.1.2. (Term Test) If a series a1+a2+a3+· · ·+ak+· · · converges,
then lim an = 0.

Proof. If the series converges to s, then lim sn = s, where {sn} is the sequence
of partial sums (6.1.2). However, an = sn − sn−1 if n > 1, and so

lim an = lim sn − lim sn−1 = s− s = 0.

The above theorem is called the term test because it provides a test that the
terms of a series must pass if the series converges. If the series fails this test –
that is, if lim an either fails to exist or is not 0 if it does exist, then the series
diverges. However, this test can never be used to prove that a series converges,
since it does not say that if lim an = 0 then the series converges. In fact, the
series

1 +
1

2
+

1

3
+ · · · + 1

k
+ · · ·

has a sequence of terms {1/k} which converges to 0, but the series itself does
not converge. This series is called the harmonic series. To see that it diverges,
group the terms in the following way:

(1) +

(

1

2

)

+

(

1

3
+

1

4

)

+

(

1

5
+

1

6
+

1

7
+

1

8

)

+ · · · .

Each group in parentheses is a sum of 2n terms each of which is at least as big
as 1/2n+1. Thus, each group in parentheses sums to a number greater than or
equal to 1/2. It follows that the 2nth partial sum of the harmonic series is at
least n/2. Thus, the sequence of partial sums has limit +∞, and so the series
diverges.

Example 6.1.3. Does the series
∞
∑

k=1

k

2k + 1
converge?

Solution: No. Its sequence of terms is

{

k

2k + 1

}

and this sequence has

limit 1/2 as k → ∞. Since the sequence of terms does not converge to 0, the
series fails the term test, and so it diverges.
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Example 6.1.4. Does the term test tell us whether

∞
∑

k=1

k

k2 + 1
converges?

Solution: If we apply the term test, the result is

lim
k

k2 + 1
= lim

1/k

1 + 1/k2
= 0.

The fact that this limit is 0 tells us nothing. The series may or may not converge
(in fact, in Example 6.1.14 we will prove that it diverges).

Remark 6.1.5. Although, in our discussion so far, we have assumed that the
index of summation k for a series runs from 1 to ∞, there is really no reason to
start the summation at k = 1. It could just as easily start at k = 0, k = 2, or
k = 100. Our discussion of convergence for series is not effected by where the
summation begins, since the only effect on the partial sums sn of changing the
starting point will be to add the same constant to each of them.

Geometric Series

The simplest meaningful series is also one of the most useful. This is the geo-
metric series

∞
∑

k=0

ark = a+ ar + ar2 + · · · + ark + · · · . (6.1.3)

Here a and r are any two real numbers. The number a is the initial term of the
series, while the number r is called the ratio for the geometric series, since, for
k > 1, it is the ratio of the kth term ark to the previous term ark−1. It is the
fact that this ratio is independent of k that characterizes the geometric series.

Theorem 6.1.6. If a 6= 0, the geometric series (6.1.3) converges to
a

1 − r
if

|r| < 1 and diverges if |r| ≥ 1.

Proof. The series fails the term test if |r| ≥ 1, since lim ark 6= 0 in this case.
Thus, the geometric series diverges if |r| ≥ 1.

Assume |r| < 1. If sn = a+ ar + ar2 + · · · + arn is the nth partial sum of
the series, then

rsn = ar + ar2 + ar3 + · · · + arn+1

and so

(1− r)sn = sn − rsn = a− arn+1.

Thus, since r 6= 1, we may divide by 1 − r to obtain

sn =
a− arn+1

1 − r
.

This sequence converges to
a

1 − r
since lim rn+1 = 0.
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Example 6.1.7. Does the series 1/2 + 1/4 + 1/8 + · · · + 1/2n + · · · converge?
If so what does it converge to?

Solution: This is a geometric series with ratio r = 1/2 and initial term

a = 1/2. Thus, it converges to
1/2

1 − 1/2
= 1, by the previous theorem.

Series with Non-Negative Terms

Let a1 + a2 + · · ·+ ak + · · · be a series with ak ≥ 0 for all k. Then, its sequence
{sn} of partial sums satisfies

sn+1 = sn + an+1 ≥ sn.

That is, it is a non-decreasing sequence. If such a sequence is bounded above,
then it converges by Theorem 2.4.1. If it is not bounded above, then it has limit
+∞. This proves the following theorem.

Theorem 6.1.8. An infinite series of non-negative terms converges if and only
if its sequence of partial sums is bounded above.

Comparison Test

The comparison test stated in most calculus texts follows easily from the pre-
ceding theorem (see Exercise 6.1.11). With a little more work, the following,
more general, version of the comparison test can also be proved this way. We
give a different proof, based on Cauchy’s criterion for convergence.

Theorem 6.1.9. (Comparison Test) Suppose a1 + a2 + · · · + ak + · · · and
b1 + b2 + · · · + bk + · · · are series, with bk ≥ 0 for all k, and suppose there are
positive constants K and M such that

|ak| ≤Mbk for all n ≥ K. (6.1.4)

Then if b1 + b2 + · · · + bk + · · · converges, so does a1 + a2 + · · · + ak + · · · .

Proof. Let sn =
n
∑

k=1

ak and tn =
n
∑

k=1

bk be the nth partial sums for the two

series. If the series with terms bk converges, then the sequence {tn} converges
and, hence, is Cauchy. This implies that , given ǫ > 0, there is an N such that

m
∑

k=n+1

bk = |tm − tn| ≤
ǫ

M
whenever m ≥ n > N.

Then (6.1.4) implies that

|sm − sn| =

∣

∣

∣

∣

∣

m
∑

k=n+1

ak

∣

∣

∣

∣

∣

≤
m
∑

k=n+1

|ak| ≤M
m
∑

k=n+1

bk < ǫ
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whenever m ≥ n > max(N,K). This implies that {sn} is a Cauchy sequence

and, hence, converges. It follows that the series
∞
∑

k=1

ak converges.

Suppose
∞
∑

k=1

ak is an arbitrary series. If we set bk = |ak|, then the condition

|ak| ≤ Mbk of the previous theorem is satisfied with M = 1 and K = 1. This
observation yields the following corollary.

Corollary 6.1.10. If
∞
∑

k=1

|ak| converges, then so does
∞
∑

k=1

ak.

This leads to the following definition.

Definition 6.1.11. A series
∞
∑

k=1

ak is said to converge absolutely if the series

∞
∑

k=1

|ak| converges.

Thus, Corollary 6.1.10 asserts that if a series converges absolutely, then it
converges.

Example 6.1.12. Does the series

∞
∑

k=1

k

2k
converge? Why?

Solution: Since lim
k

2k/2
= 0 (l’Hôpital’s Rule), there is an N such that

k

2k/2
< 1 whenever k > N.

Then
k

2k
<

1

2k/2
=

1

(
√

2)k
whenever k > N.

Since the series
∞
∑

k=1

1

(
√

2)k
is a convergent geometric series, the series

∞
∑

k=1

k

2k

converges by the comparison test.

Example 6.1.13. Does the series

∞
∑

k=1

(−1)k
k

2k
converge? Why?

Solution: By the previous exercise, the series
∞
∑

k=1

k

2k
converges and this

means that
∞
∑

k=1

(−1)k
k

2k
converges absolutely and, hence, converges by Corollary

6.1.10.
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The comparison test can also be used to prove that a series diverges.

Example 6.1.14. Prove that the series
∞
∑

k=1

k

k2 + 1
diverges.

Solution: We compare with the harmonic series. Since k2 + 1 ≤ 2k2 for
k ∈ N, we have

1

k
≤ 2

k

k2 + 1
for all k ∈ N.

If the series
∞
∑

k=1

k

k2 + 1
converges, then so does

∞
∑

k=1

1

k
by the comparison test.

However, the harmonic series diverges. Therefore
∞
∑

k=1

k

k2 + 1
also diverges.

Exercise Set 6.1

In each of the following six exercises, determine whether the indicated series
converges. Justify your answer.

1.
∞
∑

k=2

k − 1

2k + 1
.

2.
∞
∑

k=1

1

2k + k − 1
.

3.
∞
∑

k=0

2k+1

3k
.

4.
∞
∑

k=1

k2 − 3k + 1

3k2 + k − 2
.

5.
∞
∑

k=1

k2

4k
.

6.
∞
∑

k=1

k

k2 − k + 2
.

In each of the next four exercises, determine whether the indicated series con-
verges absolutely. Justify your answer.

7.
∞
∑

k=0

(−2/3)k.

8.
∞
∑

k=1

(−1)k+1

√
k

.
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9.

∞
∑

k=1

sin k

2k
.

10.

∞
∑

k=1

(−1)k

ln(1 + k)
.

11. Prove the following weak version of the comparison test using Theorem
6.1.8: If a1 + a2 + · · · + ak + · · · and b1 + b2 + · · · + bk + · · · are series of
non-negative terms with ak ≤ bk for all k, then if b1 + b2 + · · · + bk + · · ·
converges, so does a1 + a2 + · · · + ak + · · · .

12. Consider the decimal expansion .d1d2d3d4 · · · of a real number between 0
and 1, where {dk} is a sequence of integers between 0 and 9. This decimal
expansion represents the sum of a certain infinite series. What series is it
and why does it converge?

13. Show that every real number in the interval [0, 1] has a decimal expansion
as described in the previous exercise.

6.2 Tests for Convergence

In this section we will develop the standard tests for convergence of infinite
series. Most of these are based on Theorem 6.1.8 or Theorem 6.1.9.

Integral Test

Theorem 6.2.1. Suppose f is a positive, non-increasing function on [1,∞) and

ak = f(k) for each k ∈ N. Then the series

∞
∑

k=1

ak converges if and only if the

improper integral

∫ ∞

1

f(x) dx converges.

Proof. Consider the function g(x) on [1,∞) which, for each k ∈ N, is constant
on the interval [k, k + 1) and equal to f(k) at k. That is,

g(x) = f(k) = ak if k ≤ x < k + 1, k ∈ N.

This is a piecewise continuous function, hence integrable on any finite interval
[1, b). Also, since f is non-increasing, it follows that

g(x+ 1) ≤ f(x) ≤ g(x) for all x ∈ [1,∞).

(see Figure 6.1). On integrating from 1 to n, this yields

∫ n

1

g(x+ 1) dx ≤
∫ n

1

f(x) dx ≤
∫ n

1

g(x) dx.
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Figure 6.1: Setup for Proof of the Integral Test.

However, by Exercise 6.2.9,

∫ n

1

g(x+ 1) dx =
n
∑

k=2

ak and

∫ n

1

g(x) dx =
n−1
∑

k=1

ak. (6.2.1)

If sn =

n
∑

k=1

ak, then this implies that

sn − a1 ≤
∫ n

1

f(x) dx ≤ sn−1.

It follows that the sequence of partial sums {sn} is bounded above if and only

if the increasing function of b,

∫ b

1

f(x) dx, is bounded above. A non-decreasing

sequence converges if and only if it is bounded above and a non-decreasing
function on [1,∞) has a finite limit at ∞ if and only if it is bounded above.
Thus, the series converges if and only if the improper integral converges.

Example 6.2.2. A p-series is a series of the form

∞
∑

k=1

1

kp
, where p > 0. Prove

that a p-series converges if and only if p > 1.
Solution We apply the integral test for the function f(x) = 1/xp. Note

that this is a positive, decreasing function on [1,∞) and f(k) = 1/kp for k ∈ N.
If p 6= 1 we have

∫ b

1

1

xp
dx =

b1−p − 1

1 − p
.

As b → ∞, this has limit
1

p− 1
if p > 1 and +∞ if p < 1. Thus, the p-series

converges for p > 1 and diverges for p < 1 by the Integral Test.
For p = 1, the p-series is the harmonic series and we already know it diverges.

However, it is instructive to see how this follows from the Integral Test.
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In the case p = 1, the function f is f(x) = 1/x. We have

∫ b

1

1

x
dx = ln b,

and this has limit +∞ as b→ ∞. Thus, applying the Integral Test gives another

proof that the harmonic series

∞
∑

k=1

1

k
diverges.

Example 6.2.3. Does the series

∞
∑

k=1

3
√
k

2k2 − 1
converge or diverge. Justify your

answer.

Solution: For large k,
3
√
k

2k2 − 1
is close to

3

k3/2
. This suggests we do a

comparison with the p-series
∞
∑

k=1

1

k3/2
.

We have 2k2 − 1 ≥ k2 for all k ≥ 1 and so

3
√
k

2k2 − 1
≤ 3

√
k

k2
=

3

k3/2
.

Since the p-series with p = 3/2 converges, so does our series, by the comparison
test.

Root Test

This test is particularly important in the study of power series.

Theorem 6.2.4. Given an infinite series
∞
∑

k=1

ak, let

ρ = lim sup |ak|1/k.

Then the series converges absolutely if ρ < 1 and diverges if ρ > 1.

Proof. Recall that

lim sup |ak|1/k = lim tn where tn = sup{|ak|1/k : k ≥ n}.

Also recall that {tn} is a non-increasing sequence. Thus, if ρ > 1, then

tn = sup{|ak|1/k : k ≥ n} > 1 for all n ∈ N.

This means that, for every n ∈ N, there is an k ≥ n such that |ak|1/k > 1. Then
|ak| > 1 also. It follows that the sequence of terms {ak} does not have limit 0.
Hence, the series fails the term test and must diverge in this case.

If ρ < 1, we can choose r such that ρ < r < 1. Then there is an N such that

tn < r whenever n > N
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and this implies that

|ak|1/k < r whenever k > N.

This, in turn, implies that

|ak| < rk whenever k > N.

Thus, the series
∞
∑

k=1

|ak| converges in this case, by comparison with the geometric

series with ratio r < 1. Therefore, the original series converges absolutely.

Note that the root test tells us nothing about convergence if the number ρ
turns out to be 1.

Example 6.2.5. Does the series
∑∞
k=1 k(9/10)k converge? Why?

Solution: We apply the root test. In this case, the lim sup of Theorem 6.2.4
is actually a limit, since the limit exists. In fact,

ρ = lim k1/k(9/10) = (9/10) limk1/k = 9/10 < 1,

since lim k1/k = 1 by Exercise 2.3.12. By the root test, the series converges.

Ratio Test

Theorem 6.2.6. Given a series
∞
∑

k=1

ak, let

r = lim
|ak+1|
|ak|

(6.2.2)

provided this limit exists. Then the series converges absolutely if r < 1 and
diverges if r > 1.

Proof. Observe first that, for the limit defining r to exist, the numbers ak must
eventually be all non-zero – otherwise, the ratio |ak+1|/|ak| would be undefined
or +∞ for infinitely many k.

If r > 1, then there is an N such that

|ak| > 0 and
|ak+1|
|ak|

> 1 for all k ≥ N.

Then, for k > N

|ak| =
|ak|

|ak−1|
|ak−1|
|ak−2|

· · · |aN+2|
|aN+1|

|aN+1|
|aN | |aN | > |aN |.

This implies the sequence of terms {ak} fails to have limit 0, and the sequence
diverges by the term test.
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If r < 1 we choose a t such that r < t < 1. Since (6.2.2) holds, there is an
N such that

|ak+1|
|ak|

< t whenever n ≥ N.

Then, for k > N ,

|ak| =
|ak|

|ak−1|
|ak−1|
|ak−2|

· · · |aN+2|
|aN+1|

|aN+1|
|aN | |aN | < tk−N |aN |.

Thus, |ak| < tk
|aN |
tN

whenever k > N . By comparison with the geometric series

with ratio t, the series converges.

The ratio test tends to work well on series where the terms ak involve prod-
ucts of an increasing number of factors – things like factorials. These are gen-
erally more difficult to attack with the root test than with the ratio test.

Example 6.2.7. Does the series
∞
∑

k=1

k!

kk
converge? Why?

Solution: We apply the ratio test.

r = lim
(k + 1)!

(k + 1)k+1
÷ k!

kk
= lim

(k + 1)!kk

(k + 1)k+1k!

= lim

(

k

k + 1

)k

= lim
1

(1 + 1/k)k
=

1

e
< 1.

Hence, the series converges by the ratio test.

For many series, the ratio test and the root test work equally well. However,
the ratio test is not applicable in many situations where the root test works
well.

Example 6.2.8. Prove that the series 1/3 + 1/22 + 1/33 + 1/24 + 1/35 + · · ·
converges.

Solution: This one can easily be done using the comparison test. However,
it is instructive to see how attempts to use the ratio test and root test work out.
The ratio test doesn’t work, because the successive ratios are

3/4, 4/27, 27/16, 16/243, 243/64 · · · ,

and this sequence of numbers has no limit.
On the other hand, the root test yields that ρ is the lim sup of the sequence

1/3, 1/2, 1/3, 1/2, 1/3, · · · .

That is, ρ = 1/2. Therefore, the series converges by the root test.
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Exercise Set 6.2

In each of the following eight exercises, determine whether the indicated series
converges. Justify your answer by indicating what test to use and then carrying
out the details of the application of that test.

1.
∞
∑

k=2

1

k ln k
.

2.

∞
∑

k=1

ln k

k2

3.
∞
∑

k=1

k2k

3k
.

4.
∞
∑

k=0

5k

k!
.

5.
∞
∑

k=1

k

(3 + (−1)k)k
.

6.

∞
∑

k=1

k!

4k
.

7.
∞
∑

k=1

√
k

k2 − k + 2
.

8.
∞
∑

k=1

k e−
√
k.

9. Verify the integral formulas (6.2.1) used in the proof of the Integral Test.

10. Prove that if

∞
∑

k=1

ak and

∞
∑

k=1

bk are convergent series and c is a constant,

then
∞
∑

k=1

cak and
∞
∑

k=1

(ak + bk)are also convergent. Furthermore,

∞
∑

k=1

cak = c

∞
∑

k=1

ak, and

∞
∑

k=1

(ak + bk) =
∞
∑

k=1

ak +
∞
∑

k=1

bk.
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11. Prove that if

∞
∑

k=1

ak conveges absolutely and {bk} is a bounded sequence,

then

∞
∑

k=1

akbk also converges absolutely.

12. Prove that if
∞
∑

k=1

ak and
∞
∑

k=1

bk are series and ak = bk except for finitely

many values of k, then the two series either both converge or they both
diverge.

6.3 Absolute and Conditional Convergence

By Corollary 6.1.10, if a series converges absolutely, then it converges. The
converse is not true. As we shall see, it is possible for a series to converge even
though the corresponding series of absolute values does not converge.

Definition 6.3.1. A series which converges, but does not converge absolutely
is said to converge conditionally.

Thus, a conditionally convergent series is one which converges, but its cor-
responding series of absolute values does not converge. For examples of condi-
tionally convergent series, we turn to alternating series.

Alternating Series

An alternating series is one in which the terms alternate in sign – each positive
term is followed by a negative term and vice-verse. Under reasonable additional
conditions, such a series will converge.

Theorem 6.3.2. (Alternating Series Test) Let {ak} be a non-increasing
sequence of non-negative numbers which converges to 0. Then the series

∞
∑

k=1

(−1)k+1ak = a1 − a2 + a3 − a4 + · · ·

converges. In fact, if sn is the nth partial sum of this series and s = lim sn,
then

|s− sn| ≤ an+1 for all n.

Proof. Since {ak} is a non-increasing sequence of non-negative numbers, we
have ak − ak+1 ≥ 0 for all k. For n odd, this means

sn+1 ≤ sn+1 + an+2 = sn+2 = sn − (an+1 − an+2) ≤ sn.

That is,
sn+1 ≤ sn+2 ≤ sn for odd n.
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Similarly,
sn ≤ sn+2 ≤ sn+1 for even n.

Thus, s2 ≤ s3 ≤ s1 and, after that, each term of the sequence {sn} lies between
the previous two terms. It follows that

s2 ≤ s4 ≤ s6 ≤ · · · ≤ s2n ≤ s2n+1 ≤ · · · s5 ≤ s3 ≤ s1.

Hence, the subsequence of {sn} consisting of terms with odd index n forms a
non-increasing sequence which is bounded below, while the subsequence of terms
with even index n forms a non-decreasing sequence which is bounded above.
These two monotone, bounded sequences converge, and they must converge to
the same limit s because

|sn+1 − sn| = an+1

and the sequence {an} converges to 0. Since s is between sn and sn+1 for each
n, this also shows that

|s− sn| ≤ an+1,

as claimed.

An alternating p-series is a series of the form

1 − 1

2p
+

1

3p
− · · · + (−1)k−1 1

kp
+ · · · .

where p > 0.

Example 6.3.3. Show that each alternating p-series with 0 < p ≤ 1 converges
conditionally.

Solution: The alternating p-series satisfies the conditions of the alternating
series test, since {1/kp} is a decreasing sequence which converges to 0. Thus,
the alternating p-series converges for all p > 0. However, the ordinary p-series
∞
∑

k=1

1

kp
diverges if p ≤ 1 (Example 6.2.2). Thus, the alternating p-series con-

verges conditionally for 0 < p ≤ 1.

In particular, the alternating harmonic series

1 − 1

2
+

1

3
− 1

4
+ · · · + (−1)k−1 1

k
+ · · ·

converges conditionally.

Absolute verses Conditional Convergence

Absolute convergence is a much stronger condition than conditional conver-
gence. The importance of the concept of absolute convergence stems from the
fact that, if the terms of an absolutely convergent series are rearranged to form
a new series, then the new series converges to the same number as the origi-
nal series (Theorem 6.3.5 below). This is not true of conditionally convergent
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series – in fact, it fails spectacularly. A conditionally convergent series can be
rearranged so as to diverge to ∞ or −∞ or to converge to any given number
(Theorem 6.3.4 below).

By a rearrangement of a series
∞
∑

k=1

ak we mean a series of the form
∞
∑

j=1

ak(j),

where k(j) is a one-to-one function from N onto N. In other words, the rear-
ranged series has exactly the same terms as the original series, but arranged in
a different order.

Theorem 6.3.4. A conditionally convergent series has, for each extended real
number L, a rearangement that converges to L.

Proof. If

∞
∑

k=1

ak is a conditionally convergent series, then by Exercise 6.3.7, the

series of positive terms of this series diverges, as does the series of negative
terms. Since the series of positive terms diverges, its sequence of partial sums is
unbounded and, hence, has limit ∞. Similarly, for the series of negative terms,
the partial sums have limit −∞.

We will prove the theorem in the case where L is a real number. The cases
where L is ∞ or −∞ are left to the exercises.

Given a number L, we will define a sequence {bj} inductively in the following
way: We let b1 be the first positive term in {ak} if 0 < L and the first non-
positive term in {ak} if L ≤ 0. Suppose b1, b2, · · · , bn have been chosen. We
set

sn =
n
∑

j=1

bj

and choose bn+1 according to the following rule: If sn < L we choose bn+1 to
be the first positive term in {ak} that has not already been used. If L ≤ sn we
choose bn+1 to be the first non-positive term in {ak} that has not already been

used. This defines the sequence {bj} inductively. The series
∞
∑

j=1

bj defined in

this way has the following properties:
(1) Each successive partial sum sn is either as close or closer to L than

its predecessor sn−1, or one of them is less than L and the other is greater
than or equal to L. In the latter case, the distance from sn to L is less than
|sn − sn−1| = |bn|. We call n a crossing integer in this case.

(2) There are infinitely many crossing integers. Our description of
∞
∑

j=1

bj

involves adding successive positive terms until we reach or exceed L and then
adding successive non-positive terms until we fall below L. Since the series of
positive terms and the series of negative terms both diverge, no matter where
a given partial sum lies we will always be able to add enough of the remaining
positive terms to reach or exceed L or add enough of the remaining non-positive
terms to fall below L. Thus, crossing L will occur infinitely often.
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(3) All the terms of {ak} are used in constructing the sequence {bj}, since
at each step we are selecting the first positive term not already chosen or the
first non-positive term not already chosen and both cases occur infinitely often.
Thus, each ak will be chosen eventually. Also, at each stage we only choose
from the terms not already chosen, and so each ak will be used just once. This
means that the sequence {bj} is a rearrangement of the sequence {ak}.

(4) Since
∞
∑

k=1

ak converges, we have lim ak = 0, and this implies lim bj = 0

also. This is proved as follows: If ǫ > 0, there is an N such that |ak| < ǫ
whenever k > N . However, if we choose M to be an integer such that, by
stage M in our construction all the terms a1, a2, · · · , aN have been chosen, then
j > M implies that bj is not one of these terms and, hence, is a term ak with
k > N . This, in turn, implies that |bj | < ǫ.

Now (1) and (2) and (4) imply that lim sn = L. That is, the crossing integers
define a subsequence of {sn} (by (2)) that is converging to L ( by (1) and (4) )
and, between two successive crossing integers, the sequence {sn} stays at least
as close to L as it was at the first crossing integer of the pair (by (1)).

Thus,
∞
∑

k=1

bk is a rearrangement of
∞
∑

k=1

ak which converges to L.

The above theorem illustrates that a conditionally convergent series is a
rather unstable object, since its sum is dependent on the order in which the
terms are added. On the other hand, an absolutely convergent series is quite
stable in the sense that the sum is always the same regardless of the order in
which the terms are summed. That is the content of the next theorem.

Theorem 6.3.5. Each rearrangement of an absolutely convergent series con-
verges to the same number as the original series.

Proof. Let
∞
∑

k=1

ak be an absolutely convergent series which converges to the

number s. Since this series is absolutely convergent, the series
∞
∑

k=1

|ak| also

converges to a number t. The difference between t and the nth partial sum of
this series is ∞

∑

k=n+1

|ak|.

Because the partial sums converge to t, given ǫ > 0, there is an N such that
∞
∑

k=n+1

|ak| < ǫ/2 for all n > N. (6.3.1)

We fix one such n, and we also choose it to be large enough so that
∣

∣

∣

∣

∣

s−
n
∑

k=1

ak

∣

∣

∣

∣

∣

< ǫ/2. (6.3.2)
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Now suppose

∞
∑

j=1

bj is a rearrangement of

∞
∑

k=1

ak. Then bj = ak(j) for some

one-to-one function k(j) of N onto N. Let J be the largest value of j for which
k(j) ≤ n. Then the terms a1, a2, · · · , an of the original series all appear as terms

in the partial sum
m
∑

j=1

bj as long as m ≥ J . For such an m, the expression

m
∑

j=1

bj −
n
∑

k=1

ak

is a finite sum of terms ak with k > n. By (6.3.1) and the triangle inequality,
such a sum must have absolute value less than ǫ/2. This, combined with (6.3.2),
implies that

∣

∣

∣

∣

∣

∣

s−
m
∑

j=1

bj

∣

∣

∣

∣

∣

∣

< ǫ whenever m ≥ J.

Hence, the series
∞
∑

j=1

bj also converges to s.

Products of Series

In calculus we are taught how to multiply two power series. The formula for
doing this relies on the following result, which requires that the two series be
absolutely convergent (see Exercise 6.3.12).

Theorem 6.3.6. Let
∞
∑

k=0

ak and
∞
∑

j=0

bj be two absolutely convergent series.

Then
( ∞
∑

k=0

ak

)





∞
∑

j=0

bj



 =
∞
∑

n=0

n
∑

k=0

akbn−k, (6.3.3)

where the series on the right also converges absolutely.

Proof. Consider the set S = {akbj : j, k ∈ N}. The numbers in this set can be
displayed in an infinite array or matrix as follows:

a0b0 a1b0 a2b0 · · · anb0 · · ·
a0b1 a1b1 a2b1 · · · anb1 · · ·
a0b2 a1b2 a2b2 · · · anb2 · · ·

...
...

... · · ·
... · · ·

a0bn a1bn a2bn · · · anbn · · ·
...

...
... · · ·

... · · ·

(6.3.4)
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The sum of the absolute values of the members of any finite subset of this
set is less than

M =

( ∞
∑

k=0

|ak|
)





∞
∑

j=0

|bj |



 =
∞
∑

j=0

∞
∑

k=0

|akbj |.

Since M is finite, this means that, given any series formed by summing the
elements of S in some order, the corresponding series of absolute values will
have partial sums bounded above by M . Such a series must converge. Thus,
each series formed by summing the elements of S in some order will be absolutely
convergent, and all such series will converge to the same number by the previous
theorem.

One series formed by summing the elements of S is

a0b0 + a0b1 + a1b1 + a1b0 + a0b2 + a1b2 + a2b2 + a2b1 + a2b0 + · · · .

That is, in the array (6.3.4), for succesive values of n, we sum from left to right
along the nth row to the main diagonal and then along nth column from the
main diagonal back to the top row. The n2 partial sum of this sequence is

(

n
∑

k=0

ak

)





n
∑

j=0

bj



 =
n
∑

j=0

n
∑

k=0

akbj .

This sequence of numbers converges to the left side of equation (6.3.3).
Another way of summing the numbers in the set S yields the series

∞
∑

n=0

n
∑

k=0

akbn−k.

This is obtained by summing the array (6.3.4) along diagonals of the form
k + j = n for successive values of n. The resulting sum is the right side of
equation (6.3.3). Since these two series must sum to the same number by the
previous theorem, Equation (6.3.3) is true.

Exercise Set 6.3

In each of the next five exercises, determine whether the given series converges
absolutely, converges conditionally, or diverges. Justify your answer.

1.
∞
∑

k=1

(−1)k

k1/3
.

2.
∞
∑

k=1

(−1)k+1

k2
.
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3.

∞
∑

k=2

(−1)k

ln(k)
.

4.
∞
∑

k=1

(−1)k−1 2k

2k + k2
.

5.
∞
∑

k=1

(−1)k−1

k2+(−1)k
.

6. Give an example of two convergent series
∞
∑

k=1

ak and
∞
∑

k=1

bk such that the

series
∞
∑

k=1

akbk diverges.

7. If

∞
∑

k=1

ak is a series, we set a+
k = ak if ak > 0 , a+

k = 0 if ak ≤ 0

and a−k = ak if ak < 0, a−k = 0 if ak > 0. Prove that if the series is

conditionally convergent, then both
∞
∑

k=1

a−k and
∞
∑

k=1

a+
k diverge.

8. Approximate the sum of the alternating harmonic series

1 − 1

2
+

1

3
− 1

4
+ · · · + (−1)n−1 1

n
+ · · ·

to within .01 by computing an appropriate partial sum. You will need a
calculator or computer.

9. For the alternating harmonic series of the preceding exercise, follow the
procedure used in the proof of Theorem 6.3.4 to rearrange the series so
that it converges to

√
2. Carry out this procedure until the partial sum

of your new series is within .02 of
√

2. You will need a calculator or a
computer.

10. Show how to modify the proof of Theorem 6.3.4 to cover the cases L = ∞
and L = −∞.

11. The geometric series
∞
∑

k=0

2−k converges to 2. Use the product formula of

Theorem 6.3.6 to show that the series
∞
∑

k=0

(k + 1)2−k converges to 4.

12. Show that the product formula in Theorem 6.3.6 may fail to be true if
the series involved are not absolutely convergent. Hint: consider the case

where both series are
∞
∑

k=0

(−1)k√
k + 1

.



160 CHAPTER 6. INFINITE SERIES

6.4 Power Series

One of the most useful and widely used techniques of modern mathematics is
that of expressing a complicated function as the sum of a series of simple func-
tions. Examples include power series, Fourier series, and various eigenfunction
expansions for differential equations. All involve series whose terms are func-
tions rather than numbers.

Series of Functions

Consider a series of the form

∞
∑

k=1

fk(x) = f1(x) + f2(x) + f3(x) + · · · + fk(x) + · · · , (6.4.1)

where I is an interval in R and each of the functions fk(x) is a function defined
on I. For each fixed value of x ∈ I, this is just an ordinary series of numbers
and it may or may not converge. The series may converge for some values of
x and not for others. On the subset of I for which the series does converge, it
defines a new function

g(x) =

∞
∑

k=1

fk(x).

This function is the limit of the sequence of functions

gn(x) =
n
∑

k=1

fk(x)

obtained by taking the partial sums of the series.
There are many questions one can ask about this situation: if the functions

fk(x) are continuous or differentiable, is the same thing true of the function g
that the series converges to? Can we integrate the function g over a subinterval
of I by integrating the series term by term? When can we differentiate g by
differentiating the series term by term? We can give satisfactory answers to a
couple of these questions right away.

Definition 6.4.1. We say a series of functions (6.4.1) converges uniformly to
g on I if its sequence of partial sums {gn} converges uniformly to g.

Theorem 6.4.2. If each fk is a continuous function on I and the series (6.4.1)
converges uniformly to g on I, then g is also continuous on I.

Proof. If the series (6.4.1) converges uniformly to g on I, then its sequence of
partial sums {gn} converges uniformly to g on I. Each gn is a finite sum of
functions fk which are continuous on I and, hence, is also continuous on I.
Since the limit of a uniformly convergent sequence of continuous functions is
continuous (Theorem 3.4.4) , we conclude that g is continuous on I.
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The proof of the next theorem is very similar – the theorem follows directly
from the analogous result about integrating the uniform limit of a sequence of
functions (Exercise 5.2.13). We leave the details to the exercises.

Theorem 6.4.3. If each fk is continuous on [a, b] and the series (6.4.1) con-
verges uniformly to g on [a, b], then

∫ b

a

g(x) dx =
∞
∑

k=1

∫ b

a

fk(x) dx.

This means, in particular, that the series on the right converges.

Weierstrass M-test

The following is a test for uniform convergence of a series. It follows from an
analogous test for uniform convergence of sequences (Theorem 3.4.6).

Theorem 6.4.4. (Weierstrass M-test) A series of functions (6.4.1) on an
interval I converges uniformly on I if there is a convergent series of positive
terms ∞

∑

k=1

Mk

such that |fk(x)| ≤Mk for all x ∈ I and all k ∈ N.

Proof. By the comparison test, at each x the series (6.4.1) converges to a number
g(x). If

gn(x) =
n
∑

k=1

fk(x)

then

|g(x) − gn(x)| =
∣

∣

∣

∣

∣

∞
∑

k=n+1

fk(x)

∣

∣

∣

∣

∣

≤
∞
∑

k=n+1

|fk(x)|

≤
∞
∑

k=n+1

Mk = S − Sn

where S and Sn are the sum and nth partial sum of the series
∑∞
k=1Mk. Since

this series converges, lim(S −Sn) = 0. The theorem now follows from Theorem
3.4.6.

Example 6.4.5. Analyze the Fourier Series

∞
∑

k=1

coskx

k2
,

using the preceding three theorems.
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Solution: We have

∣

∣

∣

∣

coskx

k2

∣

∣

∣

∣

≤ 1

k2
for all x ∈ R. The series

∞
∑

k=1

1

k2
converges,

since it is a p-series with p > 1. Thus, it follows from the Weierstrass M -test

that the series
∞
∑

k=1

cos kx

k2
converges uniformly on R. The function g that it

converges to is continuous on R by Theorem 6.4.2. On every bounded interval
[a, b], we have

∫ b

a

g(x) dx =
∞
∑

k=1

1

k2

∫ b

a

cos kxdx =
∞
∑

k=1

1

k3
(sinkb− sin ka),

also by Theorem 6.4.2.

Power Series

A power series centered at a is a series of the form

∞
∑

k=0

ck(x− a)k (6.4.2)

This is a series with terms ck(x − a)k which are very simple – they are simple
monomials in (x− a) and, hence, each is defined on all of R, is continuous and,
in fact, has derivatives of all orders. The partial sums of a power series are
polynomials.

A power series may converge for some values of x and not for others. The
next theorem tells us a great deal about this question.

Theorem 6.4.6. Given a power series (6.4.2), let

R =
1

lim sup |ck|1/k
,

where we interpret R to be ∞ (resp. 0) if lim sup |ck|1/k is 0 (resp.∞).
If R > 0, then the series (6.4.2) converges for each x with |x − a| < R

and diverges for each x with |x − a| > R. Furthermore, the series converges
uniformly on every interval of the form [a− r, a+ r] with 0 < r < R. If R = 0,
then the series converges only when x = a.

Proof. We first suppose R > 0. Given any r > 0, we have

lim sup |ckrk|1/k = r lim sup |ck|1/k =
r

R
. (6.4.3)

Now suppose |x − a| = r > R. Then |ck(x − a)k| = |ck|rk and the series
(6.4.2) diverges, by (6.4.3) and the root test.

On the other hand, if r < R and |x − a| ≤ r, then |ck(x− a)k| ≤ |ck|rk. In

this case
∞
∑

k=1

|ck|rk converges, by the root test and (6.4.3). Then the Weierstrass
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M-test implies that the series (6.4.2) converges uniformly on the closed interval
[a− r, a + r] = {x : |x− a| ≤ r}.

The uniform convergence of (6.4.2) on [a− r, a + r] for every r < R implies
that the series converges on (a − R,a + R), since for every x in this interval,
there is an r < R such that x is also in the interval [a− r, a+ r].

If R = 0 – that is, if lim sup |ck|1/k = ∞ – then the only value of x that will
lead to lim sup |ck(x − a)k|1/k < 1 is x = a. Thus, the power series converges
only at x = a in this case.

The above theorem tells us that the convergence set for a power series (6.4.2)
is an interval of radius R = (lim sup |ck|1/k)−1, centered at a. The number R is
called the radius of convergence of the series. Since the theorem says nothing
when |x − a| = R, it does not tell us whether this interval is open, closed, or
half-open, half-closed, Each of these possibilities occurs.

Example 6.4.7. Give examples where the three possibilities mentioned in the
previous paragraph occur.

Solution The examples are

(a)
∞
∑

k=0

xk (b)
∞
∑

k=0

xk

k
(c)

∞
∑

k=0

xk

k2
.

In each case, the radius of convergence R is 1, since

1 = lim k1/k = (lim k1/k)2 = lim (k2)1/k.

When x = ±1, series (a) diverges by the term test, since its terms are all ±1;
thus, its interval of convergence is (−1, 1).

Series (b) is the harmonic series when x = 1 and the alternating harmonic
series when x = −1; thus, its interval of convergence is [−1, 1).

Series (c) is the p-series with p = 2 at x = 1 and the alternating p-series
with p = 2 when x = −1. Both series are convergent and so the interval of
convergence for (c) is [−1, 1].

Remark 6.4.8. Although the expression for the radius of convergence R, given
in the previous theorem, is useful because it makes sense regardless of the series,
it is often the case that the ratio test provides a more practical method for
calculating the radius of convergence of a power series.

Example 6.4.9. Find the radius of convergence of the power series

∞
∑

k=1

xk

k!
.

Solution: We apply the ratio test. We have

lim

∣

∣

∣

∣

xk+1

(k + 1)!

∣

∣

∣

∣

÷
∣

∣

∣

∣

xk

k!

∣

∣

∣

∣

= lim
|x|
k + 1

= 0

for all x. Thus, the series converges for all x and its radius of convergence is
+∞.
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Integration of Power Series

Since a power series centered at a, with radius of convergence R, converges
uniformly on each interval of the form [a− r, a+ r] with 0 < r < R, our earlier
theorems concerning continuity (Theorem 6.4.2) and term by term integration
(Theorem 6.4.3) apply. They lead to the following theorem.

Theorem 6.4.10. If f(x) =
∞
∑

k=0

ck(x− a)k on (a− R,a + R), where R is the

radius of convergence of this series, then f is continuous on (a−R,a+R) and

∫ x

a

f(t) dt =
∞
∑

k=0

ck
k + 1

(x− a)k+1, (6.4.4)

if x ∈ (a−R,a +R). The latter series also has radius of convergence R.

Proof. The continuity of f is a direct consequence of Theorem 6.4.2, while the
integral formula follows directly from Theorem 6.4.3 and the fact that

∫ x

a

(t− a)k dt =
(x− a)k+1

k + 1

The statement about radius of convergence is proved as follows: If we factor
(x− a) out of the series in (6.4.4), the remaining factor is

∞
∑

k=0

ck
k + 1

(x− a)k,

which clearly has the same convergence set and radius of convergence. By
Theorem 6.4.6, its radius of convergence is the inverse of

lim sup

( |ck|
k + 1

)1/k

= lim sup |ck|1/k lim
1

(k + 1)1/k
= lim sup |ck|1/k,

which is the radius of convergence of the original series. Here, the first equality
follows from Exercise 2.6.8, while the second equality follows from the fact that
lim(1 + k)1/k = 1 (a simple consequence of l’Hôpital’s Rule). Thus, the series
in (6.4.4) has the same radius of convergence as the original series.

Example 6.4.11. Find a power series in x which converges to ln(1 + x) in an
open interval centered at 0. What is the largest such open interval?

Solution: If |x| < 1, the geometric series
∞
∑

k=0

xk converges to
1

1 − x
. If we

replace x by −t in this series, the result is

1

1 + t
=

∞
∑

k=0

(−t)k for |t| < 1.
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If we integrate with respect to t from 0 to x, then it follows from the previous
theorem that

ln(1 + x) =
∞
∑

k=0

(−1)k
xk+1

k + 1
=

∞
∑

k=1

(−1)k−1x
k

k
.

for |x| < 1. The radius of convergence of this series is (lim sup(1/k)1/k)−1 = 1
and so (−1, 1) is the largest open interval on which this series converges to
ln(1 + x).

Differentiation of Power Series

We may also differentiate power series term by term.

Theorem 6.4.12. If f(x) =

∞
∑

k=0

ck(x− a)k on (a− R,a + R), where R is the

radius of convergence of this series, then f is differentiable on (a − R,a + R)
and, on this interval,

f ′(x) =
∞
∑

k=1

kck(x− a)k−1. (6.4.5)

This series also has radius of convergence R.

Proof. We set

g(x) =
∞
∑

k=1

kck(x− a)k−1.

This series has the same radius of convergence as the series

∞
∑

k=1

kck(x− a)k = (x− a)
∞
∑

k=1

kck(x− a)k−1,

and that is

(lim sup |kck|1/k)−1 = (lim k1/k lim sup |ck|1/k)−1 = R,

since lim k1/k = 1.

To complete the proof, we just need to show that g is the derivative of f .
However, by the previous theorem,

∫ x

a

g(t) dt =

∞
∑

k=1

ck(x− a)k = f(x)− c0.

By the Second Fundamental Theorem, f ′(x) = g(x).
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Example 6.4.13. Find a power series in x which converges to
1

(1− x)2
on an

open interval centered at 0. What is the largest open interval on which this
power series expansion is valid?

Solution: As in the last example, we begin with the power series expansion

of
1

1 − x
on (−1, 1),

1

1 − x
=

∞
∑

k=0

xk.

If we differentiate, using the previous theorem, the result is

1

(1 − x)2
=

∞
∑

k=1

kxk−1 =
∞
∑

k=0

(k + 1)xk.

on (−1, 1). By the theorem, this series has radius of convergence 1. Thus,
(−1, 1) is the largest open interval on which this expansion is valid.

Exercise Set 6.4

1. Prove that the function f(x) =
∞
∑

k=1

xk

k2
is continuous on the interval [−1, 1].

2. Prove that the function f(x) =
∞
∑

k=1

sin kx

2k
is continuous on the entire real

line.

3. Let {fk} be a sequence of differentiable functions on (a, b) and suppose

there is a point c ∈ (a, b) such that the series

∞
∑

k=1

fk(c) converges. Suppose

also that the sequence of derivatives {f ′k} satisfies |f ′k(x)| ≤ Mk on (a, b)

and the series
∞
∑

k=1

Mk converges. Then prove that the series defining

f(x) =
∞
∑

k=1

fk(x) and g(x) =
∞
∑

k=1

f ′k(x)

converge on (a, b) and f is differentiable with derivative g on (a, b).

In each of the next five exercises, find the radius of convergence of the
indicated power series.

4.
∞
∑

k=1

1

k3k
xk.
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5.

∞
∑

k=0

(−1)k−1

k + 1
(x+ 2)k.

6.
∞
∑

k=1

1

k
√
k
xk.

7.
∞
∑

k=0

k!(x− 5)k.

8.
∞
∑

k=0

2kx2k.

9. Beginning with the geometric series which converges to
1

1 − x
on (−1, 1),

find power series which converge to
1

1 + x2
and to arctanx on this same

interval.

10. Prove that if f(x) is the sum of a power series centered at a and with radius
of convergence R, then f is infinitely differentiable on (a − R,a + R) –
that is, its derivative of order m exists on this interval for all m ∈ N.

11. Suppose functions g and h are defined by

g(x) = x+
x3

3!
+
x5

5!
+ · · · + x2n+1

(2n+ 1)!
+ · · ·

h(x) = 1 +
x2

2!
+
x4

4!
+ · · · + x2n

(2n)!
+ · · · .

Find the interval of convergence for each of these functions.

12. Prove that the functions in the previous exercise satisfy g′ = h and h′ = g.

13. Prove Theorem 6.4.3.

6.5 Taylor’s Formula

Definition 6.5.1. Suppose f is a function defined in an open interval containing
a. If there is a power series, centered at a, which converges to f in some open
interval centered at a, then we will say that f is analytic at a. If f is analytic
at every point of an open interval I, then we will say that f is analytic on I.

When can we expect that f is analytic at a? According to Exercise 6.4.10, if
f is the sum of a power series in some interval centered at a, then f is infinitely
differentiable in this interval (meaning its nth derivative exists for every n ∈ N).
Thus, in order for a function to be analytic at a it must be infinitely differentiable
in some interval centered at a. However, this is not enough. In fact Exercise
6.5.13 shows that there is a function which is infinitely differentiable in an open
interval centered at 0, but is not the sum of a power series centered at 0.
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Power Series Coefficients

If a function is analytic at a – that is, it has a power series expansion centered
at a, then it is easy to see what the coefficients of the power series expansion
must be.

Theorem 6.5.2. Suppose f(x) =
∞
∑

k=0

ck(x− a)k, where this series converges to

f(x) on an open interval containing a. Then cn =
f (n)(a)

n!
for each n.

Proof. We prove by induction that the nth derivative of f is

f (n)(x) =
∞
∑

k=n

k!

(k − n)!
ck(x− a)k−n. (6.5.1)

When n = 1, this just says that

f ′(x) =
∞
∑

k=1

kck(x− a)k−1,

which is true by Theorem 6.4.12.
If we assume that (6.5.1) is true for a given n, then by differentiating it and

again using Theorem 6.4.12, we obtain

f (n+1)(x) =

∞
∑

k=n

k!

(k − n)!
(k − n)ck(x− a)k−n−1

=
∞
∑

k=n+1

k!

(k − n− 1)!
ck(x− a)k−n−1.

Since this is (6.5.1) with n replaced by n+ 1, the induction is complete and we
conclude that (6.5.1) is true for all n ∈ N.

If we set x = a in (6.5.1), all terms vanish except for the first one (the one
where k = n). Thus,

f (n)(a) = n!cn or cn =
f (n)(a)

n!
.

Taylor’s Formula

The previous theorem tells us that the only power series, centered at a, that
could possibly converge to f(x) in an interval centered at a is the power series

∞
∑

k=0

fk(a)

k!
(x− a)k. (6.5.2)
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This is called the Taylor Series for f at a. The nth partial sum of this series,

f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · · + f (n)(a)

n!
(x− a)n

is called the nth Taylor polynomial for f at a. The function f is analytic at a
if and only if the sequence of Taylor polynomials for f converges to f in some
open interval centered at a. Taylor’s Formula helps decide whether this is true
by providing a formula for the remainder when f is approximated by its nth
Taylor polynomial.

Theorem 6.5.3. (Taylor’s Formula) Let f be a function which has continu-
ous derivatives up through order n+1 in an open interval I centered at a. Then,
for each x ∈ I,

f(x) = f(a) + f ′(a)(x− a) + · · · + f (n)(a)

n!
(x− a)n + Rn(x), (6.5.3)

where

Rn(x) =
f (n+1)(c)

(n+ 1)!
(x− a)(n+1), (6.5.4)

for some c between a and x.

Proof. This theorem is reminiscent of the Mean Value Theorem. In fact, in the
case n = 0, it is the Mean Value Theorem. It is not surprising that its proof
mimics the proof of the Mean Value Theorem.

We set

Rn(x) = f(x)− f(a)− f ′(a)(x− a) − · · · − f (n)(a)

n!
(x− a)n,

so that (6.5.3) holds. We then define a function s(t) on I by

s(t) = f(x)− f(t)− f ′(t)(x− t) − · · · − f (n)(t)

n!
(x− t)n −Rn(x)

(

x− t

x− a

)n+1

.

Then s(a) = s(x) = 0, and so there must be a critical point c for s somewhere
strictly between a and x. Since s is differentiable on I, this critical point must
be a point where s′ is 0 – that is, s′(c) = 0. In the calculation of s′, all the
terms cancel except two at the very end, leaving

0 = s′(c) = −f
(n+1)(c)

n!
(x− c)n + (n+ 1)Rn(x)

(x− c)n

(x− a)n+1
.

Equation (6.5.4) follows from this when we solve for Rn(x).

Example 6.5.4. Find the Taylor series expansion of ex at 0 and tell for which
values of x this expansion converges to ex.
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Solution: The function ex is infinitely differentiable on R with kth deriva-
tive equal to ex for all x. Thus, its kth derivative evaluated at 0 is 1 for all k.
Taylor’s Formula then tells us that

ex = 1 + x+
x2

2!
+ · · · + xn

n!
+ Rn(x),

where

Rn(x) = ec
xn+1

(n+ 1)!
,

for some c between 0 and x.

For all values of x and c, lim ec
xn+1

(n+ 1)!
= 0 (Exercise 6.5.1). This implies

that the Taylor polynomials for ex converge to ex for all x ∈ R – that is, the
Taylor series expansion

ex =
∞
∑

k=0

xk

k!
= ex = 1 + x+

x2

2!
+ · · · + xn

n!
+ · · · (6.5.5)

is valid for all x ∈ R.

Example 6.5.5. Find the Taylor series expansion of sinx at 0 and tell for
which values of x this expansion converges to sinx.

Solution: The function f(x) = sinx is infinitely differentiable on R and its
first 4 derivatives are

f ′(x) = cosx, f ′′(x) = − sin x, f ′′′(x) = − cosx, f (4)(x) = sinx.

Since f (4) = f , taking nth derivatives leads to f (n+4) = f (n) for every non-
negative integer n. Thus, at 0, the sin and its derivatives form the following
repeating sequence with period 4:

0, 1, 0,−1, 0, 1, 0,−1, 0, · · · .

Hence, Taylor’s formula for sin x at a = 0 is

x− x3

3!
+
x5

5!
− · · · + (−1)n

x2n+1

(2n+ 1)!
+R2n+2(x),

where

R2n+2(x) = sin(2n+3)(c)
x2n+3

(2n+ 3)!
for some c.

The reason we use R2n+2(x) rather than R2n+1(x) for the remainder (they are
actually equal, since the term of degree 2n+2 is 0 in Taylor’s Formula for sinx)
is that we get better estimates on the size of the remainder if we use R2n+2(x).

Since | sin(2n+3)(c)| ≤ 1, we have

|R2n+2(x)| ≤
|x|2n+3

(2n+ 3)!
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which implies that the remainder has limit 0 for all x (see Exercise 6.5.1). Thus,
the Taylor series expansion

sinx = x− x3

3!
+
x5

5!
− · · · + (−1)n

x2n+1

(2n+ 1)!
+ · · ·

is valid for all x ∈ R.

Example 6.5.6. Find an estimate for the error if sinx is approximated by
x − x3/3! for x in the interval [−π/4, π/4]. By an estimate for the error, we
mean an upper bound for the error which is as close to the actual error as
possible without going to extraordinary effort.

Solution: By the previous example, the difference between sinx and its
third degree Taylor polynomial has absolute value less than or equal to

|x|5
5!

≤ (π/4)5

5!
< .003 for − π/4 ≤ x ≤ π/4.

Lagrange’s Form for the Remainder

The following integral formula for the remainder in Taylor’s Formula sometimes
leads to better estimates on the size of the remainder than does the usual form.

Theorem 6.5.7. If f is a function with continuous derivatives up through order
n + 1 on an open interval I containing a and x, then the remainder Rn(x) in
Taylors formula for f at a can be written as

Rn(x) =
1

n!

∫ x

a

(x− t)nf (n+1)(t) dt (6.5.6)

Proof. We prove (6.5.6) by induction on n with the base case being n = 0. In
the case where n = 0, Taylor’s formula is

f(x) = f(a) +R0(x) so that R0(x) = f(x)− f(a).

Equation (6.5.6) in this case is

f(x) − f(a) =

∫ x

a

f ′(t) dt,

which is just the Fundamental Theorem of Calculus. Thus, (6.5.6) holds when
n = 0.

For the induction step, we assume (6.5.6) holds for a given n and proceed
to prove that it then holds for n + 1. If we apply integration by parts to the
integral on the right side of (6.5.6), the result is

Rn(x) =
f (n+1)(a)

(n+ 1)!
(x− a)n+1 +

1

(n+ 1)!

∫ x

a

(x− t)n+1f (n+2)(t) dt.

Since, Rn+1(x) = Rn(x) −
f (n+1)(a)

(n+ 1)!
(x − a)n+1, this proves (6.5.6) holds with

n replaced by n+ 1, thus completing the induction step.
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Example 6.5.8. Find a power series expansion for f(x) = (1 + x)p which is
valid on (−1, 1), where p is any real number.

Solution: The derivatives of f are

p(1 + x)p−1, p(p− 1)(1 + x)p−2, · · · , p(p− 1) · · · (p− n+ 1)(1 + x)p−n · · · .

The nth derivative evaluated at 0 is p(p − 1) · · · (p − n + 1). Thus, Taylor’s
formula for f is

(1 + x)p = 1 + px+
p(p− 1)

2
x2 + · · · + p(p− 1) · · · (p− n+ 1)

n!
xn +Rn(x),

where

Rn(x) =
p(p− 1) · · · (p− n)

n!

∫ x

0

(x− t)n

(1 + t)n+1−p dt,

if we use Lagrange’s form of the remainder. However, since t is between 0 and
x, t and x have the same sign, and this implies that

∣

∣

∣

∣

x− t

t+ 1

∣

∣

∣

∣

≤ |x|. (6.5.7)

(Exercise 6.5.9). From this, we conclude that

|Rn(x)| ≤ p(p− 1) · · · (p− n)

n!
|x|n

∫ x

0

(1 + t)p−1 dt.

This is just the constant

∫ x

0

(1 + t)p−1 dt times the absolute value of the nth

term in the power series

1 + px+
p(p− 1)

2
x2 + · · · + p(p− 1) · · · (p− n+ 1)

n!
xn + · · · , (6.5.8)

which happens to be the Taylor series for (1 + x)p at 0. If we can show that
this series converges when |x| < 1, then the Term Test implies its sequence of
terms converges to 0 and, by the above, this shows that the remainder Rn(x)
converges to 0 and, hence, that this series converges to (1 + x)p when |x| < 1.

We prove that (6.5.8) converges on (−1, 1) by using the Ratio Test. For the
absolute value of the ratio of term n+ 1 to term n, we get

|p − n|
n+ 1

|x|

which has limit |x| as n → ∞. Hence, the series (6.5.8) converges for |x| < 1
and it converges to (1 + x)p.

Note that when p is a positive integer, the series (6.5.8) terminates at n = p,
that is, all terms with n > p are zero and Taylor’s Formula for (1 + x)p at 0,
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with n ≥ p is just

(1 + x)p = 1 + px+
p(p− 1)

2
x2 + · · · + p(p− 1) · · · (p− p+ 1)

p!
xp

=

p
∑

k=0

p!

k!(p− k)!
xk,

(6.5.9)

which is the Binomial Theorem (Theorem 1.2.12) with a = 1 and b = x. The Bi-
nomial Theorem for general a and b can be deduced from this (Exercise 6.5.14).

Exercise Set 6.5

1. Prove that lim
xn

n!
= 0 for all x.

2. Find the Taylor Series expansion for cosx at 0 and show that it converges
for all x.

3. Use Taylor’s Formula to estimate the error if cosx is approximated by

1 − x2

2
on the interval [−.1, .1].

4. What is the smallest n for which we can be sure that

1 + 1 +
1

2
+

1

3!
+ · · · + 1

n!

is within .001 of e?

5. What is Taylor’s Formula for the function f(x) =
√

1 + x with a = 0?

6. What is Taylor’s Formula for the function f(x) = x3 − x2 − 4x + 4 with
a = 1?

7. What is Taylor’ Formula for ln(1+x) with a = 0. Compare with Example
6.4.11.

8. Use the binomial series with p = −1/2 to get a power series expansion for
1√

1 − x
valid on (−1, 1). Use this to get power series expansions for first

1√
1 − x2

, and then arcsinx on this same interval.

9. Prove that if x ∈ (−1, 1) and t is between 0 and x (so that t and x have
the same sign and |t| ≤ |x| < 1), then

∣

∣

∣

∣

x− t

t + 1

∣

∣

∣

∣

≤ |x|.

10. Verify the computation of s′ given in the proof of Theorem 6.5.3.
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11. Prove that if f is an infinitely differentiable function on (a− r, a+ r) and
there is a constant K such that

|f (n)(x)| ≤ K
n!

rn

for all n ∈ N and all x ∈ (a− r, a + r), then the Taylor Series for f at a
converges to f on (a− r, a + r).

12. Use l’Hôpital’s Rule to show that lim
x→0

e−1/x2

xn
= 0 for every n.

13. If g(x) = e−1/x2

for x 6= 0 and g(0) = 0, show that g is infinitely differ-
entiable on the entire real line, but all of its derivatives at 0 are equal to
0. Argue that this means that g cannot be analytic at 0. Hint: use the
previous exercise to help compute the derivatives of g at 0.

14. Prove that the Binomial Formula (Theorem 1.2.12) for a general a and b
follows from the Taylor Series expansion (6.5.9) of (1+x)p for p a positive
integer.

15. Give a new proof that ex ey = ex+y by using the Taylor series expansion
for ex (6.5.5) and the product formula of Theorem 6.3.6. You will also
need to use the binomial formula.



Chapter 7

Convergence in Euclidean
Space

With this chapter we begin our study of calculus in several variables. The first
task is to define Rd – Euclidean space of dimension d. We will then study
convergence of sequences of points in this space and introduce the concepts of
open and closed sets. These are generalizations to Rd of the concepts of open
and closed intervals in R. In the final two sections we introduce the concepts
of compact sets and connected sets. These are also generalizations to Rd of
properties of intervals in R. These ideas will be of fundamental importance
when we study continuous functions on Rd in the next chapter.

In order to define and study convergence and continuity, we don’t need to use
all of the properties of Rd – only the ones derived from the concept of distance
between points. A set together with a well behaved notion of distance between
pairs of points is called a metric space. In the coming pages, we will give a more
precise definition of metric space and point out how many of the definitions and
theorems we develop in this chapter are valid, not only in Rd, but in any metric
space.

7.1 Euclidean Space

The space Rd is defined to be the set of all d-tuples of real numbers, where,
by a d-tuple of real numbers, we mean an ordered set (x1, x2, · · · , xd) of d real
numbers. It is ordered because the numbers are listed in a certain order and, if
this order is changed, then the new d-tuple is different from the old one (unless
the change of order just interchanges identical numbers). For example, (5, 0, 7)
and (0, 5, 7) are different 3-tuples and, hence, different points of R3.

The spaces R2 and R3 are familiar from calculus. The space R2 is the set of
all ordered pairs (x1, x2) of real numbers, while R3 is the set of ordered triples
(x1, x2, x3) of real numbers. Often points of R2 are denoted (x, y) rather than
(x1, x2) and points of R3 are denoted (x, y, z) rather than (x1, x2, x3).

175
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The Vector Space Rd

We will often refer to a point of Rd as a vector in Rd, while a point of R will
often be refered to as a scalar.

There are natural operations of addition of vectors in Rd and multiplication
of vectors by scalars. That is, if x = (x1, x2, · · · , xd) and y = (y1, y2, · · · , yd)
are vectors in Rd, and a is a scalar, then we set

x+ y = (x1 + y1, x2 + y2, · · · , xd + yd)

and

ax = (ax1, ax2, · · · , axd).

The zero vector (also called the origin of Rd) is the vector

0 = (0, 0, · · · , 0).

Note that we use the same symbol, 0, to stand for both the scalar 0 and the
vector 0 ∈ Rd. This shouldn’t cause any confusion, since it will always be
obvious from the context which is meant.

Given a vector x = (x1, x2, · · · , xd) in Rd, the components of x are the
numbers x1, x2, · · · , xd. The jth component is the number xj . Two vectors are
identical if and only if their jth components are identical for j = 1, 2, · · · , d.

As noted in the next theorem, addition in Rd satisfies the associative and
commutative laws and 0 has the appropriate properties. Also, scalar multipli-
cation satisfies an associative law and two distributive laws.

Theorem 7.1.1. Let u, v,w be points of Rd and a and b real numbers. Then

(a) u+ (v + w) = (u+ v) + w;

(b) u+ v = v + u;

(c) 0 + u = u;

(d) 0u = 0 and 1u = u;

(e) a(bu) = (ab)u;

(f) (a+ b)u = au+ bu;

(g) a(u+ v) = au+ av.

Proof. Each statement asserts that two vectors are identical. Thus, each can
be proved by proving that the jth components of the two vectors are identical
for each j. In each case, this follows immediately from the definitions and the
fact that R satisfies the field axioms A1 - A4, M1 - M4, and D (see Section
1.3).
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A set together with operations of addition and scalar multiplication (where
the scalars belong to some field F ), satisfying the properties listed in the above
theorem, is called a vector space over F (see Section 1.3 for the definition of a
field). Hence, Rd is a vector space over the field R.

Using only the vector space axioms listed in Theorem 7.1.1, one can easily
derive all of the properties of general vector spaces.

Example 7.1.2. Using only the properties listed in Theorem 7.1.1, prove that
if x is an element of a vector space, then (−1)x is an additive inverse for x.
That is, prove that x+ (−1)x = 0.

Solution: By Theorem 7.1.1 (d) and (f) we have

x+ (−1)x = (1 + (−1))x = 0x = 0.

In view of this example, (−1)x is an additive inverse for x and so it makes
sense to denote it simply by −x.

Other properties of vector spaces will be derived in the exercises.

Inner Product

Definition 7.1.3. The Euclidean inner product of two vectors u = (u1, · · · , ud)
and v = (v1, · · · , vd) in Rd is the real number

u · v = u1v1 + u2v2 + · · · + udvd. (7.1.1)

This has the following simple properties. The proof is left to the exercises.

Theorem 7.1.4. If u, v,w ∈ Rd and a ∈ R, then

(a) u · v = v · u;
(b) (u+ v) ·w = u · w + v ·w;

(c) (au) · v = a(u · v);
(d) u · u > 0 unless u = 0 in which case u · u = 0.

More generally, a function from pairs of vectors to scalars which satisfies (a)
through (d) above is called an inner product on the vector space. A vector space
together with an inner product on that vector space is called an inner product
space. Thus, Rd is an inner product space with the inner product described in
Definition 7.1.3.

There are other inner products on Rd. For example, if each term ujvj in
(7.1.1) is replaced by ajujvj , where a1, · · · , ad are positive scalars, then the
resulting sum defines a new inner product which is different from the original
unless all the aj ’s are 1. In this text, the only inner product on Rd that we will
use is the Euclidean inner product as define in (7.1.1).

Using (a) and (c) of Theorem 7.1.4, we easily show that u · (av) = a(u · v).
Thus, for a scalar a and vectors u and v, there is no ambiguity if we simply
write au · v in place of any one of the three equal products

a(u · v), (au) · v, u · (av).
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Example 7.1.5. If X is an inner product space, x, y ∈ X and a, b ∈ R, then
calculate the inner product of ax+ by with itself.

Solution: By (b) and (c) of the previous theorem, we have

(ax+ by) · (ax+ by) = ax · (ax+ by) + by · (ax+ by).

By (a), (b), and (c) we have

ax · (ax+ by) = a2x · x+ abx · y,
by · (ax+ by) = abx · y + b2y · y.

Combining these yields

(ax+ by) · (ax+ by) = a2x · x+ 2abx · y + b2y · y.

Components of a Vector

We will typically denote by ej the vector consisting of the d-tuple with all entries
0 except for the jth entry which is 1. Thus, ej = (0, 0, · · · , 0, 1, 0, · · · , 0) with
the 1 occurring in the jth position. Note that

ej · ek = δjk,

where δjk is 1 if j = k and is 0 otherwise. This means that {ej}nj=1 is an

orthonormal set in Rd.
Note that if x = (x1, x2, · · · , xd) ∈ Rd, then the jth component xj of x is

given by xj = x · ej for j = 1, · · · , d.

Example 7.1.6. Show that each vector in Rd is a unique linear combination
of the vectors ej for j = 1, · · · , d.

Solution: If x = (x1, x2, · · · , xd), then

x =

d
∑

j=1

xj ej =

d
∑

j=1

(x · ej)ej.

This is one way of expressing x as a linear combination of the ej ’s. On the other
hand, if

x =
d
∑

j=1

ajej

is any such linear combination, then for k = 1, · · · , d,

xk = x · ek =

d
∑

j=1

ajej · ek = ak,

since ej · ek = 1 if j = k and is 0 other wise. Thus the coefficients aj must be
the numbers xj .
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Norm and Distance

Definition 7.1.7. In an inner product space, we define the norm ||x|| of a
vector x to be the number

||x|| =
√
x · x.

The distance between two vectors x and y is defined to be ||x − y||.
Note that, by Theorem 7.1.4 (d), the norm of a vector is always non-negative

and is zero only if the vector is the zero vector . Thus, the distance between two
vectors is always non-negative and is zero if and only if the vectors are equal.

In calculus, it is often shown that for two vectors u and v in R2 or R3 the
inner product satisfies

u · v = ||u|| ||v|| cos θ,

where θ is the angle between u and v. Since | cos θ| ≤ 1, this implies that

|u · v| ≤ ||u|| ||v||.

As we show below, this inequality is true in Rd and, in fact, in any inner product
space. In this generality it is known as the Cauchy-Schwarz inequality.

Theorem 7.1.8. (Cauchy-Schwarz Inequality) If X is an inner product
space, then

|u · v| ≤ ||u|| ||v||
for all u, v ∈ X.

Proof. If we take the inner product of a vector with itself, the result is non-
negative by (d) of Theorem 7.1.4. Thus, if u and v are vectors in X and t ∈ R

is a scalar, then

0 ≤ (tu+ v) · (tu+ v) = t2u · u+ 2tu · v + v · v = at2 + 2bt+ c,

where a = u · u = ||u||2, b = u · v, and c = v · v = ||v||2. The expression on the
right is a quadratic function of t which is never negative. This means that the
quadratic equation

at2 + 2bt+ c = 0

has at most one real root (since the graph of at2 + 2bt + c cannot cross the
t-axis). By the quadratic formula, the roots of this equation are

−b±
√

b2 − ac.

Since there cannot be two real roots, it must be the case that b2 ≤ ac. On
taking the square root of both sides of this inequality, we obtain the inequality
of the theorem.

Let u and v be vectors in an inner product space. In view of the above

theorem, the number
u · v

||u||||v|| is always between −1 and 1 and, hence, is the

cosine of some angle θ with 0 ≤ θ ≤ π. This leads to the following extension to
arbitrary inner product spaces of the notion of the angle between two vectors.
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Definition 7.1.9. With u, v and θ as above, we will call θ the angle between
u and v. This angle is π/2 if and only if u · v = 0. In this case we will say that
u and v are mutually orthogonal and write u ⊥ v.

The Triangle Inequality

The triangle inequality is just the vector space version of the statement that
the length of one side of a triangle is always less than or equal to the sum of
the lengths of the other two sides. It is stated more precisely in part (a) of the
following theorem.

Theorem 7.1.10. If X is an inner product space, x, y ∈ X, and a ∈ R, then

(a) ||x + y|| ≤ ||x|| + ||y||;

(b) ||ax|| = |a| ||x||;

(c) ||x|| = 0 implies x = 0.

Proof. Using Example 7.1.5 and the Cauchy-Schwarz inequaltiy, we have

||x + y||2 = (x+ y) · (x+ y) = ||x||2 + 2x · y + ||y||2

≤ ||x||2 + 2||x|| ||y|| + ||y||2 = (||x|| + ||y||)2.

Part (a) of the theorem follows from this on taking square roots. Parts (b) and
(c) follow from (c) and (d) of Theorem 7.1.4.

Suppose u, v, and w are points in a vector space X. Then ||u− v||, ||v −w||,
and ||u − w|| are the lengths of the sides of the triangle with vertices at u, v,
and w. If we apply part (a) of the previous theorem to the vectors x = u − v
and y = v − w, the result is the inequality

||u− w|| ≤ ||u − v|| + ||v − w||, (7.1.2)

which says that a side of a triangle always has length less than or equal to the
sum of the lengths of the other two sides.

Norms in General

The norm induced by an inner product is just one type of norm on a vector
space. In general, a norm on a vector space X is a non-negative function || · ||
which satisfies (a), (b), and (c) of the previous theorem. A normed vector space
is a vector space X together with a norm on X. There are norms on Rd which
are different from the Euclidean norm (the norm induced by the Euclidean inner
product).

Definition 7.1.11. If x = (x1, x2, · · · , xd) ∈ Rd, we set

1. ||x||1 = |x1| + |x2| + · · · + |xd|;
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2. ||x||∞ = max{|x1|, |x2|, · · · , |xd|}.

Example 7.1.12. Show that || · ||1 is a norm on Rd.
Solution: If x = (x1, x2, · · · , xd) and y = (y1, y2, · · · , yd), then

||x + y||1 =
n
∑

j=1

|xj + yj | ≤
n
∑

j=1

(|xj| + |yj |),

by the triangle inequality for R. The sum on the right is equal to

d
∑

j=1

|xj | +
d
∑

j=1

|yj | = ||x||1 + ||y||1 .

Thus, || · ||1 satisfies the triangle inequality ((a) of Theorem 7.1.10).
If a ∈ R, then

||ax||1 =
d
∑

j=1

|axj | =
d
∑

j=1

|a| |xj | = |a| ||x||1 .

Thus, || · ||1 also satisfies (b). That (c) holds as well is obvious, since ||x||1 = 0
implies that xj = 0 for each j and, hence, that x = 0.

We leave to the exercises, the problem of showing that || · ||∞ is also a norm
on Rd.

Theorem 7.1.13. The three norms we have defined on Rd are related as follows:

d−1||x||1 ≤ ||x||∞ ≤ ||x|| ≤ ||x||1

for each x ∈ Rd.

The proof of this is also left to the exercises.

The Normed Vector Space C(I)

In mathematics we deal with a great many normed vector spaces. One that does
not look at all like Rd is the space C(I), where I is a closed bounded interval on
the real line, and C(I) is the vector space of all continuous real valued functions
on I. Addition is pointwise addition of functions and scalar multiplication is
multiplication of a function by a constant. It is easy to see that C(I) is a vector
space under these two operations (Exercise 7.1.10). There are many norms that
can be put on this vector space, but perhaps the most useful is the sup norm,
|| · ||∞, defined by

||f ||∞ = sup
I

|f(x)|, (7.1.3)

for f ∈ C(I). The problem of showing that this is a norm is left to the exercises.
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Exercise set 7.1

1. For the vectors x = (1, 0, 2) and y = (−1, 3, 1) in R3 find

(a) 2x+ y;

(b) x · y;
(c) ||x|| and ||y||;
(d) the cosine of the angle between x and y;

(e) the distance from x to y.

2. Using only the properties listed in Theorem 7.1.1, prove that if u, v,w are
vectors in a vector space and u+ w = v + w, then u = v.

3. Using only the properties listed in Theorem 7.1.1, prove that if u is a
vector in a vector space, a is a scalar, and au = 0, then either a = 0 or
u = 0.

4. Prove Theorem 7.1.4.

5. Prove the second form of the triangle inequality. That is, prove that

|||x|| − ||y||| ≤ ||x− y||

holds for any pair of vectors x, y in a normed vector space. Hint: use the
first form (Theorem 7.1.10(a)) to prove the second form.

6. Prove that equality holds in the Cauchy-Schwarz inequality (Theorem
7.1.8) if and only if one of the vectors u, v is a scalar multiple of the other.

7. For a norm on a vector space X, defined by an inner product as in Defi-
nition 7.1.7, prove that the parallelogram law:

||x + y||2 + ||x− y||2 = 2||x||2 + 2||y||2 ,

holds for all x, y ∈ X.

8. Prove that || · ||∞, as defined in Definition 7.1.11, is a norm on Rd.

9. Prove Theorem 7.1.13

10. Prove that the space C(I), defined in the previous subsection, is a vector
space.

11. Prove that the sup norm as defined in 7.1.3 is really a norm on C(I).

12. Prove that if {xk} and {yk} are sequences of real numbers such that

∞
∑

k=1

x2
k < ∞ and

∞
∑

k=1

y2
k <∞, then

∞
∑

k=1

|xkyk| <∞.

Hint: what can you say about the corresponding finite sums?
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13. Find a non-zero vector in R3 which is orthogonal to both (1, 0, 2) and
(3,−1, 1).

14. Prove that if u and v are vectors in an inner product space and u ⊥ v,
then ||u + v||2 = ||u||2 + ||v||2.

7.2 Convergent Sequences of Vectors

In this section we study convergence of sequences of vectors in Rd. The def-
initions and theorems in this topic are very similar to those of Chapter 2 on
sequences of numbers.

Metric Spaces

As long as we are working in a space with a reasonable notion of distance
between points, we can define and study convergent sequences and continuous
functions. Such a space is called a metric space. The precise conditions for a
space to be a metric space are defined below.

Definition 7.2.1. Let X be a set and δ a function which assigns to each pair
(x, y) of elements of X a non-negative real number δ(x, y). Then δ is called a
metric on X if, for all x, y, z ∈ X, the following conditions hold:

(a) δ(x, y) = δ(y, x);

(b) δ(x, y) = 0 if and only if x = y; and

(c) δ(x, z) ≤ δ(x, y) + δ(y, z).

A set X, together with a metric δ on X is called a metric space.

Conditions (a) and (b) above are called the symmetry and identity condi-
tions, while condition (c) is the triangle inequality for metric spaces.

We will show that Rd is a metric space, as is any normed vector space.

Theorem 7.2.2. If X is a normed vector space, then X is a metric space if its
metric δ is defined by

δ(x, y) = ||x − y||.
In particular, Rd is a metric space in the Euclidean norm, as is C(I) in the sup
norm.

Proof. Parts (a), (b), and (c) of Theorem 7.1.10 are satisfied by the norm in
any normed vector space. Part (b) with a = −1 implies that ||x− y|| = ||y−x||
and so δ is symmetric. Part (c) implies that ||x − y|| = 0, if and only if x = y,
and so δ satisfies the identity condition. Part (a) implies (7.1.2), which shows
that δ satisfies the triangle inequality. Thus, δ is a metric on X.



184 CHAPTER 7. CONVERGENCE IN EUCLIDEAN SPACE

Remark 7.2.3. If X is a metric space with metric δ and Y is any subset of X,
then Y is also a metric space with the same metric δ. Thus, any subset of Rd

is also a metric space if it is given the usual Euclidean metric.

There are a great many metric spaces other than subsets of Rd that are
important in mathematics. We will explore some of these in the exercises.

Remark 7.2.4. The following statements summarize the relationship between
the types of spaces we have introduced so far:

1. Rd is an inner product space;

2. every inner product space is a normed vector space, with norm defined by
||x|| =

√
x · x;

3. every normed vector space is a metric space, with metric defined by
δ(x, y) = ||x − y||.

Sequences

The definition of convergence for a sequence {xn} in Rd should look familiar:

Definition 7.2.5. If {xn} is a sequence of vectors in Rd and x ∈ Rd, then we
say {xn} converges to x if for every ǫ > 0 there is an N ∈ R such that

||x − xn|| < ǫ whenever n ≥ N.

In this case, we write limn→∞ xn = x or lim xn = x or simply xn → x.

Note that we do not require the N that appears in this definition to be an
integer.

Note also that the only thing we use about Rd in making this definition is
the notion of distance between points in Rd. Quite clearly, the same definition
can be made for any metric space X if we just replace ||x − xn|| by δ(x, xn),
where δ is the metric on X. Thus, the definition of convergence for a sequence
in a general metric space is the following:

Definition 7.2.6. Let X be a metric space with metric δ. If {xn} is a sequence
in X and x ∈ X, then we say {xn} converges to x if for every ǫ > 0 there is an
N ∈ R such that

δ(x, xn) < ǫ whenever n ≥ N.

In this case, we write limn→∞ xk = x or lim xn = x or simply xn → x.

We will not try to prove everything in this section in the context of general
metric spaces; after all, the object of study here is Rd. However, we will point
out some theorems we prove for Rd that can be proved in general metric spaces
or normed vector spaces or inner product spaces, and some of the exercises will
be devoted to verifying these claims.
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Example 7.2.7. Let xn = (1/n2, 1 + 1/n) ∈ R2. Use Definition 7.2.5 to prove
that the sequence {xn} converges to x = (0, 1).

Solution: We have x− xn = (−1/n2,−1/n) and so

||x − xn|| =
√

1/n4 + 1/n2 ≤
√

2/n2 =
√

2/n.

Thus, given ǫ > 0, if we choose N =
√

2/ǫ, then

||x − xn|| <
√

2/n ≤
√

2/N = ǫ whenever n ≥ N.

This completes the proof that lim xn = x.

Many limit proofs for sequences in Rd follow the same pattern as in the
above example. We showed that ||x − xn|| <

√
2/n and then used the fact

that
√

2/n can be made less than ǫ by making n large enough – that is, we
used the fact that lim

√
2/n = 0. We can save some effort in future proofs by

formalizing in a theorem the method that was used here. The theorem is a
vector version of Theorem 2.3.1. In fact, it follows immediately from Theorem
2.3.1 and the fact (obvious from the definition of limit) that lim xn = x if and
only if lim ||xn − x|| = 0.

Theorem 7.2.8. Let {xn} be a sequence in Rd and let x be a vector in Rd. If
there is a sequence {an} of non-negative real numbers such that

||x− xn|| ≤ an for all n

and if lim an = 0, then lim xn = x.

Note that, since the proof of this theorem uses nothing about Rd but the
existence of a metric and the definition of limit, it holds in any metric space (if
||x− xn|| is replaced by δ(x, xn)).

Example 7.2.9. If xn = (e−n sinn, e−n) ∈ R2, prove that lim xn = 0. Solu-
tion: We have

||xn − 0|| = ||xn|| =

√

e−2n(sin2 n+ 1) ≤ 2 e−n = 2/ en .

Since, lim 2/ en = 0, the previous theorem tells us that lim xn = 0.

Limit Theorems

The following theorem says that the limit of a sequence, if it exists, is unique.
Its proof is identical to the proof of Theorem 2.1.6. We won’t repeat it here.
The analogous theorem for metric spaces is also true and also has the same
proof.

Theorem 7.2.10. If {xn} is a sequence in Rd and x, y ∈ Rd with xn → x and
xn → y, then x = y.
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Theorem 7.2.11. If lim xn = x for a sequence {xn} in Rd, then lim ||xn|| =
||x||.

Proof. The second form of the triangle inequality tells us that

|||x|| − ||xn||| ≤ ||x− xn||.

If lim xn = x, then the sequence of numbers on the right converges to 0. It
follows that the one on the left also converges to 0. Thus, lim ||xn|| = ||x||.

The next theorem is the vector version of the Main Limit Theorem (Theorem
2.3.6) for sequences of real numbers.

Theorem 7.2.12. If {xn} and {yn} are sequences of vectors in Rd and an is
a sequence of scalars, and if xn → x ∈ Rd, yn → y ∈ Rd and an → a, then

(a) xn + yn → x+ y;

(b) anxn → ax; and

(c) xn · yn → x · y.

Proof. (a) By the triangle inequality, we have

||x + y − (xn + yn)|| ≤ ||x − xn|| + ||y − yn||.

Since xn → x and yn → y we have that ||x−xn|| → 0 and ||y− yn|| → 0. Thus,
||x−xn||+ ||y−yn|| → 0 and it follows from Theorem 7.2.8 that xn+yn → x+y.

(b) We have

||ax − anxn|| = ||a(x− xn) + (a− an)xn|| ≤ |a| ||x − xn|| + |a− an| ||xn ||.

Since ||x − xn|| → 0, |a− an| → 0 and ||xn|| → ||x|| (by the previous theorem),
the expression on the right converges to 0. Hence, by Theorem 7.2.8 again,
lim anxn = ax.

(c) The proof of this is similar to the proof of (b). The details are left to the
exercises.

Note that the proofs of (a) and (b) above use only properties of Rd that
are also true in any normed vector space, and so they hold in this much more
general context. The proof of (c) uses only properties of Rd that hold in any
inner product space and so (c) is true in any inner product space.

The next theorem tells us that a sequence of vectors converges if and only
if it converges componentwise.

Theorem 7.2.13. A sequence {xn} in Rd converges to x ∈ Rd if and only each
component of {xn} converges to the corresponding component of x – that is, if
and only if lim xn · ej = x · ej for j = 1, · · · , d.
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Proof. If limn→∞ xn = x, then limn→∞ xn · ej = x · ej for each j by Theorem
7.2.12, part (c).

To prove the converse, we suppose limn→∞ xn · ej = x · ej for each j. We
note that this implies that limn→∞ |(xn − x) · ej | = 0 for each j. We have,

||xn − x|| =





d
∑

j=1

|(xn − x) · ej |2




1/2

.

Each term in the sum on the right converges to 0 and, hence, the sum and its
square root also converge to 0. We conclude that lim xn = x.

The Bolzano-Weierstrass Theorem

The conclusion of the Bolzano-Weierstrass Theorem from Chapter 2 (Theorem
2.5.5) also holds for bounded sequences in Rd. A sequence in Rd is bounded if
there is a number M such that ||xn|| ≤M for all n.

Theorem 7.2.14. (Bolzano-Weierstrass Theorem) Each bounded sequence
in Rd has a convergent subsequence.

Proof. We will prove this by induction on the dimension d of the Euclidean
space. It is, of course, true for d = 1 by the single variable version of the
Bolzano-Weierstrass Theorem (Theorem 2.5.5).

Suppose d > 1 and the theorem is true for Euclidean space of dimension
d − 1. Let {xn} be a bounded sequence in Rd. Then there is an M ∈ R such
that ||xn|| ≤M for all n.

We identify Rd with the Cartesian product Rd−1×R. This is the space of all
pairs (y, z), where y ∈ Rd−1 and z ∈ R. That is, if x = (x1, · · · , xd) ∈ Rd, then
we identify x with the pair (y, z), where y = (x1, x2, · · · , xd−1) and z = xd. If
this is done, notice that

||y|| ≤ ||x|| and |z| ≤ ||x||.

Thus, if we write each element of the sequence {xn} in the form xn = (yn, zn) ∈
Rd−1 × R, then ||yn|| ≤ ||xn|| ≤ M and |zn| ≤ ||xn|| ≤ M . This implies that
the sequences {yn} and {zn} are both bounded.

By the induction assumption, the sequence {yn} has a convergent subse-
quence {yni

}. The corresponding subsequence {zni
} of the sequence {zn} is

still bounded, and so it has a convergent subsequence. By replacing {yni
} by

a (still convergent) subsequence of itself, we may assume that {zni
} itself con-

verges.
The component sequences of {xnj

} are those of {ynj
}, which all converge

since {ynj
} converges, and the sequence {zni

}, which converges. Thus, {xni
}

converges since all of its component sequences converge.
We conclude that every bounded sequence in Rd has a convergent subse-

quence. This completes the induction and finishes the proof of the theorem.
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Cauchy Sequences

Cauchy sequences in Rd are defined in the same way as Cauchy sequences of
numbers were defined in Definition 2.5.7.

Definition 7.2.15. A sequence {xn} in Rd is said to be a Cauchy Sequence if,
for every ǫ > 0, there is an N such that

||xn − xm|| < ǫ whenever n,m ≥ N.

The following theorem is proved using the Bolzano-Weierstrass Theorem in
exactly the same way its single variable counterpart (Theorem 2.5.8) was proved.
We won’t repeat the proof.

Theorem 7.2.16. A sequence {xn} in Rd is a Cauchy sequence if and only if
it converges.

To prove directly from the definition that a certain sequence converges, it is
necessary to have in hand the element to which it converges. On the other hand,
the definition of a Cauchy sequence involves only the elements of the sequence.
Hence, the above theorem provides a way to prove that a sequence converges
without having already identified the limit.

Clearly, Cauchy sequences can be defined in any metric space – simply re-
place “||xn−xm||” in the above definition by “δ(xn, xm)”, where δ is the metric.
However, the analogue of Theorem 7.2.16 is not true in general for metric spaces.
A metric space in which it is true is said to be complete. Thus, Rd is a complete
metric space. An example of a metric space which is not complete follows.

Example 7.2.17. Let the interval (0, 1) be considered a metric space with the
usual distance between points as metric. Show that this is not a complete metric
space.

Solution: The sequence {1/n} is a Cauchy sequence since it converges in
R to the point 0. However, since 0 /∈ (0, 1), this sequence does not converge in
the metric space (0, 1). Hence, (0, 1) is not a complete metric space.

Exercise Set 7.2

1. Using only the definition of the limit of a sequence in Rd prove that

lim

(

n

1 + n
,
1 − n

n

)

= (1,−1).

In each of the next four problems, determine whether or not the sequence
{xn} converges and find its limit if it does converge. Use limit theorems
to justify your answers.

2. xn =

(

n2 + n− 1

3n2 + 2
,
n− 1

n+ 1

)

.
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3. xn = (1 + (−1)n, 1/n, 1 + 1/n).

4. xn = (2−n sin(nπ/4), 2−n cos(nπ/4));

5. xn = (ln(n+ 1)− lnn, sin(1/n)).

6. Let {xn} and {yn} be sequences in Rd. Prove that if lim xn = 0 and {yn}
is bounded, then lim xn · yn = 0.

7. Let {xn} be a bounded sequence in Rd and an a bounded sequence of
scalars. Prove that if either sequence has limit 0, then so does the sequence
{anxn}.

8. Prove that every convergent sequence in Rd is bounded.

9. If xn = (sinn, cosn, 1 + (−1)n), does the sequence {xn} in R3 have a
convergent subsequence? Justify your answer.

10. Prove part (c) of Theorem 7.2.12.

11. If xn = (1/n, sin(πn/2)), find three convergent subsequences of {xn} which
converge to three different limits.

12. If, for x, y ∈ R, we set δ(x, y) = 0 if x = y and δ(x, y) = 1 if x 6= y, prove
that the result is a metric on R. Thus, R with this metric is a metric space
– one that is quite different from R with the usual metric.

13. What are the convergent sequences in the metric space described in the
previous exercise.

14. Let a and b be points of R2 and letX be the set of all smooth parameterized
curves joining a to b in R2 , with parameter interval [0, 1]. That is, X is
the set of all continuously differentiable functions γ : [0, 1] → R2, with
γ(0) = a and γ(1) = b. Show that if

δ(γ1, γ2) = sup{||γ1(t)− γ2(t)|| : t ∈ [0, 1]},

then δ is a metric on X.

15. Show that the metric space of the previous exercise is not complete.

16. Let S be the surface of a sphere in R3. For x, y ∈ S let δ(x, y) be the
length of the shortest path on S joining x to y. Show that this is a metric
on S.

17. Imagine a large building with many rooms. Let X be the set of rooms in
this building and let δ(x, y) be the length of the shortest path along the
hallways and stairways of the building that leads from room x to room y.
Show that δ is a metric on X.
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7.3 Open and Closed Sets

The open ball Br(x0) and closed ball Br(x0), centered at x0 ∈ Rd, with radius
r > 0, are defined by

Br(x0) = {x ∈ Rd : ||x − x0|| < r} and Br(x0) = {x ∈ Rd : ||x − x0)|| ≤ r}.

Of course, open and closed balls centered at a given point and with a given
radius may be defined in any metric space – one simply uses the metric distance
δ(x, x0) in place of the distance ||x − x0|| defined by the norm in Rd.

Open intervals and closed intervals on the real line play an important part
in the calculus of one variable. Open and closed balls are the direct analogues
in Rd of open and closed intervals on the line. However, the geometry of Rd

is much more complicated than that of the line. We will need the concepts of
open and closed for sets that are far more complicated than balls. This leads to
the following definition.

Definition 7.3.1. If U is a subset of Rd, we will say that U is open if, for each
point x ∈ U , there is an open ball centered at x which is contained in U . We
will say that a subset of Rd is closed if its complement is open. A neighborhood
of a point x ∈ Rd is any open set which contains x.

It might seem obvious that open balls are open sets and closed balls are
closed sets. However, that is only because we have chosen to call them open
balls and closed balls. We actually have to prove that they satisfy the conditions
of the preceding definition. We do this in the next theorem.

Theorem 7.3.2. In Rd,

(a) the empty set ∅ is both open and closed;

(b) the whole space Rd is both open and closed;

(c) each open ball is open;

(d) each closed ball is closed.

Proof. The empty set ∅ is open because it has no points, and so the condition
that a set be open, stated in Definition 7.3.1, is vacuously satisfied. The set Rd

is open because it contains any open ball centered at any of its points. Thus,
∅ and Rd are both open. Since they are complements of one another, they are
also both closed.

To prove (c), we suppose Br(x0) is an open ball and y is one of its points.
Then ||y − x0|| < r and so, if we set s = r − ||y − x0||, then s > 0. Also, if
x ∈ Bs(y), then ||x− y|| < s and so

||x − x0|| ≤ ||x − y|| + ||y − x0|| < s + ||y − x0|| = r,

which means x ∈ Br(x0) (see Figure 7.1). Thus, we have shown that, for each
y ∈ Br(x0), there is an open ball, Bs(y), centered at y, which is contained in



7.3. OPEN AND CLOSED SETS 191

Figure 7.1: Proving Theorem 7.3.2 (c) and (d).

Br(x0). By definition, this means that Br(x0) is open. This completes the proof
of (c).

To prove (d), we consider a closed ballBr(x0). To prove that it is a closed set,
we must show its complement is open. Suppose y is a point in its complement.
This means y ∈ Rd but y /∈ Br(x0), and so ||y − x0|| > r. This time we set
s = ||y − x0|| − r and we claim that the open ball Bs(y) is contained in the
complement of Br(x0). In fact, if x ∈ Bs(y), then ||x − y|| < s and so, by the
second form of the triangle inequality (Theorem 2.1.2 (b))

||x − x0|| ≥ ||y − x0|| − ||x − y|| > ||y − x0|| − s = r,

which means x is in the complement of Br(x0). Thus, we have proved that each
point of the complement of Br(x0) is the center of an open ball contained in the
complement of Br(x0). This proves that this complement is open, hence, that
Br(x0) is closed.

The above theorem holds in any metric space and it has the same proof.
The same thing is true of the next theorem. It tells us that the collection of all
open subsets of Rd forms what is called a topology for Rd. A topology for a space
X is a collection of sets which are declared to be the open sets of the space.
This collection must contain the empty set and the space X and must have the
property that it is is closed under arbitrary unions and finite intersections. A
space X with a specified topology is called a topological space.

Theorem 7.3.3. In Rd,

(a) the union of an arbitrary collection of open sets is open;

(b) the intersection of any finite collection of open sets is open;

(c) the intersection of an arbitrary collection of closed sets is closed;

(d) the union of any finite collection of closed sets is closed.

Proof. If V is an arbitrary collection of open sets, and U =
⋃

V is its union,
then x is in U if and only if it is in at least one of the sets in V. Suppose, x ∈ V
with V in V. Then, since V is open, there is a ball Br(x), centered at x, which
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is contained in V . Since V ⊂ U , this ball is also contained in U . This proves
that U is open and completes the proof of (a).

Now suppose {V1, V2, · · · , Vn} is a finite collection of open sets and

x ∈ U = V1 ∩ V2 ∩ · · · ∩ Vn.

Then, since each Vk is open, there exists for each k a radius rk such that
Brk

(x) ⊂ Vk. If r = min{r1, r2, · · · , rn}, then Br(x) ⊂ Vk for every k, which
implies that Br(x) ⊂ U . It follows that U is open. This completes the proof of
(b).

The proofs of the corresponding statements (c) and (d) for closed sets follow
from those for open sets by taking complements. We leave the details to Exercise
7.3.5.

Remark 7.3.4. An easy consequence of the above theorem is that if U is open
and K is closed and if K ⊂ U , then the set theoretic difference U \K is open.
On the other hand, if U ⊂ K, then K \ U is closed (Exercise 7.3.6).

Example 7.3.5. If 0 < r < R, prove that the annulus

A = {x ∈ R2 : r < ||x|| < R},

is open.
Solution: The ball BR(0) is open, the ball Br(0) is closed, and A is the set

theoretic difference BR(0) \Br(0). Thus, by the previous remark, A is open.
A similar argument shows that an annulus of the form

{x ∈ R2 : r ≤ ||x|| ≤ R}.

is closed.

Interior, Closure, and Boundary

If E is a subset of Rd, then the union of all open subsets of E is open, by
Theorem 7.3.3. By construction, it is a subset of E which contains all open
subsets of E. Thus, every subset of Rd contains a largest open subset – that is,
an open subset which contains all other open subsets.

Similarly, the intersection of all closed sets containing E is a closed set
containing E and it is contained in every closed set containing E. Thus, it is
the smallest closed set containing E.

It is a consequence of this discussion that the following definition makes
sense.

Definition 7.3.6. Let E be a subset of Rd. Then:

(a) the largest open subset of E is called the interior of E and is denoted E◦;

(b) the smallest closed set containing E is called the closure of E and is
denoted E;
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Figure 7.2: The Set E of Example 7.3.8, its Interior Eo, and Closure E.

(c) the set E \ E◦ is called the boundary of E and is denoted ∂E.

Note that these concepts can be defined in exactly the same way in any
topological space and, in particular, in any metric space.

Recall that a neighborhood of a point x ∈ Rd is any open set containing x.
The proof of the following theorem is elementary and is left to the exercises.
This theorem also holds in any metric space.

Theorem 7.3.7. Let E be a subset of Rd and x an element of Rd. Then:

(a) x ∈ E◦ if and only if there is a neighborhood of x that is contained in E;

(b) x ∈ E if and only if every neighborhood of x contains a point of E;

(c) x ∈ ∂E if and only if every neighborhood of x contains points of E and
points of the complement of E.

Example 7.3.8. Find the interior, closure and boundary for the set

E = {(x, y) ∈ R2 : ||(x, y)|| < 1, y ≥ 0} ∪ {(0,−y) : y ∈ [0, 1]}.

Solution: It is immediate from the previous theorem that

E◦ = {(x, y) ∈ R2 : ||(x, y)|| < 1, y > 0, }
E = {(x, y) ∈ R2 : ||(x, y)|| ≤ 1, y ≥ 0} ∪ {(0,−y) : y ∈ [0, 1]},
∂E = {(x, y) ∈ R2 : ||(x, y)|| = 1, y ≥ 0} ∪ [−1, 1] ∪ {(0,−y) : y ∈ [0, 1]}.

See Figure 7.2

Sequences

The concepts of open and closed sets are intimately connected to the concept
of convergence of a sequence.



194 CHAPTER 7. CONVERGENCE IN EUCLIDEAN SPACE

Theorem 7.3.9. A sequence {xn} in Rd converges to x ∈ Rd if and only if,
for every neighborhood U of x, there is a number N such that xn ∈ U whenever
n ≥ N .

Proof. If for every neighborhoodU of x there is anN such that xn ∈ U whenever
n ≥ N , then this is true, in particular, for each neighborhood of the form Bǫ(x)
with ǫ > 0. This means that for each ǫ > 0 there is an N such that ||x−xn|| < ǫ
whenever n ≥ N . That is, lim xn = x.

Conversely, if lim xn = x and U is any neighborhood of x, we may choose
an ǫ > 0 such that the ball Bǫ(x) is contained in U . By the definition of
limit, for this ǫ there is an N such that ||x − xn|| < ǫ whenever n ≥ N . Then
xn ∈ Bǫ(x) ⊂ U whenever n ≥ N . This completes the proof.

Theorem 7.3.10. If A is a subset of Rd, then A is the set of all limits of
convergent sequences in A. The set A is closed if and only if every covergent
sequence in A converges to a point of A.

Proof. If x ∈ A, then each neighborhood of x contains a point of A by Theorem
7.3.7(b). In particular, each neighborhood of the form B1/n(x), for n ∈ N,
contains a point of A. We choose one and call it xn. Since ||x− xn|| < 1/n, the
sequence {xn} converges to x. Thus, each point in the closure of A is the limit
of a sequence in A.

Conversely, suppose x = lim xn for some sequence {xn} in A. By the pre-
vious theorem, each neighborhood of x contains points in this sequence. In
particular, each neighborhood of x contains a point of A. Hence, x ∈ A by
Theorem 7.3.7(b).

Since a set is closed if and only if it is its own closure, it follows that A is
closed if and only if it contains all limits of convergent sequences in A.

Exercise Set 7.3

1. Prove that the set {(x, y) ∈ R2 : y > 0} is an open subset of R2.

2. Prove that every finite subset of Rd is closed.

3. Find the interior, closure, and boundary for the set

{(x, y) ∈ R2 : 0 ≤ x < 2, 0 ≤ y < 1}.

4. Find the interior, closure, and boundary for the set

{(x, y) ∈ R2 : ||(x, y)|| < 1} ∪ {(x, y) ∈ R2 : y = 0, −2 < x < 2}.

5. Prove (c) and (d) of Theorem 7.3.3

6. Let A be an open set and B a closed set. If B ⊂ A, prove that A \ B is
open. If A ⊂ B, prove that B \A is closed.

7. Prove Theorem 7.3.7.
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8. If E is a subset of Rd, is the interior of the closure of E necessarily the
same as the interior of E? Justify your answer.

9. If A and B are subsets of Rd show that A ∪B = A ∪B. Is the analogous
statement true for A ∩B? Justify your answer.

10. If A and B are subsets of Rd, prove that (A ∩ B)◦ = A◦ ∩ B◦. Is the
analogous statement true for A ∪B? Justify your answer.

11. Let {xn} be a convergent sequence in Rd with limit x. Set

A = {x1, x2, x3, · · · } ∪ {x},

that is, A is the set consisting of all the points occuring in the sequence
together with the limit x. Show that A is a closed set.

12. Let {xn} be any sequence in Rd and let A be the set consisting of the
points that occur in this sequence. Prove that the closure of A consists of
A together with all limits of convergent subsequences of A.

13. Show that Theorem 7.3.10 remains true if Rd is replaced by any metric
space.

14. Find the interior and closure of the set Q of rationals in R.

15. If E is a subset of Rd, show that (E)c = (Ec)◦.

7.4 Compact Sets

In this section and the next, we study two topological properties, compactness
and connectedness, that a subset of Rd may or may not have. A topological
property of a set E is one that can be described using only knowledge of the
open sets of Rd and their relationship to E. Thus, they are properties that can
be defined in any toplological space. Compactness and connectedness are two
such properties.

Open Covers

An open cover of a set E ⊂ Rd is a collection of open sets whose union contains
E. An open cover of a set E may or may not have a finite subcover – that is,
there may or may not be finitely many sets in the collection which also form a
cover of E.

Example 7.4.1. The collection U of all open intervals of length 1/2 and with
rational endpoints is clearly an open cover of the interval [0, 1]. Show that it
has a finite subcover.

Solution: The three intervals (−1/8, 3/8), (1/4, 3/4), and (5/8, 9/8) belong
to U and they cover [0, 1].
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Example 7.4.2. The collection {(1/n, 1) : n = 1, 2, · · · } is a collection of open
sets which covers (0, 1). Does it have a finite subcover?

Solution: No. Since this collection of intervals is nested upward, any finite
subcollection has a largest interval (1/m, 1). Then the union of the sets in the
subcollection is just (1/m, 1) and this does not contain (0, 1).

Compactness

The above discussion leads to the following definition:

Definition 7.4.3. A subset K of Rd is called compact if every open cover of K
has a finite subcover.

Note that Example 7.4.2 shows that the open interval (0, 1) is not compact,
since it has an open cover with no finite subcover.

A subset E of Rd is bounded if there is a number R such that ||x|| ≤ R for
every x ∈ E – that is, if E ⊂ BR(0) for some R.

Theorem 7.4.4. Every compact subset K of Rd is bounded.

Proof. We have K ⊂ Rd = ∪nBn(0). This means that the open balls Bn(0) for
n = 1, 2, · · · form an open cover of K. Since K is compact, finitely many of
these balls must also form a cover of K. This implies K is contained in one these
balls, say Bm(0), since they form a sequence which is nested upward. Since K
is contained in Bm(0) ⊂ Bm(0), it is bounded.

Theorem 7.4.5. Every compact subset K of Rd is closed.

Proof. We will prove this by showing that K = K. If x ∈ K and n is a positive
integer, we let Un be the complement in Rd of B1/n(x). The union of the nested

sequence of open sets {Un} is Rd \ {x}.
If some finite subcollection of {Un} covers K then some one of these sets,

say Um, contains K. This means that B1/m(x) ∩K = ∅, which is impossible,

since x ∈ K. Because K is compact, this means that {Un} cannot be an open
cover of K. Since x is the only point of Rd not covered by {Un}, x must be in
K.

We conclude that K = K and K is closed.

The Heine-Borel Theorem

The last two theorems show that a compact subset of Rd is both closed and
bounded. The Heine-Borel Theorem says the the converse is also true – every
closed bounded subset of Rd is compact. Before we prove this, we prove the
following analogue of the Nested Interval Theorem (Theorem 2.5.1).

Theorem 7.4.6. If A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ An+1 ⊃ · · · is a nested sequence of
non-empty bounded closed subsets of Rd, then ∩nAn 6= ∅.
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Proof. Since each An is non-empty, we may choose a point xn ∈ An for each
n. These points are all in A1, which is bounded. Hence, {xn} is a bounded
sequence. By the Bolzano–Weierstrass Theorem (Theorem 7.2.14) this sequence
has a convergent subsequence {xnk

}. Let x be the limit of this subsequence.
Since A1 is closed and xnk

∈ A1 for every k, we have that x ∈ A1. In fact,
for each n, nk ≥ n if k ≥ n, and so, beginning with the nth term, each term
of the sequence {xnk

} belongs to An. Since An is closed, we have x ∈ An. We
conclude that x ∈ ∩nAn. Hence, ∩nAn 6= ∅.

In the proof of the following theorem, we will make use of the concept of an
d-cube in Rd. This is a set of the form C = I1 × I2 × · · · × Id, where each Ij
is a closed bounded interval in R of length L. The intervals Ij are called the
edges of C and the number L is called the edge length of C. Note that a 2-cube
is just a square in R2 with sides parallel to the coordinate axes, while a 3-cube
is a cube in R3 with edges parallel to the axes.

Theorem 7.4.7. (Heine-Borel Theorem) A subset of Rd is compact if and
only if it is closed and bounded.

Proof. We already know that every compact subset of Rd is closed and bounded.
Thus, to complete the proof we just need to show that every closed bounded
subset of Rd is compact.

Let K be a closed bounded subset of Rd and V an open cover of K. Suppose
V has no finite subcover. We will show that this leads to a contradiction.

Since K is bounded, it lies inside some d-cube C1. Let L be the edge length
of C1. By partitioning each edge of C1 at its midpoint, we may partition C1

into 2d d-cubes of edge length L/2. By intersecting each of these smaller cubes
with K, we partition K into finitely many subsets. If each of these is covered
by finitely many of the sets in V, then K itself is also. Since it is not, we
conclude that the intersection of K with at least one of these smaller d-cubes is
not covered by finitely many sets in V. Choose one and call it C2.

By continuing in this way (actually, by induction), we may construct a nested
sequence of d-cubes (see Figure 7.3)

C1 ⊃ C2 ⊃ · · · ⊃ Cn ⊃ Cn+1 ⊃ · · · ,

where, for each n, Cn is a closed d-cube of edge length L/2n−1 and with the
property that Cn ∩K cannot be covered by finitely many of the sets in V.

The sets Cn ∩K form a sequence of closed, bounded sets, nested downward,
as in the previous theorem. By that theorem ∩n(Cn ∩K) is not empty, Let x
be a point in this intersection. Then x ∈ K and, since V is an open cover of K,
there is some open set V in the collection V such that x ∈ V . Since V is open,
there is an open ball Br(x), centered at x, which is contained in V .

The diameter of Cn (maximum distance between two points of Cn) is less
than dL/2n−1. Hence, for large enough n, the diameter of Cn is less than
r. Then Cn must be contained in Br(x) since it contains x. This implies
that Cn ⊂ V . This is a contradiction, since Cn was chosen so that no finite
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Figure 7.3: Nested Cubes of Theorem 7.4.7

subcollection of the sets in V covers Cn ∩K. Thus, our assumption that K is
not covered by any finite subcollection of V has led to a contradiction.

We conclude that every open cover of K has a finite subcover and, hence,
that K is compact.

Corollary 7.4.8. Each closed subset of a compact set in Rd is also compact.

Proof. If A is closed and contained in a compact set K, then A is bounded
because K is bounded. Since A is closed and bounded, it is compact by the
Heine-Borel Theorem.

Applications of Compactness

The next chapter will contain a large number of applications of compactness to
function theory. The next example illustrates a technique that is often used in
such applications.

Example 7.4.9. Let K be a compact subset of Rd and let ρ be a function
defined on K with ρ(x) > 0 for each x ∈ K. Prove there exists a finite set of
points {x1, x2, · · · , xm} such that K is contained in the union of the open balls
Bρ(xi)(xi) for i = 1, 2, · · · ,m.

Solution: The collection of open sets {Bρ(x)(x) : x ∈ K} is an open cover
of K (since, for each y ∈ K, y ∈ Bρ(y)(y) ⊂ ∪{Bρ(x)(x) : x ∈ K}). Since K is
compact, there is a finite subcover {Bρ(xi)(xi) : i = 1, · · ·m}. This means K is
contained in the union of the Bρ(xi)(xi) for i = 1, 2, · · · ,m.

The next theorem is an application of this technique. It is a separation
theorem which shows that a compact set is separated from the complement of
any open set that contains it.
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Theorem 7.4.10. Suppose K is a compact subset and U an open subset of
Rd with K ⊂ U . Then there exists an open set V such that V is compact and
K ⊂ V ⊂ V ⊂ U .

Proof. Since U is open and contains K, for each x ∈ K there is an open ball
centered at x which lies in U . Then the ball, centered at x, of half this radius
has its closure contained in U . Let ρ(x)be the radius of this smaller ball. Then
x ∈ Bρ(x)(x) ⊂ Bρ(x)(x) ⊂ U . By the previous example, there are finitely many
points x1, · · · , xm such thatK is contained in the union V of the sets Bρ(xi)(xi).
The closure of V is contained in the compact set which is the union of the sets
Bρ(xi)(xi), and this is contained in U . Thus, V is compact, since it a closed

subset of a compact set, and K ⊂ V ⊂ V ⊂ U .

Compact Metric Spaces

Since compactness is a topological property, it makes perfectly good sense in
any metric space. The definition of a compact subset of a metric space X is
exactly the same as Definition 7.4.3 except that Rd is replaced by X. If the
space X itself is compact, then X is called a compact metric space.

Any compact subset of Rd is a compact metric space if it is considered a
space by itself and is given the same metric it has as a subset of Rd.

Exercise Set 7.4

1. If K is a compact subset of Rd and U1 ⊂ U2 ⊂ · · · ⊂ Uk ⊂ · · · is a
nested upward sequence of open sets with K ⊂ ∪kUk, then prove that K
is contained in one of the sets Uk.

2. Let K be a compact subset of Rd and A1 ⊃ A2 ⊃ · · · ⊃ Aj ⊃ · · · a nested
downward sequence of closed subsets of Rd. Show that if Ak ∩K 6= ∅ for
each k, then (∩kAk) ∩K 6= ∅.

3. Show that if K1 ⊃ K2 ⊃ · · · ⊃ Kj ⊃ · · · is a nested downward sequence of
compact sets and U is an open set which contains ∩jKj , then U contains
one of the sets Kj .

4. Prove that if K is a compact subset of Rd, then K contains a point of
maximal norm. That is, there is a point x1 ∈ K such that

||x|| ≤ ||x1|| for all x ∈ K.

Hint: Set m = sup{||x|| : x ∈ K} and consider the open balls Bm−1/n(0).

5. Prove that if K is a compact subset of Rd and y is a point of Rd which
is not in K, then there is a closest point to y in K. That is, there is an
x0 ∈ K such that

||x0 − y|| ≤ ||x− y|| for all x ∈ K.
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6. Prove that the conclusion of the previous exercise also holds if we only
assume thatK is a closed subset of Rd. Hint: replaceK by its intersection
with a suitably large closed ball centered at y.

7. Prove that if K1,K2 is a disjoint pair of compact sets, then there exists
a disjoint pair of open sets V1, V2 such that K1 ⊂ V1 and K2 ⊂ V2. Hint:
Use Theorem 7.4.10.

8. Prove that a set K ⊂ Rd is compact if and only if every sequence in K has
a subsequence which converges to an element of K. Hint: use the Bolzano
– Weierstrass and Heine–Borel Theorems.

9. Show that it is true that the union of any finite collection of compact
subsets of Rd is compact, but it is not true that the union of an infinite
collection of compact subsets is necessarily compact. Show the latter
statement by finding an example of an infinite union of compact sets which
is not compact.

10. Prove that if A and B are compact subsets of a metric space, then A∪B
and A ∩ B are also compact.

11. Prove that if X is a compact metric space, then every sequence in X has
a convergent subsequence.

12. Prove that if X is a compact metric space, then every closed subset of X
is also compact.

13. Prove that a compact metric space is complete (that is, every Cauchy
sequence converges).

14. We will say a metric space X is bounded if, for some M > 0 and x ∈ X,
the entire space X is contained in BM (x) = {y ∈ X : δ(x, y) ≤ M}. Show
that a compact metric space is bounded.

15. Consider the metric space of Exercise 7.2.12. Show that it is complete
and bounded, but not compact. Thus, the analogue of the Heine-Borel
Theorem does not hold in general metric spaces.

7.5 Connected Sets

Consider the three sets A, B, C described in Figure 7.4. Each of these sets is
the union of two closed discs of radius one in R2. In A the distance between the
centers of the two discs is greater than 2; in B it is less than 2 and in C it is
exactly 2. The point about these three sets that we wish to discuss is this: set
A is disconnected – one cannot pass from one of the discs making up this set to
the other without leaving the set. On the other hand, B and C are connected
– one can pass from any point in the set to any other point in the set without
leaving the set. As stated so far, these are not very precise ideas. The precise
definition of connectedness is as follows.
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Figure 7.4: Disconnected and Connected Sets

Definition 7.5.1. A subset E of Rd is said to be separated by a pair of open
sets U and V in Rd if

(a) E ⊂ U ∪ V ;

(b) (E ∩ U) ∩ (E ∩ V ) = ∅;

(c) E ∩ U 6= ∅, and E ∩ V 6= ∅.

If no pair of open subsets of Rd separatesE, then we will say that E is connected.

The above definition becomes somewhat simpler to state if we give a special
name to subsets of E of the form E ∩ U where U is an open set.

Definition 7.5.2. Let E be a subset of Rd. A subset A of E is said to be
relatively open (in E) if it has the form A = E ∩ U for some open subset U of
Rd. Similarly, a subset B is said to be relatively closed (in E) if it has the form
E ∩ C for some closed subset C of Rd.

Using these concepts, the definition of connecteness can be rephrased as
follows.

Remark 7.5.3. A subset E of Rd is connected if and only if it is not the disjoint
union of two non-empty relatively open subsets.

Connected Subsets of R

The connected subsets of R are easily characterized.

Theorem 7.5.4. A non-empty subset of R is connected if and only if it is an
interval.

Proof. Suppose E is a non-empty subset of R. Let

a = inf E and b = supE.

Now a and b may not be finite, but E is certainly contained in the interval
consisting of (a, b) together with {a} if a is finite and {b} if b is finite. The set
E will be an interval if and only if it contains (a, b).
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Suppose E is not an interval. Then there is an x ∈ (a, b) such that x /∈ E.
Then E is contained in the set (−∞, x) ∪ (x,∞). Furthermore, since a =
inf E and a < x, there must be points of E which are less than x – that is,
E ∩ (−∞, x) 6= ∅. Similarly, since b = supE and x < b, E ∩ (x,∞) 6= ∅. Thus,
by Definition 7.5.1, the set E is separated by the pair of open sets (−∞, x) and
(x,∞) and, hence, is not connected. Thus, if E is connected, it must be an
interval.

Conversely, suppose E is an interval. Then E is (a, b) possibly together with
one or more of its endpoints. Suppose U and V are open subsets of R with
(U ∩E)∩ (V ∩E) = ∅ and E ⊂ U ∪V . We define a function f on E by f(x) = 0
if x ∈ E ∩ U and f(x) = 1 if x ∈ E ∩ V .

We claim f is a continuous function on the interval E. If x ∈ E and ǫ > 0,
then x is in one of the sets U or V . Since they are both open, there is an interval
(x−δ, x+δ) which is also contained in whichever of these sets contains x. Then
f has the same value at any y ∈ E ∩ (x− δ, x+ δ) that it has at x. Thus,

|f(x)− f(y)| = 0 < ǫ whenever y ∈ E and |x− y| < δ.

This proves that f is continuous on E. However, its only possible values are 0
and 1. By the Intermediate Value Theorem (Theorem 3.2.3) it cannot take on
both these values, since it would then have to take on every value in between.
This means one of the sets E ∩ U , E ∩ V is empty. Hence, E is not separated
by U and V . We conclude that no pair of open sets separates E and, hence, E
is connected.

If L is a straight line in Rd, then the intersection of an open ball in Rd with
L is an open interval in L (or is empty). It follows that the relatively open
subsets of L are exactly the open subsets of L considered as a copy of R. It
follows from the above theorem that intervals in L are connected subsets of Rd.
Thus, the line segment joining two points in Rd is a connected set.

Connected Components

Theorem 7.5.5. If A and B are connected subsets of Rd and A ∩B 6= ∅, then
A ∪ B is also connected.

Proof. Suppose U and V are disjoint relatively open subsets of A∪B such that
A∪B = U ∪V . Then U ∩A and V ∩A are disjoint relatively open subsets of A.
Since A is connected, U and V cannot both have non-empty intersection with
A. Since A is contained in their union and can’t meet both of them, A must be
contained in either U or V . Similarly, B must be contained in either U or V .
Since U and V are disjoint and A and B are not, A and B must be contained in
the same one of the sets U , V and must both be disjoint from the other. Since
U ∪ V = A∪B one of the sets U , V is empty. This shows that U and V do not
separate A ∪B. Hence, A ∪B is connected.

Basically the same argument shows that the union of any collection of con-
nected sets with at least one point is common is also connected (Exercise 7.5.6).
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Figure 7.5: A piecewise linear path in E

In particular, if x ∈ E where E is some subset of Rd, then the union of all
connected subsets of E containing x is itself connected. Thus, for each point
x ∈ E there is a connected subset of E which contains all connected subsets
containing x – that is, a maximal connected subset containing x.

Definition 7.5.6. If E is a subset of Rd and x ∈ E, then the union of all
connected subsets of E containing x is called the connected component of E
containing x.

Clearly, the connected components of E are the maximal connected subsets
of E. Any two distinct components are disjoint since, otherwise, their union
would be a connected set larger than at least one of them. Two points x and
y of E are in the same component of E if and only if there is some connected
subset of E that contains both x and y. In particular, if the line segment joining
two points x and y of E also lies in E, then x and y are in the same connected
component of E.

Since every point in an open or closed ball is joined by a line segment to the
center of the ball, we have:

Theorem 7.5.7. Every open or closed ball in Rd is a connected set.

More generally, a piecewise linear path joining x and y in E is a finite set
of line segments {[xi−1, xi]}mi=1, each contained in E, with each line segment
beginning where the preceding one ends, and with x0 = x and xm = y. One
easily proves by induction that the union of the line segments in such a path is
a connected set (see Figure 7.5). It follows that:

Theorem 7.5.8. If E is a subset of Rd and x and y are points of E that may be
joined by a piecewise linear path in E, then x and y are in the same component
of E. If every pair of points in E can be joined by a piecewise linear path in E,
then E is connected.

Example 7.5.9. Find a subset of R2 with infinitely many components.
Solution: This is easy. The set of integers on the x-axis is such a set.

Since the only connected subsets of this set are the single point subsets, each
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Figure 7.6: A set with infinitely many components

point is a component. A more complicated example is illustrated in Figure
7.6. The vertical lines that touch the bottom horizontal line together with this
horizontal line form one component, while each of the shorter vertical lines is
itself a component.

Components of an Open Set

Theorem 7.5.10. If U is an open subset of Rd, then each of its connected
components is also open.

Proof. Let V be a connected component of the open set U and let x be a point
of V . Since U is open, there is an open ball Br(x), centered at x, such that
Br(x) ⊂ U . Since V is the union of all connected subsets of U containing x and
Br(x) is connected, it must be true that Br(x) ⊂ V . Since every point of V is
the center of an open ball contained in V , the set V is open.

The components of an open set U form a pairwise disjoint family of open
connected subsets of U with union U , Conversely:

Theorem 7.5.11. If an open set U can be written as the union of a pair-
wise disjoint family V of open connected subsets, then these subsets must be the
components of U .

Proof. If V is one of the open sets in V, then V must have non-empty intersection
with at least one component of U , call it C. Then V ⊂ C since V is a connected
set containing a point of the component C.

We must also have C ⊂ V , since, otherwise, V and the union of all the sets
in V other than V would be two open sets which separate C. Thus, V = C.

We now have that every set in V is a component of U . Since the union of
the sets in V is U , every component of U must occur in V. This completes the
proof.

Example 7.5.12. What are the components of the complement of the setD∪E
where

D = {(x, y) ∈ R2 : ||(x + 1, y)|| = 1} and E = {x ∈ R2 : ||(x− 1, y)|| = 1}.
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Solution: The complement of D ∪ E is the union of the open sets

A = {(x, y) ∈ R2 : ||(x + 1, y)|| < 1},
B = {(x, y) ∈ R2 : ||(x − 1, y)|| < 1}, and

C = {(x, y) ∈ R2 : ||(x + 1, y)|| > 1 and ||(x− 1, y)|| > 1}.
(7.5.1)

These three sets are pairwise disjoint and each of them is connected. Hence,
they must be the components of the complement of D ∪ E, by the previous
theorem.

Exercise Set 7.5

In the first four exercises below, tell whether or not the set A is connected. If
A is not connected, describe its connected components. Justify your answers.

1. A = {(x, y) ∈ R2 : ||(x, y)|| < 1} ∪ {(x, y) ∈ R2 : 1 ≤ x ≤ 2, y = 0}.
2. A = {(x, y) ∈ R2 : ||(x, y)|| < 1} ∪ {(x, y) ∈ R2 : 1 < x ≤ 2, y = 0}.
3. A = {(x, y) ∈ R2 : 1 < ||(x, y)|| < 2}.

4. A = {(x, y) ∈ R2 : 1 < ||(x, y)|| < 2} ∪ {(x, y) ∈ R2 : ||(x, y)|| < 1}.
5. What are the connected components of the complement of the set of in-

tegers in R?

6. Prove that the union of a collection of connected subsets of Rd with a
point in common is also connected.

7. Which subsets of R are both compact and connected? Justify your answer.

8. Give an example of two connected subsets of R2 whose intersection is not
connected.

9. Prove that if E is an open connected subset of Rd, then each pair of points
in E can be connected by a piecewise linear path in E. Hint: fix a point
x0 ∈ E and consider two sets: (1) the set U of all points in E that can
be connected to x0 by a piecewise linear path in E, and (2) the set V of
points in E that cannot be connected to x0 by a piecewise connected path
in E.

10. Prove that the closure of a connected set is connected.

11. Is the interior of a connected set necessarily connected? Justify your
answer.

12. Are the components of a closed set necessarily closed? Justify your answer.

13. Connected sets in a metric space (or any topological space) are defined in
the same way as they are in Rd. Is it true in general for metric spaces
that open balls are connected?
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14. A subset of a metric space is said to be totally disconnected if its compo-
nents are all single points. Find a compact, totally disconnected subset of
R which is not a finite set.

15. Find a compact, totally disconnected subset of R (see the previous exer-
cise) which has no isolated points (a point x ∈ E is an isolated point of E
if {x} is relatively open in E – that is, if there is an open set U such that
U ∩E = {x}).



Chapter 8

Functions on Euclidean
Space

In this chapter we begin the study of functions defined on a subset of the Eu-
clidean space Rp with values in the Euclidean space Rq . Our first objective is
to define and study continuity for such functions.

8.1 Continuous Functions of Several Variables

For two natural numbers p and q, we shall study functions F , defined on a
subset D of Rp and with values in Rq. Such a function is sometimes called a
transformation from D to Rq. We will denote this situation by F : D → Rq .
The definition of continuity in this context follows the familiar pattern.

Definition 8.1.1. Let D be a subset of Rp and F : D → Rq a function. We
say that F is continuous at a ∈ D if for each ǫ > 0 there is a δ > 0 such that

||F (x)− F (a)|| ≤ ǫ whenever x ∈ D and ||x − a|| < δ.

If F is continuous at each point of D, then F is said to be continuous on D.

Note that this definition depends very much on the domain D of the function
due to the fact that the condition on ||F (x) − F (a)|| is only required to hold
for x ∈ D. If the domain of the function is changed, then what it means for a
function to be continuous at a may change even if a is in both domains.

Example 8.1.2. The function f : Rp → R which is 1 onB1(0) and 0 everywhere
else is clearly not continuous at boundary points of B1(0). Show that, if the
domain of f is changed to B1(0), then the new function is continuous on all of
B1(0).

Solution: The new function is just the identically 1 function on its domain
and, hence, is continuous at each point of its domain – including points of the
boundary.

207
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Example 8.1.3. Consider the function f : R2 → R defined by

f(x, y) =







xy

x2 + y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0).

Show that f is not continuous at (0, 0).
Solution: This function has the value 0 at (0, 0), but every disc centered

at (0, 0) contains points of the form (x, x) with x 6= 0 and, at such a point, f
has the value 1/2. So the condition for continuity at (0, 0) will not be satisfied
when ǫ is 1/2 or less.

Example 8.1.4. Show that the function with domain R2 defined by

f(x, y) =







xy
√

x2 + y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

is continuous at (0, 0).
Solution: Since (x+y)2 ≥ 0 and (x−y)2 ≥ 0, it follows that −2xy ≤ x2+y2

and 2xy ≤ x2 + y2. Taken together, these two inequalities imply that

2|xy| ≤ x2 + y2

On dividing by 2
√

x2 + y2 this becomes

|f(x, y) − f(0, 0)| =

∣

∣

∣

∣

∣

xy
√

x2 + y2

∣

∣

∣

∣

∣

≤ 1

2

√

x2 + y2 =
1

2
||(x, y) − (0, 0)||.

Thus, given ǫ > 0, if δ = 2ǫ, then

|f(x, y) − f(0, 0)| < ǫ whenever ||(x, y) − (0, 0)|| < δ.

We conclude that f is continuous at (0, 0).

Vector Valued Functions

The previous two examples involved real valued functions, We will also be con-
cerned with functions with values in Rq for some natural number q > 1. Given
such a function F with domain D ⊂ Rp, for each x ∈ D let fj(x) = ej · F (x)
be the jth component of the vector F (x) ∈ Rq . Then each fj is a real valued
function on D. We will sometimes denote the function F by

F (x) = (f1(x), f2(x), · · · , fq(x)).

The real valued function fj is called the jth component function of F .

Theorem 8.1.5. A function F : D → Rq is continuous at a point a ∈ D if and
only if each of its component functions is continuous at a.
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Proof. It follows from Theorem 7.1.13 that, for each k and each x ∈ D,

|fk(x)− fk(a)| ≤ ||F (x)− F (a)|| ≤
q
∑

j=1

|fj(x)− fj(a)|.

Given ǫ > 0, It follows from the first inequality that if ||F (x)−F (a)|| < ǫ, then
also |fk(x) − fk(a)| < ǫ for each k. Hence, if F is continuous at x0, then so is
each fk. It follows from the second inequality that if |fj(x) − fj(a)| < ǫ/q for
each j, then ||F (x)−F (a)|| < ǫ. This implies that if each fj is continuous at a,
then so is F .

Sequences and Continuity

Recall that Theorem 3.1.5 says that a function f of one variable is continuous at
a point a of its domain D if and only if it takes sequences in D which converge
to a to sequences which converge to f(a). The same theorem is true of functions
of several variables, in fact, it is true of any function from one metric space to
another. The proof is also the same and we won’t repeat it.

Theorem 8.1.6. Let D be a subset of Rp, a ∈ D, and F : D → Rq a transfor-
mation. Then F is continuous at a if and only if, whenever {xn} is a sequence
in D which converges to a, then the sequence {F (xn)} converges to F (a).

If F and G are two functions with domainD ⊂ Rp and with values in Rq and
if h is a real valued function with domain D, then we can define new functions,
hF , F +G, and F ·G by

(hF )(x) = h(x)F (x),

(F +G)(x) = F (x) +G(x),

(F ·G)(x) = F (x) ·G(x).

(8.1.1)

Theorems 7.2.12 and 8.1.6 combine to prove the following theorem. The
details are left to the exercises.

Theorem 8.1.7. With F , G, h, and D as above, if F , G, and h are continuous
at a ∈ D, then so are hF , F +G, and F ·G.

Composition of Functions

If G : D → Rp is a function with domain D ⊂ Rd and F : E → Rq is a function
with domain E ⊂ Rp, then F (G(x)) is defined as long as x ∈ D and G(x) ∈ E.
Thus,

(F ◦G)(x) = F (G(x))

defines a function with domain D ∩G−1(E) and with values in Rq . This is the
composition of the function G with the function F .

The following theorem follows immediately from two applications of Theorem
8.1.6. The details are left to the exercises.
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Theorem 8.1.8. With F and G as above, if a ∈ D ∩G−1(E), G is continuous
at a, and F is continuous at G(a), then F ◦G is continuous at a.

Limits

Whether or not a function F is defined at a point a ∈ Rp, it may have a limit
as x approaches a. In order for this concept to make sense, it must be the case
that there are points of the domain of F which are arbitrarily close but not
equal to a.

If D is a subset of Rp and a ∈ Rp, then we will say that a is a limit point of
D if every neighborhood of a contains points of D different from a (note that a
may or may not be in D).

Definition 8.1.9. If D ⊂ Rp, a is a limit point of D, and F : D → Rq is a
function with domain D, then we will say that the limit of F as x approaches a
is b if, for each ǫ > 0, there is a δ > 0 such that

||F (x)− b|| < ǫ whenever x ∈ D and 0 < ||x − a|| < δ.

In this case, we write limx→a F (x) = b.

If we compare this definition with the definition of continuity at a (Definition
8.1.1), we see that a function F : D → Rq is continuous at a point a ∈ D which
is a limit point of D if and only if limx→a F (x) = F (a).

On the other hand, if a ∈ D but a is not a limit point of D, then a function
F , with domain D is automatically continuous at a (since, for small enough δ,
there are no points x ∈ D with ||x− a|| < δ other than x = a), but the limit of
F as x approaches a is not defined. A point of D which is not a limit point of D
is called an isolated point of D. For example, the set D = B1((0, 0)) ∪ {(1, 1)}
is a subset of R2 with (1, 1) as an isolated point.

Note that Examples 8.1.3 and 8.1.4 show that

lim
(x,y)→(0,0)

xy
√

x2 + y2
= 0,

while

lim
(x,y)→(0,0)

xy

x2 + y2

does not exist. In fact, this function has limit

a

1 + a2

as (x, y) approaches (0, 0) along the line y = ax. Since the function approaches
different numbers as (x, y) approaches (0, 0) from different directions, the limit
does not exist.
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Curves and Surfaces

A continuous function γ : I → Rq , where I is an interval in R, is called a
parameterized curve with parameter interval I. The variable t in γ(t) is called
the parameter for the curve. Intuitively, as t ranges through the parameter
interval, γ(t) traces out something like a curved line in Rq.

If the parameter interval I is a closed bounded interval [a, b] with γ(a) = x
and γ(b) = y, then γ is called a curve in Rq joining x to y. The points x and y
are called the endpoints of the curve. If x = y, then γ is called a closed curve.

Example 8.1.10. Give examples of a closed curve, a curve with endpoints
which is not closed, and a curve with no endpoints.

Solution: The curve γ(t) = (cos t, sin t), t ∈ [0, 2π], is a closed curve in R2.
It is closed because γ(0) = (1, 0) = γ(2π).

The curve γ(t) = (t2, t3), t ∈ [0, 1], is a curve joining x = (0, 0) and y = (1, 1).
It has these points as endpoints. It is not closed, since the endpoints are not
the same.

The curve γ(t) = (t cos t, t sin t, t), t ∈ (−∞,∞) is a spiral curve in R3 with
no endpoints.

Generally, a curve is a one dimensional object, but there are exceptions. A
curve may be degenerate – that is, γ(t) may be a constant vector in Rq. Then
the image of γ is a single point, which is a zero dimensional object.

A parameterized surface in Rq (q ≥ 2) is a continuous function F : A→ Rq ,
where A is an open subset of R2 or an open subset of R2 together with all or
part of the boundary of this open subset.

Example 8.1.11. Give three examples of parameterized surfaces.
Solution: The image of the surface

F (θ, φ) = (cos θ cosφ, sin θ cosφ, sin φ) with θ ∈ [0, 2π), φ ∈ [0, π]

is the sphere of radius 1 centered at the origin. The parameter set A in this
case is the rectangle [0, 2π) × [0, π]. The parameterization is the one given
by expressing the sphere in spherical coordinates. Note that this sphere is
just B1(0) \ B1(0) and, hence, is a closed set (Exercise 7.3.6) even though its
parameter set is not closed.

The closed upper half of the above sphere may be parameterized as above
but with parameter set [0, 2π) × [0, π/2] or it may be parameterized by

G(x, y) = (x, y,
√

1 − x2 − y2) with x2 + y2 ≤ 1.

Here, the set A is the closed disc of radius 1 centered at the origin in R2.
If we change the parameter set for G in the above example to the open disc

of radius 1 centered at 0, then we obtain a surface which is not a closed set –
the upper half of the unit sphere not including the circle {(x, y, z) : x2 + y2 =
1, z = 0}.
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Generally , the image of a parameterized surface is a two dimensional object,
but there are exceptions. A surface may be degenerate. The parameter function
F could have image contained in a set of dimension less than 2 – it could be a
point, or a curve. For example, the image of

F (u, v) = (cos(u+ v), sin(u+ v), u+ v) with (u, v) ∈ R2

is actually the spiral curve (cos t, sin t, t), as we can see by making the substitu-
tion t = u+ v.

Conditions that guarantee that a curve or surface is not degenerate will be
obtained in the next chapter.

Exercise Set 8.1

1. Consider the function f : R2 → R defined by

f(x, y) =







xy2

x2 + y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0).

Is this function continuous at (0, 0)? Justify your answer.

2. Give a simple reason why the function γ : R → R4 defined by

γ(t) = (t, sin t, et, t2)

is continuous on R.

3. Does the function f : R2 \ {(0, 0)} → R, defined by

f(x, y) =
x

√

x2 + y2
,

have a limit as (x, y) approaches (0, 0). Justify your answer.

4. Consider the function f : R2 → R defined by

f(x, y) =

{

xy if xy > 0

0 if xy ≤ 0.

At which points of R2 is this function continuous?

5. For the function f : R2 → R defined by

f(x, y) =
x2y

x4 + y2

Show that f has limit 0 as (x, y) → (0, 0) along any straight line through
the origin, but it does not have a limit as (x, y) → (0, 0) in R2.
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6. Consider the function f : R2 → R defined by

f(x, y) =







y2 − x2y

|y − x2| if y 6= x2

0 if y = x2.

At which points of R2 is this function continuous?

7. Prove Theorem 8.1.7.

8. Prove Theorem 8.1.8.

9. Prove that a is a limit point of a set D ⊂ Rp if and only if there is a
sequence of points in D but not equal to a which converges to a.

10. Let D be a subset of Rp and F : D → Rq a function. If a is a limit point of
D, prove that limx→a F (x) = b if and only if limn→∞ F (xn) = b whenever
{xn} is a sequence in D which converges to a.

11. Let F : D → Rq be a transformation with domain D ⊂ Rp and let a be
a limit point of D. Prove that if {F (xn)} converges whenever {xn} is a
sequence in D which converges to a, then limx→a F (x) exists.

12. Let B1(0) be the open unit ball in R2. Does every continuous function
f : B1(0) → R take Cauchy sequences to Cauchy sequences?

13. Let B1(0) be the closed unit ball in R2. Does every continuous function
f : B1(0) → R take Cauchy sequences to Cauchy sequences?

14. Find a parameterized curve γ(t) in R2, with parameter interval [0,∞),
that begins at (1, 0), spirals inward in the counterclockwise direction, and
approaches (0, 0) as t → ∞.

15. Find a parameterization of the cylindrical surface in R3 defined by the
equation x2+y2 = 1 (z is unrestricted). That is, find a continuous function
F : A→ R3 with A ⊂ R2, such that F has the cylinder as image.

8.2 Properties of Continuous Functions

The theme of this section is that continuous functions are the functions that
behave well with respect to topological properties of sets.

Continuity and Open and Closed Sets

Recall that if D is a subset of Rp, then a relatively open subset of D is a set
of the form U ∩ D, where U is open in Rp. The relatively open subsets of D
are the open subsets of D considered as a metric space by itself (rather than a
subset of Rp). Relatively closed sets are defined analogously.
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Theorem 8.2.1. If D ⊂ Rp and F : D → Rq is a function, then F is continuous
on D if and only F−1(U) is a relatively open subset of D whenever U is an open
subset of Rq. Equivalently, F is continuous if and only if F−1(A) is a relatively
closed subset of D whenever A is a closed subset of Rq.

Proof. Suppose F is continuous and U is an open subset of Rq . If a ∈ F−1(U),
then b = F (a) ∈ U . Since U is open, there is an ǫ > 0 such that Bǫ(b) ⊂ U .
Since F is continuous on D, there is a δ > 0 such that

||F (x)− F (a)|| < ǫ whenever x ∈ D and ||x − a|| < δ.

This implies that F (Bδ(a) ∩D) ⊂ Bǫ(b) ⊂ U , and , hence, that

Bδ(a) ∩D ⊂ F−1(U).

Since we can do this at each a ∈ F−1(U), we conclude that F−1(U) is the
intersection of D with the union of the resulting collection of open balls Bδ(a).
Hence, it is relatively open in D.

On the other hand, suppose F−1(U) is relatively open in D for each open
set U in Rq , In particular, this implies that if a ∈ D, b = F (a), and ǫ > 0, then
the set F−1(Bǫ(b)) is relatively open in D. Thus,

F−1(Bǫ(b)) = D ∩ V

for some open set V ⊂ Rp. Since a ∈ V and V is open, there is a δ > 0 such
that Bδ(a) ⊂ V . Then x ∈ D and ||x−a|| < δ implies x ∈ V ∩D = F−1(Bǫ(b)).
This means that

||F (x)− F (a)|| < ǫ whenever x ∈ D and ||x − a|| < δ.

Hence, F is continuous at a. Since this is true for all points a ∈ D, we conclude
that F is continuous on D.

The analogous result for closed sets follows from the above by taking com-
plements and using the fact that a subset of D is relatively closed if and only if
it is the complement in D of a set which is relatively open. The details are left
to the exercises.

If D is open, then the relatively open subsets of D are just the open subsets
of D. Hence, we have the following corollary of the above theorem.

Corollary 8.2.2. If D ⊂ Rp is open and F : D → Rq is a function, then F is
continuous on D if and only if F−1(U) is open for every open set U ⊂ Rq.

Continuity and Compactness

The proof of the following theorem is very simple, but it has a lot of very useful
consequences.

Theorem 8.2.3. If K is a compact subset of Rp and F : K → Rq is a contin-
uous function, then F (K) is a compact subset of Rq.
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Proof. Let U be an open cover of F (K) and let V be the collection of all open
subsets V ⊂ Rp such that V ∩K = F−1(U) for some U ∈ U. There is at least
one such V for each U ∈ U since F−1(U) is relatively open in K by the previous
theorem.

Since U is a cover of F (K), V is an open cover of K. Since K is compact,
there is a finite subcollection {Vj}nj=1 of V which also covers K. For each Vj we

may choose a Uj ∈ U such that Vj ∩K = F−1(Uj).
If y ∈ F (K), then y = F (x) for some x ∈ K. This x belongs to Vj ∩ K

for some j because {Vj}nj=1 is a cover of K. Then y ∈ Uj . This proves that
the collection {Uj}nj=1 is a cover of F (K). It is, in fact, a finite subcover of U.
Since we can do this for every open cover of F (K), we have proved that F (K)
is compact.

A function F : D → Rq is said to be bounded on D if there is a number M
such that

||F (x)|| ≤M for all x ∈ D.

That is, F is bounded onD if the set of non-negative numbers {||F (x)|| : x ∈ D}
is bounded above. The least upper bound of this set is denoted supD ||F (x)||.
It may or may not be a member of the set – that is, there may or may not be
a point x0 ∈ D such that ||F (x0)|| = supD ||F (x)||. If there is such a point x0,
then we say that ||F (x)|| assumes a maximum value on D.

A compact set contains points of maximal norm and points of minimal norm
(Exercise 7.4.4). Combining this with the previous theorem yields the following:

Theorem 8.2.4. If K ⊂ Rp is compact and F : K → Rq is continuous, then F
is bounded on K and ||F (x)|| assumes a maximum value on K.

Proof. By the previous theorem, F (K) is compact and, hence, bounded. Fur-
thermore, it contains a point of maximum norm by Exercise 7.4.4. This point
is in F (K) and so it the form F (x0) for some x0 ∈ K.

Corollary 8.2.5. If K ⊂ Rp is compact and f : K → R is a continuous real
valued function on K, then f assumes a maximal value and a minimal value on
K.

Proof. It follows from the previous theorem that {|f(x)| : x ∈ K} is bounded
above by some number M . Then the function g(x) = f(x)+M is a non-negative
function and so |g(x)| = g(x). By the previous theorem, there is a point x0 ∈ K
with

g(x) ≤ g(x0) for all x ∈ K.

Since f(x) = g(x) − M , it follows that x0 is a point at which f achieves its
maximal value.

Since the above argument applies equally well to −f(x), and, since a max-
imum for −f(x) on K will be the negative of a minimum for f(x) on K, it
follows that f(x) has a minimum value on K as well.
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Example 8.2.6. Let K be a compact subset of Rp. Show that f : K → R is a
real valued continuous function on K which is strictly positive at each point of
K, then there is a number δ > 0 such that f(x) ≥ δ for all x ∈ K.

Solution: By Corollary 8.2.5, the function f has a minimum value δ on K.
This minimum value cannot be 0, since f is positive at all points of K. Thus,
δ > 0 and f(x) ≥ δ for all x ∈ K.

Continuity and Connectedness

Continuous functions also take connected sets to connected sets.

Theorem 8.2.7. If D ⊂ Rp is connected and F : D → Rq is continuous, then
F (D) is also connected.

Proof. Suppose U and V are open subsets of Rq such that F (D) ⊂ U ∪ V and
(U ∩ F (D)) ∩ (V ∩ F (D)) = ∅. Then F−1(U) and F−1(V ) are relatively open
subsets of D, F−1(U) ∩ F−1(V ) = ∅, and D ⊂ F−1(U) ∪ F−1(V ). Thus, one
of the sets F−1(U) ∩D and F−1(V ) ∩D must be empty since, otherwise, they
would separate D. However, if F−1(U) ∩ D = ∅, then U ∩ F (D) = ∅ and a
similar statement holds for V . Thus, either U or V has empty intersection with
F (D) which implies that the two sets do not separate F (D). Hence, F (D) is
connected.

The following is the several variable version of the Intermediate Value The-
orem, since it says that if a continuous real valued function on a connected set
takes on two values, it also takes on every value in between the two.

Corollary 8.2.8. If D ⊂ Rp is connected and f : D → R is a continuous
function, then f(D) is an interval.

Proof. By the previous theorem, f(D) is a connected subset of the line R. By
Theorem 7.5.4 the only such sets are intervals.

Now suppose E is a subset of Rd and γ : I → E is a parameterized curve
with parameter interval I = [a, b]. Since I is connected by Theorem 7.5.4, its
image γ(I) is a connected subset of E. Thus, if x = γ(a) and y = γ(b), then x
and y must be in the same component of E. Thus, we have proved the following.

Theorem 8.2.9. If E is a subset of Rd and x and y are points of E that may
be joined by a curve in E, then x and y are in the same connected component
of E. If each pair of points of E may be joined by a curve in E, then E is
connected.

Example 8.2.10. Show that the unit circle T (the set of points (x, y) ∈ R2

with x2 + y2 = 1) is connected.
Solution: Each point on the circle T is of the form (cos t, sin t). Each pair

of such points (cosa, sin a) and (cos b, sin b) with a < b, are joined by the curve

γ(t) = (cos t, sin t) t ∈ [a, b]

which lies in the circle. Hence, the circle T is connected.
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Uniform Continuity

Definition 8.2.11. Let D be a subset of Rp and F : D → Rq a function. Then
F is said to be uniformly continuous on D if for each ǫ > 0 there is a δ > 0 such
that

||F (x)− F (y)|| < ǫ whenever x, y ∈ D and ||x − y|| < δ.

As with uniform continuity for functions of one variable, discussed in Section
3.3, the point here is that the choice of δ does not depend on x or y.

Uniform continuity is an important concept and it will play a key role in our
proof of the existence of the Riemann integral of a function of several variables.

We proved in Theorem 3.3.4 that a continuous function on closed, bounded
interval is uniformly continuous. The analogous theorem holds for functions of
several variables, but compact sets replace closed, bounded intervals.

Theorem 8.2.12. If K is a compact subset of Rp and F : K → Rq is continuous
on K, then F is uniformly continuous on K.

Proof. Since F is continuous on K, given ǫ > 0 we may choose for each x ∈ K
a number δ(x) > 0 such that

||F (y) − F (x)|| < ǫ/2 whenever y ∈ K and ||y − x|| < δ(x). (8.2.1)

We set ρ(x) = δ(x)/2. Then ρ(x) is a positive valued function defined on K,
just as in Example 7.4.9. In that example, we showed that a consequence of
the compactness of K is that there is a finite set of points {x1, x2, · · · , xn} such
that K is contained in the union of the balls Bρ(xj)(xj) for j = 1, · · · n.

We set ρ = min{ρ(xj) : j = 1, · · · , n}. Then given any two points x, y ∈ K
with ||x − y|| < ρ, x must be in Bρ(xj)(xj) for some j. This implies that
||x− xj || < ρ(xj) < δ(xj) and

||y − xj|| ≤ ||y − x|| + ||x− xj || < ρ+ ρ(xj) ≤ 2ρ(xj) = δ(xj).

Since both x and y are within δ(xj) of xj , it follows from (8.2.1) that

||F (x)− F (y)|| ≤ ||F (x)− F (xj)|| + ||F (xj) − F (y)|| < ǫ/2 + ǫ/2 = ǫ.

Hence, F is uniformly continuous on K.

In Theorem 3.3.6 we showed that a function is uniformly continuous on a
bounded interval if and only if it has a continuous extension to the closure of
the interval. The analogous theorem holds for functions from Rp to Rq.

Theorem 8.2.13. If D ⊂ Rp is a bounded set and F : D → Rq is a function,
then F is uniformly continuous on D if and only if F can be extended to a
continuous function F̂ : D → Rq.



218 CHAPTER 8. FUNCTIONS ON EUCLIDEAN SPACE

Proof. Note that, sinceD is bounded,D is compact. Thus, if F has an extension
to a continuous function F̂ : D → Rq , then F̂ is uniformly continuous on D, by
the previous theorem. Then F̂ is also uniformly continuous on the smaller set
D. But F̂ = F on D, and so F is uniformly continuous on D.

Conversely, suppose F is uniformly continuous on D. Then {F (xn)} is a
Cauchy sequence in Rq whenever {xn} is a Cauchy sequence in D (Exercise
8.2.11). If x ∈ D, then there is a sequence {xn} in D that converges to x
(Theorem 7.3.10). Such a sequence is necessarily Cauchy and so {F (xn)} is also
Cauchy. But Cauchy sequences in Rq converge by Theorem 7.2.16.

If {yn} is another sequence inD which converges to x, then we may construct
a third sequence {zn} converging to x by intertwining the sequences {xn} and
{yn} – that is, let z2n = yn and z2n−1 = xn. Then, {zn} not only converges
to x, it has both {xn} and {yn} as subsequences. By the above argument, the
sequence {F (zn)} must converge to a point u ∈ Rq . Both subsequences {F (xn)}
and {F (yn)} must then converge to the same point u. Thus, we have proved
that no matter what sequence {xn} converging to x we choose, the limit of the
sequence {F (xn)} is the same. Therefore, it makes sense to define an extension
F̂ of F to D by setting

F̂ (x) = limF (xn)

for any sequence {xn} in D converging to x. The resulting function is obviously
equal to F on D, since we may just choose xn = x for all n if x ∈ D.

We now have an extension F̂ of F to D. It remains to prove that it is
continuous on D. We will do this by applying Theorem 8.1.6. If {xn} is a
sequence in D which converges to x ∈ D, we may choose for each n a point
yn ∈ D such that ||xn − yn|| < 1/n and ||F (yn) − F̂ (xn)|| < 1/n. Then

||x − yn|| ≤ ||x − xn|| + ||xn − yn|| < ||x − xn|| + 1/n.

Since ||x− xn|| → 0 and 1/n→ 0, it follows that yn → x and, hence, F (yn) →
F̂ (x) by our definition of F̂ . However, it also follows that F̂ (xn) → F̂ (x) since,

||F̂ (x)− F̂ (xn)|| ≤ ||F̂ (x)− F (yn)|| + || F (yn) − F̂ (xn)||,

and both ||F (yn) − F̂ (xn)|| and ||F̂ (x)− F (yn)|| converge to 0.
Since F̂ (xn) → F̂ (x) whenever {xn} is a sequence in D converging to x ∈ D,

the function F̂ is continuous on D by Theorem 8.1.6.

Exercise Set 8.2

1. If A = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. Which of the following sets
cannot be the image of the set A under a continuous function F : A→ R2?
Justify your answers.

(a) B2(0, 0);

(b) B1(0);

(c) {(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y};



8.2. PROPERTIES OF CONTINUOUS FUNCTIONS 219

(d) B1(0, 0) ∪B1(3, 0).

(e) {(t, t) ∈ R2 : t ∈ R; 0 ≤ t ≤ 1}.

2. Finish the proof of Theorem 8.2.1, by proving that a function is continuous
if and only if the inverse image of each closed set is relatively closed. Hint:
you may use the first part of the theorem (that a function is continuous
if and only if the inverse image of each open set is relatively open).

3. If K is a compact, connected subset of Rp and f : K → R is a continuous
function, what can you say about f(K)?

4. If F : Rp → Rq is continuous and A is a bounded subset of Rp, prove that
F (A) = F (A). Is this necessarily true if A is not bounded?

5. The image of a compact set under a continuous function is compact, hence
closed, by Theorem 8.2.3. Is the image of a closed set under a continuous
function necessarily closed? Prove that it is or give an example where it
is not.

6. Is the image of an open set under a continuous function necessarily an
open set? Prove that it is or give an example where it is not.

7. Is the sphere {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} connected? How do you
know?

8. Prove that if f : T → R is a continuous real valued function on the unit
circle T = {(x, y) ∈ R2 : x2 +y2 = 1}, then there is a pair of diametrically
opposed points (x, y) and (−x,−y) on T at which f has the same value.

9. Find an example of a closed set A ⊂ R2, which is connected, but which
contains two points that cannot be joined by a curve in A.

10. Is the function f : R2 \ {(2, 0)} → R defined by

f(x, y) =
1

(x− 2)2 + y2

uniformly continuous on B1(0, 0)? Is it uniformly continuous on B2(0, 0)?
Justify your answers.

11. If D ⊂ Rp, prove that if a function F : D → Rq is uniformly continuous on
D then {F (xn)} is a Cauchy sequence in Rq whenever {xn} is a Cauchy
sequence in D.

12. Show that the converse of the statement in the previous exercise is not
true in general, but it is true if the set D is bounded. That is, show
that there exist a D and a continuous function F : D → Rq which is not
uniformly continuous but which does take each Cauchy sequence in D to
a Cauchy sequence in Rd. However, show there are no such functions if D
is bounded.
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13. Does uniform continuity make sense for a function from one metric space
to another? If so, how would you define it?

8.3 Sequences of Functions

Uniform convergence of sequences of functions will play the same role in func-
tions of several variables that it did in earlier chapters on functions of a single
variable. It preserves continuity and allows the limit to be taken inside an
integral.

The results of Section 3.4 on uniform convergence hold in the several variable
context and have almost the same proofs.

Uniform convergence

Definition 8.3.1. Let {Fn} be a sequence of functions from D to Rq , where
D ⊂ Rp. We say this sequence converges pointwise to F : D → Rq on D if the
sequence {Fn(x)} converges to F (x) for each x ∈ D.

We say {Fn} converges uniformly to F : D → Rq on D if, for each ǫ > 0,
there is an N such that

||F (x)− Fn(x)|| < ǫ whenever x ∈ D and n ≥ N.

The difference between pointwise and uniform convergence is that, in the
latter, the choice of N must be independent of x.

The following test for uniform convergence is the several variable analogue
of Theorem 3.4.6. The proof is simple and is left to the exercises.

Theorem 8.3.2. Let F be a function and {Fn} a sequence of functions defined
on a set D ⊂ Rp and having values in Rq. If there is a sequence of non-negative
numbers {bn}, such that bn → 0, and

||F (x)− Fn(x)|| ≤ bn for all x ∈ D,

then {Fn} converges uniformly to F on D.

Example 8.3.3. Examine the convergence of the sequence {(x2 +y2)n} on the
closed disc Br(0, 0) in R2 for each r ≤ 1.

Solution: Note that x2 + y2 ≤ r2 on Br(0, 0). Thus,

|(x2 + y2)n| ≤ r2n on Br(0, 0).

If r < 1, then r2n → 0 and, hence, {(x2 + y2)n} converges uniformly to 0 on
Br(0, 0) by the previous theorem.

On B1(0, 0), the sequence {(x2 + y2)n} converges to 0 if (x, y) is in the
interior of the disc and to 1 if (x, y) is on the boundary of the disc. The limit
function is not continuous on B1(0, 0) and, by the next theorem, this means
the convergence is not uniform. Without using the next theorem, we can still
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easily see that the convergence is not uniform – in fact, not uniform even on the
smaller set B1(0, 0). Given an ǫ with 0 < ǫ < 1, if (x, y) ∈ B1(0, 0) and we set
r = ||(x, y)|| < 1, then |(x2 + y2)n| = r2n and so

|(x2 + y2)n| < ǫ (8.3.1)

if and only r2n < ǫ, which holds if and only if

n > Nr =
ln ǫ

2 ln r
.

Thus, an N with the property that (8.3.1) holds for all r < 1 must be larger
than Nr for all r < 1. There is no such N , since limr→1Nr = ∞.

Uniform Convergence and Continuity

One of the main reasons uniform convergence is important is the following theo-
rem. Its proof is the same as the proof of the analogous theorem for real valued
functions of a real variable (Theorem 3.4.4), and we will not repeat it.

Theorem 8.3.4. If {Fn} is a sequence of continuous functions from a subset
D of Rp to Rq, which converges uniformly on D to a function F , then F is also
continuous on D.

As we saw in example 8.3.3, a sequence of continuous functions which con-
verges only pointwise may not converge to a continuous function.

Example 8.3.5. Define a sequence {Fn} of functions from the unit ballB1(0, 0)
in R2 to R2 by

Fn(x, y) =

(

x2 − ny2

1 + ny2
,

nx

1 + nx2

)

.

Show that this sequence converges pointwise, but not uniformly on B1(0, 0).

Solution: Each of the functions Fn is continuous on B1(0, 0). The sequence
clearly converges pointwise to the function F defined on B1(0, 0) by

F (x) =



















(−1, 1/x) if x 6= 0, y 6= 0

(−1, 0) if x = 0, y 6= 0

(x2, 1/x) if x 6= 0, y = 0

(0, 0) if x = 0, y = 0

This function is not continuous on B1(0, 0) – in fact, it is discontinuous at all
points on the x and y axes – and so, by the previous theorem, the convergence
of {Fn} to F cannot be uniform on B1(0, 0).
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Uniformly Cauchy Sequences

Definition 8.3.6. If D ⊂ Rp and {Fn} is a sequence of functions from D to
Rq, then {F n} is said to be uniformly Cauchy if, for each ǫ > 0, there is an N
such that

||Fn(x)− Fm(x)|| < ǫ whenever x ∈ D and n,m ≥ N.

Another several variable analogue of a singe variable theorem (Theorem
3.4.10) is the following. Since the proof of the single variable version was left to
the exercises, we will actually prove this version.

Theorem 8.3.7. If D ⊂ Rp, a sequence of functions Fn : D → Rq is uniformly
Cauchy if and only if it converges uniformly to some function F : D → Rq.

Proof. If {Fn} converges uniformly on D to a function F and ǫ > 0, then there
is an N such that

||F (x)− Fn(x)|| < ǫ/2 whenever x ∈ D, n ≥ N.

Then

||Fn(x)− Fm(x)|| ≤ ||Fn(x)− F (x)||+ ||F (x)− Fm(x)|| < ǫ/2 + ǫ/2 = ǫ

whenever x ∈ D and n,m ≥ N . Thus, {Fn} is uniformly Cauchy.
On the other hand, if {Fn} is uniformly Cauchy, then for each x ∈ D,

{Fn(x)} is a Cauchy sequence of vectors in Rq and, hence, converges to some
vector F (x) ∈ Rq by Theorem 7.2.16. That is, {Fn} converges pointwise to a
function F : D → Rq . It remains to prove that the convergence is uniform.

Since the sequence is uniformly Cauchy, for each ǫ > 0 there is an N such
that

||Fn(x)− Fm(x)|| < ǫ/2 whenever x ∈ D and n,m ≥ N.

If m > n ≥ N we have

||F (x)−Fn(x)|| ≤ ||F (x)−Fm(x)||+ ||Fm(x)−Fn(x)|| < ||Fm(x)−F (x)||+ǫ/2.
The left side of this inequality does not depend on m and the right side holds
for all m > n. For each x ∈ D, lim ||F (x)− Fm(x)|| = 0. Hence, on taking the
limit of the above inequality as m→ ∞, we conclude that

||F (x)− Fn(x)|| ≤ ǫ/2 < ǫ for all x ∈ D and n ≥ N.

This proves that {Fn} converges uniformly to F on D.

The Sup Norm

If D is a compact subset of Rp, each continuous function F from D to Rq is
bounded, by Theorem 8.2.4. That is, supD ||F (x)|| is finite and, in fact, ||F (x)||
actually assumes this value at some point of D. We set,

||F ||D = sup
D

||F (x)||.

This is a norm on the vector space of all continuous functions from D to Rq.
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Example 8.3.8. Find ||γ||I if I is the interval [0, π] and γ : I → R2 is the curve
defined by

γ(t) = (cos t, 1 + sin t).

We have

||γ(t)|| =
√

cos2 t+ (1 + sin t)2 =
√

2 + 2 sin t.

This attains its maximum value on [0, π] at t = π/2, where it has the value 2,
Thus, ||γ||I = 2.

Theorem 8.3.9. If D is a compact subset of Rp and {Fn} is a sequence of
continuous functions from D to Rq, then {Fn} converges uniformly to a function
F : D → Rq if and only if limn→∞ ||F − Fn||D = 0.

Proof. Given any ǫ > 0 and any n, the inequality ||F (x)− Fn(x)|| < ǫ holds for
all x ∈ D if and only if ||F − Fn||D < ǫ. Thus, {Fn} converges uniformly to F
if and only if limn→∞ ||F − Fn||D = 0.

The space, C(K; Rq), of all continuous functions on a compact set K ⊂ Rp,
with values in Rq is a vector space under the operations of pointwise addition
and scalar multiplication of functions. If we define the norm of an element F
of this space to be the Sup norm ||F ||K , then it is easy to see that C(K; Rq) is
a normed vector space (Exercise 8.3.11). In particular, it is a metric space in
which the distance between two elements F and G is defined to be ||F −G||K .
It turns out that this is a complete metric space (meaning that all Cauchy
sequences converge).

Theorem 8.3.10. The normed vector space C(K; Rq) is complete.

Proof. A Cauchy sequence in C(K; Rq), is by definition a sequence of continuous
functions which is Cauchy in the metric defined by the norm || · ||K . Such
a sequence is uniformly Cauchy on K. By Theorem 8.3.7 such a sequence
converges uniformly on K. The limit function is continuous, by 8.3.4. By the
previous theorem, the sequence converges in the metric defined by || · ||K to this
limit. Thus, each Cauchy sequence in the metric space C(K; Rq) converges to
an element of C(K; Rq) and, hence, this space is complete.

Series of Functions

Given a series
∞
∑

k=1

Fk(x) (8.3.2)

whose terms Fk are functions from a domain D ⊂ Rp into Rq , we define its
associated sequence of partial sums {Sn} in the usual way:

Sn(x) =
n
∑

k=1

Fk(x).
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The series converges pointwise if its sequence of partial sums converges point-
wise, It converges uniformly on D if its sequence of partial sums converges
uniformly on D.

As in the single variable case, there is a simple condition (the Weierstrass
M-test) which ensures that a series converges uniformly. The proof is the same
as the proof of Theorem 6.4.4 and so we will not repeat it.

Theorem 8.3.11. (Weierstrass M-test) If there is a convergent series of
non-negative numbers

∞
∑

k=1

Mk,

such that ||Fk(x)|| ≤ Mk for all k and all x ∈ D, then the series (8.3.2) con-
verges uniformly on D.

Example 8.3.12. Show that the series

∞
∑

k=1

1

k2
sin kx cosky (8.3.3)

converges uniformly on R2.
Solution: Since

∣

∣

∣

∣

1

k2
sin kx cosky

∣

∣

∣

∣

≤ 1

k2
for all k, x, y,

and the series
∑∞
k=1 1/k2 converges (it’s a p-series with p = 2), the Weierstrass

M-test tells us that the series (8.3.3) converges uniformly on R2.

Exercise Set 8.3

1. Show that the sequence {γn(t)}, where

γn(t) =

(

1

1 + nt
,
t

n

)

does not converge uniformly on [0, 1].

2. Show that the sequence {λn(t)}, where

λn(t) =

(

t

1 + nt
,
t

n

)

does converge uniformly on [0, 1].

3. Does the sequence {(k−1 sin kx, k−1 cosky)} converge pointwise on R2?
Does it converge uniformly on R2? Justify your answers.

4. Does the sequence {sin(x/k), cos(y/k)} converge pointwise on R2? Does
it converge uniformly on R2? Justify your answer.
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5. Find ||F ||D if D = {(x, y) ∈ R2 : x2 + y2 ≤ 1} and F : R2 → R2 is defined
by

F (x, y) = (x+ 1, y + 1).

6. Find ||γ||I if I = [0, π] and γ : I → R2 is defined by

γ(t) = (2 cos t, 3 sin t).

7. Prove that if {Fn} is a sequence of bounded functions from a set D ⊂ Rp

into Rq and if {Fn} converges uniformly to F onD, then F is also bounded.

8. Does the series
∑∞

k=0 x
kyk converge uniformly on the square

{(x, y) ∈ R2 : −1 < x < 1,−1 < y < 1}?

Justify your answer.

9. Does the series
∑∞

k=0 x
kyk converge uniformly on the disc

{(x, y) ∈ R2 : x2 + y2 ≤ 1}?

Justify your answer.

10. Does the series
∑∞
k=0(x

n, (1 − x)n) converge pointwise on [0, 1]? Does it
converge pointwise on (0, 1)? On which subsets of (0, 1) does it converge
uniformly? Justify your answers.

11. If K is a compact subset of Rp, show that || · ||K is a norm on the vector
space C(K; Rq) of continuous functions on K with values in Rq .

12. Prove that if D is a subset of Rp and {Fn} is a sequence of functions from
D to Rq , then {Fn} fails to converge uniformly to 0 if and only if there is
a sequence {xn} in D such that the sequence of numbers {Fn(xn)} does
not converge to 0.

13. If K ⊂ Rq is compact, show that a series
∑∞
k=1 Fk(x) of functions from K

to Rq converges uniformly on K if the series of numbers
∑∞
k=1 ||Fk(x)||K

converges.

8.4 Linear Functions, Matrices

Other than constants, linear functions are the simplest functions from Rp to Rq .
For example, the linear functions from R to R are the functions of the form

L(x) = mx,

where m is a constant – that is, they are functions whose graphs are straight
lines through the origin. In this section we introduce and study linear functions
between Euclidean spaces. In the next chapter we will show how to use linear
functions to approximate more complicated functions.
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Linear Functions

Definition 8.4.1. A function L : Rp → Rq is said to be linear if, whenever
x, y ∈ Rp and a ∈ R,

(a) L(x+ y) = L(x) + L(y); and

(b) L(ax) = aL(x).

Linear functions are often called linear transformations or linear operators.
Combining (a) and (b) of this definition we see that a linear function pre-

serves linear combinations of vectors. That is,

L(ax+ by) = aL(x) + bL(y) (8.4.1)

for all pairs of vectors x, y ∈ Rp and all pairs of scalars a, b. An induction
argument shows that the analogous result holds for linear combinations of more
than two vectors.

Note that, since the definition uses only addition and scalar multiplication,
linear functions between any two vector spaces may be defined in the same way
as linear functions between Rp and Rq .

Example 8.4.2. Determine whether the functions F , G from R2 to R2 and H
from R2 to R are linear, where

F (x, y) = (2x+ y, x− y),

G(x, y) = (x2, x + y),

H(x, y) =







x3 + y3

x2 + y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)







Solution: The function F is linear since, given two vectors u = (x1, y1) and
v = (x2, y2) in R2 and a scalar a, we have:

F (u+ v) = F (x1 + x2, y1 + y2)

= (2(x1 + x2) + (y1 + y2), (x1 + x2)− (y1 + y2))

= ((2x1 + y1) + (2x2 + y2), (x1 − y1) + (x2 − y2)) = F (u) + F (v)

and

F (au) = F (ax1, ay1) = (2(ax1) + ay1, ax1 − ay1)

= (a(2x1 + y1), a(x1 − y1)) = aF (u).

The function G is not linear since, if u = (1, 0), then

G(2u) = ((2)2, 2) = (4, 2),

while
2G(u) = 2(12, 1) = (2, 2).
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These are not equal and so (b) of the above definition does not hold for G.

The function H is also not linear. If u = (1, 0) and v = (0, 1), then

H(u) = H(v) = H(u+ v) = 1.

Thus, H(u + v) 6= H(u) + H(v) and (a) of the definition does not hold (note
that (b) does hold for this function).

Linear Functions and Matrices

Recall that each vector x ∈ Rp may be written as a linear combination of the
vectors ej , where

ej = (0, · · · , 0, 1, 0, · · · , 0)

with the 1 in the jth place. Specifically,

x =

p
∑

j=1

xj ej (8.4.2)

where xj is the jth component of the vector x.

If we apply a linear function L : Rp → Rq to the vector x and use the fact
that linear functions preserve linear combinations, we conclude that

L(x) =

p
∑

k=1

xjL(ej).

The vector L(ej) ∈ Rq has ith component ei · L(ej). If we set

aij = ei · L(ej), (8.4.3)

then the ith component yi of the vector y = L(x) is

yi =

p
∑

j=1

aijxj . (8.4.4)

The numbers (aij), appearing in (8.4.4), form a q × p matrix – that is a
rectangular array

















a11 a12 · · · a1p

a21 a22 · · · a2p

· · · · · ·
· · · · · ·
· · · · · ·
aq1 aq2 · · · aqp
















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with q rows and p columns. The equation y = L(x) can be expressed in vector–
matrix notation as

















y1
y2
·
·
·
yq

















=

















a11 a12 · · · a1p

a21 a22 · · · a2p

· · · · · ·
· · · · · ·
· · · · · ·
aq1 aq2 · · · aqp

































x1

x2

·
·
·
xp.

















. (8.4.5)

In this notation, the vectors x and y are written as column vectors. The ex-
pression on the right is the vector–matrix product of the matrix A = (aij) and
the vector x = (xj). It is defined to be the vector whose ith component is the
inner product of the ith row of A with the vector x.

At this point, we have shown that, to each linear function L : Rp → Rq ,
there corresponds a q × p matrix A such that

L(x) = Ax,

where Ax is the vector–matrix product of A with x, as in (8.4.5). On the other
hand, each q× p matrix A determines a linear function in this way, since vector
matrix multiplication satisfies

A(x+ y) = Ax+Ay and A(cx) = c(Ax),

for every pair of vectors x, y ∈ Rp and every scalar c ∈ R (Exercise 8.4.11).

Note that, in the correspondence between a linear function L and its matrix
A, the jth column of A is the vector L(ej). The following theorem summarizes
the above discussion.

Theorem 8.4.3. A function L : Rp → Rq is linear if and only if there is a q×p
matrix A such that

L(x) = Ax for all x ∈ Rp.

Example 8.4.4. If a function L from R3 to R3 is defined by

L(x, y, z) = (x+ 2y − z, y + z, 3x − y + z),

then is L linear? If so, what matrix represents it?
Solution: If we write L(x, y, z) as a column vector, then it clearly is given

by

L(x, y, z) =





x+ 2y − z
y + z

3x− y + z



 =





1 2 −1
0 1 1
3 −1 1









x
y
z



 .

Since L is given by a matrix through vector–matrix multiplication, it is linear
by Theorem 8.4.3.
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Matrix Operations

The sum of two linear functions L : Rp → Rq and M : Rp → Rq is defined
pointwise, as is the sum of any two functions with a common domain. That is,
(L+M)(x) = L(x) +M(x). The function L+M is also a linear function since

(L+M)(x+ y) = L(x+ y) +M(x+ y)

= L(x) + L(y) +M(x) +M(y) = (L+M)(x) + (L+M)(y),

for all x, y ∈ Rp, and

(L+M)(ax) = L(ax) +M(ax) = aL(x) + aM(x) = a(L+M)(x),

for all x ∈ Rp and a ∈ R.
Similarly, the product of a scalar c with a linear function L is defined by

(cL)(x) = cL(x). This is also, clearly, a linear function.
If M : Rp → Rq and L : Rq → Rs are linear functions, then the composition

L ◦M : Rp → Rs is defined, where

L ◦M(x) = L(M(x)).

This is also a linear function, since

(L ◦M)(x+ y) = L(M(x+ y)) = L(M(x) +M(y))

= L(M(x)) + L(M(y)) = L ◦M(x) + L ◦M(y).

for all x, y ∈ Rq , and

L ◦M(ax) = L(M(ax)) = L(aM(x)) = aL(M(x)) = aL ◦M(x),

for all x ∈ Rq and all a ∈ R.
In view of the above, it is natural to ask, for linear functions L and M

represented by matrices A and B, what are the matrices representing L + M ,
cL, and M ◦L? The answer is given in the next two theorems. They have simple
proofs based on the fact that, if the matrix A represents the linear function L,
then the jth row of A is L(ej) (this is just equation (8.4.3)). The details are
left to the exercises.

Theorem 8.4.5. If L : Rp → Rq and M : Rp → Rq are linear functions
represented by matrices A = (aij) and B = (bij), respectively, and c ∈ R, then
L+M and cL are represented by the matrices

A+ B = (aij + bij) and cA = (caij).

These are the usual operations of addition and scalar multiplication of ma-
trices. The entry in the ith row and jth column of A+B is aij + bij, while that
of cA is caij .
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Theorem 8.4.6. If L : Rq → Rs and M : Rp → Rq are linear functions
represented by matrices A = (aij) and B = (bjk), then L ◦ M : Rp → Rs is
represented by the matrix AB = (cik), where

cik =

q
∑

j=1

aijbjk.

This is the usual operation of matrix multiplication. The entry in the ith
row and kth column of AB is the inner product of the ith row of A with the
kth column of B.

Example 8.4.7. If A =

(

1 2 −1
0 1 1

)

and B =

(

0 1 3
1 0 1

)

, then find 2A−B.

Solution: We have

2A− B =

(

2 − 0 4 − 1 −2 − 3
0 − 1 2 − 0 2 − 1

)

=

(

2 3 −5
−1 2 1

)

The transpose At of a matrix A is the matrix obtained by interchanging the
rows and columns of A. That is. If A = (aij), then At = (bij), where bij = aji.

Example 8.4.8. If A is the matrix of the previous example, then find At, AAt

and AtA.
Solution: By definition, we have

At =





1 0
2 1
−1 1



 ,

while

AAt =

(

1 2 −1
0 1 1

)





1 0
2 1
−1 1



 =

(

6 1
1 2

)

and

AtA =





1 0
2 1
−1 1





(

1 2 −1
0 1 1

)

=





1 2 −1
2 5 −1
−1 −1 2



 .

Norm of a Linear Transformation

Definition 8.4.9. A linear transformation L from a normed vector space X to
a normed vector space Y is said to be bounded if the set

{ ||L(x)||
||x|| : x ∈ X,x 6= 0

}

(8.4.6)

is bounded above. In this case, the least upper bound of this set is called the
operator norm of L and is denoted ||L||.
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Equivalently, a linear transformation L is bounded if there is a number B
such that

||L(x)|| ≤ B||x|| for all x ∈ X.

The operator norm ||L|| of L is the least such number B.

Theorem 8.4.10. If X and Y are normed vector spaces, then every bounded
linear transformation L : X → Y is uniformly continuous on X.

Proof. If x1, x2 ∈ X, then

||L(x1) − L(x2)|| = ||L(x1 − x2)|| ≤ ||L|| ||x1 − x2||.

Hence, given ǫ > 0, if we choose δ = ǫ/||L||, then

||L(x1) − L(x2)|| ≤ ||L|| ||x1 − x2|| < ǫ whenever ||x1 − x2|| < δ.

This shows that L is uniformly continuous on X.

Theorem 8.4.11. Every linear transformation from L : Rp → Rq is bounded
and, hence, uniformly continuous. Furthermore,

||L|| ≤





∑

ij

|aij |2




1/2

,

where A = (aij) is the matrix which determines L.

Proof. Let A be the matrix which determines L and let ri be the ith row of A.
Then the ith component of y = L(x) = Ax is the inner product yi = ri · x. By
the Cauchy-Schwarz Inequality (Theorem 7.1.8)

|yi| ≤ ||ri||||x||.

Thus,

||L(x)|| =
(

y2
1 + · · · + y2

q

)1/2 ≤
(

||r1||2 + · · · + ||rq ||2
)1/2 ||x||

=





∑

ij

|aij |2




1/2

||x||.

This implies that L is bounded and ||L|| ≤





∑

ij

|aij |2




1/2

.
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Inverse of a Matrix

Of particular interest in matrix theory are square matrices – that is, p × p
matrices for some p. The product of two p × p matrices is another one and so
the set of p × p matrices is closed under multiplication.

There is a multiplicative identity I in the set of p × p matrices. This is
the matrix I = (δij) where δij = 1 if i = j and δij = 0 otherwise. It has the
property that

AI = IA = A,

for any p× p matrix A.
If A is a p× p matrix, then an inverse for A is a p× p matrix A−1 such that

AA−1 = A−1A = I.

By Cramer’s rule, a square matrix has an inverse if and only if its determinant
detA is non-zero and, in this case,

A−1 =
1

detA
(Ac)t,

where Ac is the matrix of cofactors of A – that is, Ac = ((−1)i+j detAij), where
Aij is the (p − 1) × (p − 1) matrix obtained by deleting the ith row and jth
column from A.

A matrix is said to be non-singular if it has an inverse, that is, if its deter-
minant is non-zero. A square matrix is singular if it fails to have an inverse.

Note that if L : Rd → Rd is a linear transformation with matrix A, then A
has an inverse matrix A−1if and only L has an inverse transformation L−1 and,
in this case, the linear transformation L−1 has A−1 as its associated matrix.

Example 8.4.12. Let

A =

(

2 1
−1 1

)

and B =

(

2 −1
−2 1

)

.

For each of A and B, determine if the matrix has an inverse and, if it does, find
it.

Solution: The matrices A and B have determinants

detA = 2 + 1 = 3 and detB = 2 − 2 = 0.

Thus, A has an inverse and B does not. By Cramer’s rule, the inverse of A is

1

3

(

1 −1
1 2

)

=

(

1/3 −1/3
1/3 2/3

)

.

Remark 8.4.13. In what follows, we will often ignore the difference between a
linear function L and the matrix which represents it. They are not exactly the
same. The matrix of a linear transformation depends on a choice of coordinate
systems in Rp and Rq, while the linear transformation is independent of the
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choice of coordinates. To ignore the distinction will not cause problems as long
as we stick with one coordinate system. There will, however, be occasions where
we change coordinate systems in Rp or Rq or both while dealing with a given
linear transformation. It should be understood that the matrix corresponding
to the linear transformation will, as a result, also change.

Exercise Set 8.4

The first five exercises involve the matrices

A =

(

3 −1
2 1

)

, B =

(

2 5
−2 2

)

, C =





1 −1
4 −6
−1 2



 ,D =

(

2 0 1
−1 1 3

)

.

1. Find 2A+B, A−B, AB and BA.

2. Find detA and detB and A−1 and B−1.

3. Find CD and DC.

4. Based on the result of the previous exercise, can you tell what (CD)2 is
without doing any further calculation?

5. Find detCD.

6. Is the function F : R2 → R2 defined by F (x, y) = (x + y, xy) a linear
transformation? If so, what is its matrix?

7. Is the the function F : R2 → R2 defined by F (x, y) = (x + y, x − y) a
linear transformation? If so, what is its matrix?

8. Is the transformation of R2 to itself which rotates every vector through
an angle θ (counterclockwise rotations have positive angle and clockwise
rotations have negative angle) a linear transformation? If so, what is its
matrix?

9. What is the matrix for the linear transformation of R2 which reflects each
point through the diagonal line y = x (this transformation interchanges
the x and y coordinates of each point).

10. Find a linear transformation L : R3 → R3 such that L(1, 2, 1) = (1, 2, 1)
and L(u) = 0 for every vector u ∈ R3 which is orthogonal to (1, 2, 1).

11. Prove that if A is a q × p matrix, then

A(x+ y) = Ax+Ay and A(cx) = c(Ax),

for every pair of vectors x, y ∈ Rp and every scalar c ∈ R.

12. Prove Theorem 8.4.5.
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13. Prove Theorem 8.4.6.

14. Prove that if K and L are linear transformations from Rp → Rq, then

||K + L|| ≤ ||K|| + ||L||.

15. Prove that if K : Rp → Rq and L : Rq → Rr are linear transformations,
then

||L ◦K|| ≤ ||L|| ||K||.

16. Prove that the operator norm of a p× p diagonal matrix has norm equal
to the largest absolute value of the elements on the diagonal.

8.5 Dimension, Rank, Lines, and Planes

A vector space X has finite dimension if it contains a finite set {x1, x2, · · · , xk}
of vectors which span X – that is, every vector in X is a linear combination of
the vectors xj . If this set is also linearly independent, meaning the only linear
combination of the vectors xj that equals 0 is the one in which all coefficients
are zero, then the set {x1, x2, · · · , xk} is called a basis for X. In this case, each
element of X is a unique linear combination of the vectors xj . Every finite
dimensional vector space X has a basis. In fact X has many bases, but each of
them has the same number of elements. This number is called the dimension
of X and written dim(X).

A subsetM of a vector spaceX is called a linear subspace if it is closed under
addition and scalar multiplication – that is, x + y ∈ M and ax ∈ M whenever
x, y ∈ M and a ∈ R. It follows that a linear subspace M of a vector space is
itself a vector space, with addition and scalar multiplication in M defined in
the same way they are defined in X. If X is finite dimensional, then so is the
subspace M and any basis {x1, x2, · · · , xm} for M can be expanded to a basis
{x1, x2, · · · , xm, xm+1 · · · , xn} for X. Thus

dim(M) ≤ dim(X).

The set {e1, · · · ep} is a basis for Rp, where recall that ej is the p-tuple which
has 1 for its jth component and 0 for all the others. However, this is not the
only basis for Rp.

Example 8.5.1. Show that the vectors u = (1, 0, 1), v = (1, 1, 0), and w =
(0, 1, 1) form a basis for R3.

Solution: Consider the vector equation

au + bv + cw = y. (8.5.1)

To show that {u, v,w} spans R3, we must show that this equation has a solution
for every y. To show that {u, v,w} is a linearly independent set, we must show
that if y = 0, then this equation has only the zero solution for (a, b, c). Taken
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together, these two statements mean that equation (8.5.1) should have a unique
solution for every y ∈ R3. The vector equation (8.5.1) is equivalent to the
system of linear equations

a+ b+ 0 = y1
0 + b+ c = y2
a+ 0 + c = y3

,

which, in turn, may be written as the vector matrix equation




1 1 0
0 1 1
1 0 1









a
b
c



 =





y1
y2
y3



 .

The matrix in this equation has determinant 2 and so the matrix has an in-
verse. This implies that the equation has a unique solution (a, b, c) for each
y = (y1, y2, y3) and, hence, that {u, v,w} is a basis for R3.

Definition 8.5.2. If L : X → Y is a linear transformation between vector
spaces, then the image of L, denoted im(L) is the set

L(X) = {L(x) : x ∈ X},
while the kernel of L, denoted ker(L), is the set

{x ∈ X : L(x) = 0}.
Since L is linear, it follows easily that its kernel and image are linear sub-

spaces of X and Y , respectively.

Theorem 8.5.3. If L : X → Y is a linear transformation between finite di-
mensional vector spaces, then

dim(ker(L)) + dim(im(L)) = dim(X).

Proof. Let dim(ker(L)) = m and let {x1, x2, · · · , xm} be a basis for ker(L). We
may expand this to a basis {x1, x2, · · · , xm, xm+1 · · · , xn} for X.

Set yj = L(xm+j) for j = 1, · · · , n − m. Since every vector in X is a
linear combination of the vectors x1, · · · , xn and L(xk) = 0 for k = 1, · · · ,m,
we conclude that every vector in im(L) is a linear combination of the vectors
y1, · · · , yn−m. This set of vectors is linearly independent, since if

a1y1 + a2y2 + · · · + an−myn−m = 0,

then a1xm+1 + a2xm+2 + · · · + an−mxn ∈ ker(L). This implies that there are
numbers b1, · · · , bm such that

a1xm+1 + a2xm+2 + · · · + an−mxn = b1x1 + b2x2 + · · · + bmxm.

However, since {x1, · · · , xn} is a linearly independent set, the ajs and bks must
all be 0. The fact that the ajs must all be 0 shows that the set {y1, · · · , yn−m}
is linearly independent and, hence, forms a basis for im(L).

We now have dim(X) = n, dim(ker(L)) = m and dim(im(L)) = n − m.
Thus, dim(ker(L)) + dim(im(L)) = dim(X), as claimed.
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Definition 8.5.4. Let A be a q × p matrix and let L : Rp → Rq be the
linear transformation it determines. Then Rank(A) is defined to be dim(im(L)).
Equivalently, by the previous theorem, it is also equal to dim(X)−dim(ker(L)).
If L is a linear transformation whose matrix has rank r, then we will also say
that L has rank r.

A submatrix of a matrix A is a matrix obtained from A by deleting some of
its rows and columns.

The following is proved in most linear algebra texts. We won’t repeat the
proof here.

Theorem 8.5.5. The rank of a q×p matrix A is r, where r×r is the dimension
of the largest square submatrix of A with non-zero determinant.

Example 8.5.6. What is the rank of the matrix

A =





1 2
2 4
1 −1



?

Solution: This matrix has
(

1 2
1 −1

)

as a 2 × 2 submatrix with determinant −3. It has no square submatrices of
larger dimension. Therefore, the matrix A has rank 2.

Example 8.5.7. What is the rank of the matrix

B =





1 2 1
2 4 2
1 −1 −2



?

Solution: This matrix also has
(

1 2
1 −1

)

as a 2×2 submatrix with determinant −3. The only square submatrix of larger
dimension is the matrix B and this has determinant 0 Therefore, the matrix B
also has rank 2.

Affine Functions

Definition 8.5.8. An affine function F : Rp → Rq is a function of the form

F (x) = b+ L(x),

where b ∈ Rq and L : Rp → Rq is a linear function. The rank of an affine
transformation F is the rank of its linear part L.

An affine subspace M of Rp is a translate b + N of a linear subspace N of
Rp. In this case, the dimension of M is defined to be the dimension of N .
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The image of an affine function F (x) = b+L(x) is an affine subspace b+im(L)
– that is, it is the translate b+im(L) of the linear subspace im(L). The dimension
of this subspace is the rank of L.

Similarly, if F (x) = b + L(x) is an affine function, then the set of solutions
to the vector equation F (x) = 0 is also an affine subspace. In fact, if a is one
such solution (so that F (a) = b+L(a) = 0), then x is also a solution if and only
if

L(x− a) = −b + b = 0.

Hence, x is a solution if and only if x ∈ a+ker(L). Thus, the set of solutions of
the vector equation F (x) = 0 is the translate a+ ker(L) of the linear subspace
ker(L) of Rp and, hence, is an affine subspace. The dimension of this subspace
is p − Rank(L).

In general, if M = b + N an affine subspace, with N the corresponding
linear subspace, then we will say that N is the set of vectors parallel to the
affine subspace M .

Lines in R3

Lines in Rp are one dimensional affine subspaces of Rp. The above discusssion
suggests expressing them as either images of rank 1 affine transformations or as
kernels of rank p − 1 affine transformations with domain Rp.

A rank 1 affine transformation γ : R → Rq has the form

γ(t) = a+ tu. (8.5.2)

The image of this transformation is a line which contains the point a = F (0)
and is parallel to the vector u = γ(1)− γ(0).

On the other hand, given a line in Rq, if we choose distinct points a and b
on the line, and we set u = b − a, then the image of the affine transformation
(8.5.2) is a line which contains both a = γ(0) and b = γ(1) and, hence, is the
line we started with.

Thus, the lines in Rq are exactly the images of affine transformations of the
form (8.5.2). This situation is often expressed as a vector equation

x = a+ tu,

which describes the points x on the line as the values assumed by the right side
of the equation as t ranges over R This is a parametric vector equation for the
line.

In R3, a parametric vector equation for a line takes the form (x, y, z) =
(a1, a2, a3)+ t(u1, u2, u3), which is equivalent to the system of parametric equa-
tions

x = a1 + tu1

y = a2 + tu2

z = a3 + tu3
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Example 8.5.9. Find parametric equations for the line in R3 which contains
the point (1, 0, 0) and is parallel to the vector u = (−3, 4, 5).

Solution: A parametric vector equation for this line is

(x, y, z) = (1, 0, 0) + t(−3, 4, 5).

The corresponding system of parametric equations is

x = 1 − 3t
y = 4t
z = 5t

Example 8.5.10. Find parametric equations for the line in R3 containing the
points (2, 1, 1) and (5,−1, 3).

Solution: If we set u = (5,−1, 3)−(2, 1, 1) = (3,−2, 2), then the parametric
equation for our line in vector form is

(x, y, z) = (2, 1, 1) + t(3,−2, 2) = (2 + 3t, 1 − 2t, 1 + 2t).

This can also be expressed as the system of parametric equatiions

x = 2 + 3t
y = 1 − 2t
z = 1 + 2t

To express a line in Rq as the kernel of an affine transformation, we choose a
point a on the line and a vector u parallel to the line (we may choose u = b− a
where b is a point on the line distinct from a). If A is a matrix whose rows form
a basis for the linear subspace

{y ∈ Rp : y · u = 0)},

then A is a p−1×p matrix of rank p−1 and Au = 0. This means that the kernel
of the linear transformation determined by A has dimension 1 and contains u.
Hence, this kernel is {tu : t ∈ R}. The line {a + tu : t ∈ R} contains a and is
parallel to u. Thus, it must be our original line. By the construction of A, it
also has the form

{x ∈ Rp : A(x− a) = 0} = {x ∈ Rp : Ax− c = 0} where c = Aa.

Thus, our line is the kernel of the affine transformation F defined by F (x) =
Ax− c.

If we apply the above discussion to R3, we conclude that the typical line in
R3 is the set of solutions (x, y, z) to an equation of the form

(

v1 v2 v3
w1 w2 w3

)





x
y
z



 =

(

c1
c2

)

,
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Where (v1, v2, v3) and (w1, w2, w3) are linearly independent vectors. In other
words, it is the set of all simultaneous solutions of the pair of linear equations

v1x+ v2y + v3z = c1
w1x+ w2y + w3z = c2.

Example 8.5.11. Express the line in Example 8.5.10 as the set of solutions of
a pair of linear equations.

Solution: We need to find two linearly independent vectors which are or-
thogonal to u = (3,−2, 2). Such a pair is (2, 3, 0) and (2, 1,−2). If we apply the
matrix with these two vectors as rows to the vector a = (2, 1, 1), the result is

(

2 3 0
2 1 −2

)





2
1
1



 =

(

7
3

)

,

Thus, in vector matrix form, the equation of our line is

(

2 3 0
3 1 −2

)





x
y
z



 =

(

7
3

)

,

This is equivalent to the pair of simultaneous equations

2x+ 3y = 7
3x+ y − 2z = 3

Planes in R3

A plane in Rp is a two dimensional affine subspace of Rp – that is, a translate
of a two dimensional linear subspace of Rp. Such an object can be described
as the image of an affine transformation of rank 2 or the kernel of an affine
transformation of rank p− 2 with domain Rp.

If u and v are linearly independent vectors in Rp, then they form a basis for
a 2-dimensional linear subspace of Rp. If we translate this subspace by adding
a to each of its points, we obtain a plane which contains a and is parallel to u
and v. It consists of all points of the form

x = a+ su+ tv;

that is, it is the image of the affine transformation F : R2 → Rp defined by

F (s, t) = a+ su+ tv.

This is the vector parametric form for the equation of a plane.
In the case where p = 3, a vector parametric equation of a plane has the

form




x
y
z



 =





a1

a2

a3



+





u1 v1
u2 v2
u3 v3





(

s
t

)

,
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or, when written as a system of equations,

x = a1 + su1 + tv1
y = a2 + su2 + tv2
z = a3 + su3 + tv3

Given three points a, b, c in Rp which do not lie on the same line, the vectors
u = b− a and v = c− a are linearly independent (Exercise 8.5.15). Hence, a, u,
and v determine an affine function F with image a plane, as above. This plane
contains the points a = F (0, 0), b = F (1, 0), and c = F (0, 1).

Example 8.5.12. Find parametric equations for the plane that contains the
three points (1, 0, 1), (1, 1, 2), (−1, 2, 0).

Solution: We choose a = (1, 0, 1), u = (1, 1, 2) − (1, 0, 1) = (0, 1, 1), and
v = (−1, 2, 0)− (1, 0, 1) = (−2, 2,−1). Then, according to the above discussion,
the plane we seek has parametric equations

x = 1 − 2t
y = s+ 2t
z = 1 + s− t.

We can also express a plane in R3 as the kernel of a rank 1 affine transforma-
tion from R3 to R. If a = (a1, a2, a3) is a fixed point in the plane, u = (x, y, z)
the general point of the plane, and v = (v1, v2, v3) a vector perpendicular to
the plane, then v · (u − a) = 0 . Thus, the plane is the kernel of the affine
transformation f : R3 → R defined by f(u) = v · u − b, where b = v · a. The
equation of the plane is then

v1x+ v2y + v3z = b.

Example 8.5.13. Find an equation for the plane of Example 8.5.12.
Solution: We choose a = (1, 0, 1) as a point in the plane. Now we need

a vector perpendicular to the plane. The vectors (0, 1, 1) and (−2, 2,−1) are
parallel to the plane and so we need to find a vector orthogonal to each of these.
In fact, (3, 2,−2) is orthogonal to each of these vectors. Also,

(3, 2,−2) · (1, 0, 1) = 1.

Hence, an equation for our plane is

3x+ 2y − 2z = 1.

Exercise Set 8.5

1. Do the vectors (1, 2, 1), (2, 0, 1), and (1,−1, 1) form a basis for R3. Justify
your answer.

2. Do the vectors (1, 2, 1), (2, 0, 1), and (0, 4, 1) form a basis for R3. Justify
your answer.
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3. What is the rank of the matrix





1 2 1
2 3 −1
1 1 −2



?

4. What is the rank of the matrix

(

1 −2 3
−2 4 −6

)

?

5. What is the rank of the matrix

(

1 −2 3
−2 3 −6

)

?

6. Find parametric equations for the line in R3 which contains the point
(1, 2, 3) and is parallel to the vector (1, 1, 1).

7. Find parametric equations for the line in R3 containing both (1, 1, 1) and
(3,−1, 3).

8. Express the line of the previous exercise as the set of simultaneous solu-
tions of a pair of linear equations.

9. Find parametric equations for the plane that contains the three points
(1, 0,−1), (2, 1, 2), (−1, 2, 3).

10. Express the plane of the previous exercise as the set of solutions of a linear
equation.

11. Find parametric equations for a line which passes through the origin and
is perpendicular to the plane x − y + 3z = 5. Use this line to determine
the distance from the plane to the origin.

12. Find the distance from the line with parametric vector equation (x, y, z) =
(1 + 2t, 2 − t, 4 + t) to the origin.

13. Find a formula for the point on the one dimensional subspace of Rp gen-
erated by a non-zero vector u which is closest to the point a ∈ Rp.

14. Prove that, in R3, a plane and a line not parallel to it must meet in exactly
one point.

15. Prove that if a, b, and c are three points in Rp which do not lie on the same
line, then the vectors u = b− a and v = c − a are linearly independent.

16. Prove that if M is a linear subspace of Rp and we set

M⊥ = {y ∈ Rp : y ⊥ x for all x ∈ M},

then M⊥ is a also a linear subspace of Rp and every vector in u ∈ Rp may
be written in a unique way as u = x + y with x ∈ M and y ∈ M⊥ (see
Definition 7.1.9).
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Chapter 9

Differentiation in Several
Variables

The most powerful method available for studying a function in several variables
is to approximate it locally, near a given point, by an affine function. When this
can be done, it provides a wealth of information about the original function.
Affine approximation leads to the definition of the differential of a function of
several variables. The differential of a function F , when it exists, is a matrix of
partial derivatives of coordinate functions of F . For this reason, we precede the
discussion of the differential with a brief review of partial derivatives.

9.1 Partial Derivatives

In this section, f will be a real valued function defined on an open set in Rp.

Definition 9.1.1. The partial derivative of f with respect to its jth variable

at x = (x1, · · · , xj , · · · , xp) is denoted
∂f

∂xj
(x) and is defined by

∂f

∂xj
(x) =

d

dt
f(x1, · · · , xj−1, t, xj+1, · · · , xp)|t=xj

,

provided this derivative exists.

Thus, the partial derivative of a function f , with respect to its jth vari-
able, at a point x in its domain is obtained by fixing all of the variables of f ,
except the jth one, at the appropriate values x1, · · · , xj−1, xj+1, · · · , xp, then
differentiating with respect to the remaining variable and evaluating at xj .

Remark 9.1.2. When it is not necessary to explicitly exhibit the point x at
which the partial derivative is being computed (because it is understood from
the context or because x is a generic point of the domain of f) we will simply

write
∂f

∂xj
for the partial derivative of x with respect to its jth variable.

243
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Two other notations that are often used for the partial derivative of f with
respect to xj are fxj

and fj . We won’t use these in this text.

Example 9.1.3. Find the partial derivatives of the function

f(x1, x2, x3, x4) = x2
1 + x1x3 − 4x2

2x
3
4.

Solution: To find
∂f

∂x1
, we consider x2, x3, x4 to be fixed constants and we

differentiate with respect to the remaining variable and evaluate at x1. The
result is

∂f

∂x1
= 2x1 + x3.

Similarly, we have

∂f

∂x2
= −8x2x

3
4,

∂f

∂x3
= x1,

∂f

∂x4
= −12x2

2x
2
4.

Example 9.1.4. Find the partial derivatives of the function

f(x, y, z) = z2 cosxy.

Solution: We have

∂f

∂x
= −yz2 sinxy,

∂f

∂y
= −xz2 sin xy,

∂f

∂z
= 2z cosxy.

The Partial Derivatives as Limits

If we use the definition of the devivative of a function of one variable as the
limit of a difference quotient, the result is

∂f

∂xj
(x1, · · · , xp) = lim

h→0

f(x1, · · · , xj + h, · · · , xp) − f(x1, · · · , xj , · · · , xp)
h

.

The notation involved in this statement becomes much simpler if we note that
the point (x1, · · · , xj + h, · · · , xp) may be written as x + h ej , where ej is the
basis vector with 1 in the jth entry and 0 elsewhere. Then,

∂f

∂xj
(x) = lim

h→0

f(x+ h ej) − f(x)

h
. (9.1.1)
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Higher Order Partial Derivatives

The partial derivatives defined so far are first order partial derivatives. We
define second order partial derivatives of f in the following fashion: for i, j =
1, · · · , p we set

∂2f

∂xi∂xj
=

∂

∂xi

(

∂f

∂xj

)

. (9.1.2)

The meaning of this is as follows: If the partial derivative
∂f

∂xj
exists in a

neighborhood of a point x ∈ Rp, then we may attempt to take the partial
derivative with respect to xi of the resulting function at the point x. The result,
if it exists, is the right side of the above equation. The expression on the left is
the notation that is commonly used for this second order partial derivative. In
the case where i = j, we modify this notation slightly and write

∂2f

∂x2
j

=
∂

∂xj

(

∂f

∂xj

)

.

A useful way to think of this process is as follows: the expression
∂

∂xj
is an

operator – that is, a transformation which takes a function f on an open set U

to another function
∂f

∂xj
on U (provided this derivative exists on U). In fact,

this operator is a linear operator (preserves sums and scalar products) because
the derivative of a sum is the sum of the derivatives and the derivative of a
constant times a function is the constant times the derivative of the function.
Such operators may be composed – that is, we may first apply one such operator,
∂

∂xj
, to a function and then apply another,

∂

∂xi
, to the result. In fact, we may

continue to compose such operators, applying one after another, as long as the
resulting function has the appropriate partial derivatives on the given open set.
From this point of view, the second order partial derivative of (9.1.2) is just the
result of applying to f the second order differential operator

∂2

∂xi∂xj
=

∂

∂xi
◦ ∂

∂xj
.

We may, of course, define higher order partial differential operators in an
analogous fashion. Given integers j1, j2, · · · , jm between 1 and p, we set

∂m

∂xj1 · · · ∂xjm
=

∂

∂xj1
◦ ∂

∂xj2
◦ · · · ◦ ∂

∂xjm
.

The resulting operator is a partial differential operator of total degree m.

Example 9.1.5. Find
∂5f

∂x∂y∂z∂y∂x
if f(x, y, z) = x2y3z4 + x2 + y4 + xyz.
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Solution: We proceed one derivative at a time:

apply
∂

∂x
:

∂f

∂x
= 2xy3z4 + 2x+ yz,

apply
∂

∂y
:

∂2f

∂y∂x
= 6xy2z4 + z,

apply
∂

∂z
:

∂3f

∂z∂y∂x
= 24xy2z3 + 1,

apply
∂

∂y
:

∂4f

∂y∂z∂y∂x
= 48xyz3,

apply
∂

∂x
:

∂5f

∂x∂y∂z∂y∂x
= 48yz3.

Equality of Mixed Partials

It is natural to ask whether or not, in a mixed higher order partial derivative,
the order in which the derivatives are taken makes a difference. Some additional
calculation using the previous example (Exercise 9.1.5) shows that, at least for
the function f of that example, the order in which the five partial derivative
operators are applied makes no difference. This is not always the case, but it
is the case under rather mild continuity assumptions. When it is the case, we
may change the order in which the partial derivatives are taken so as to collect
partial derivatives with respect to the same variable together. For example, the
5th order mixed partial derivative of the previous example can be re-written as

∂5f

∂x∂x∂y∂y∂z
=

∂5f

∂x2∂y2∂z
.

The next theorem tells us when interchanging the order of a mixed partial
derivative is legitimate.

Theorem 9.1.6. Suppose f is a function defined on an open disc Br(a, b) ⊂ R2.
Also suppose that both first order partial derivatives exist in Br(a, b) and that
∂2f

∂y∂x
exists in Br(a, b) and is continuous at (a, b). Then

∂2f

∂x∂y
exists at (a, b)

and is equal to
∂2f

∂y∂x
(a, b).

Proof. We introduce a function λ(h, k), defined for (h, k) in the disc B =
Br(0, 0), by

λ(h, k) = f(a+ h, b+ k) − f(a+ h, b) − f(a, b + k) + f(a, b).

It follows from the hypotheses of the theorem that the partial derivative of
λ(h, k) with respect to h exists for all (h, k) in the disc B. If (h, k) ∈ B, the
rectangle with vertices (0, 0), (0, k), (h, 0) and (h, k) is also contained in this
disc and so the partial derivative of λ with respect to its first variable exists on
an open set containing this rectangle.
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Now for fixed k,

λ(h, k) = g(h) − g(0) where g(u) = f(a+ u, b+ k)− f(a+ u, b).

The function g is differentiable on an open interval containing [0, h], and so
we may apply the Mean Value Theorem to g to conclude there is a number
s ∈ (0, h) such that g(h)− g(0) = hg′(s). This means

λ(h, k) = h

(

∂f

∂x
(a+ s, b + k)− ∂f

∂x
(a+ s, b)

)

. (9.1.3)

Of course, the number s depends on h and k.

Since
∂2f

∂y∂x
exists on B,

∂f

∂x
is a differentiable function of its second variable

on B. Hence, we may apply the Mean Value Theorem to this function as well.
We conclude that there is a point t ∈ (0, k) such that

∂f

∂x
(a+ s, b + k)− ∂f

∂x
(a+ s, b) = k

∂2f

∂y∂x
(a+ s, b + t). (9.1.4)

Combining (9.1.3) and (9.1.4) yields

1

hk
λ(h, k) =

∂2f

∂y∂x
(a+ s, b+ t).

By hypothesis, the second order partial derivative on the right is continuous at
(a, b). This implies that

lim
(h,k)→(0,0)

λ(h, k)

hk
=

∂2f

∂y∂x
(a, b).

This conclusion uses the fact that the point (a+ s, b + t), wherever it is, is at
least closer to (a, b) than the point (a+ h, b+ k).

We complete the proof by noting that the above limit exists independently
of how (h, k) approaches (0, 0). In particular, the result will be the same if we
first let k approach 0 and then h. However,

lim
h→0

lim
k→0

1

hk
λ(h, k)

= lim
h→0

lim
k→0

1

h

(

f(a+ h, b + k) − f(a+ h, b)

k
− f(a, b + k)− f(a, b)

k

)

= lim
h→0

1

h

(

lim
k→0

f(a+ h, b + k) − f(a+ h, b)

k
− lim
k→0

f(a, b + k)− f(a, b)

k

)

= lim
h→0

1

h

(

∂f

∂y
(a+ h, b) − ∂f

∂y
(a, b)

)

=
∂2f

∂x∂y
(a, b).
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Hence, this second order partial derivative also exists and it equals
∂2f

∂y∂x
(a, b).

Note that distributing the limit with respect to k across the difference in the
second step above requires that we know the two limits involved exist. This

follows from the assumption that
∂f

∂y
exists in Br(a, b).

Obviously, the same result holds, with the same proof, if x and y are reversed
in the statement of the above theorem. That is, if we assume either one of the
second order mixed partials exists in a neighborhood of (a, b) and is continuous
at (a, b), then the other one also exists at (a, b) and the two are equal at (a, b).

The following example shows that the continuity of the mixed partial that
is assumed to exist is a necessary assumption in the above theorem.

Example 9.1.7. For the function

f(x, y) =







x3y − xy3

x2 + y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)
,

show that the first order partial derivatives exist and are continuous everywhere.

Then show that the mixed second order partial derivatives
∂2f

∂x∂y
and

∂2f

∂y∂x
exist

everywhere, but they are not equal at (0, 0). Why doesn’t this contradict the
above theorem?

Solution: Except at the point (0, 0) where the denominator vanishes, we
may use the standard rules of differentiation to show that

∂f

∂x
=

(3x2y − y3)(x2 + y2)− 2x(x3y − xy3)

(x2 + y2)2
,

∂f

∂y
=

(x3 − 3xy2)(x2 + y2) − 2y(x3y − xy3)

(x2 + y2)2
.

(9.1.5)

These expressions may be differentiated again to show that each of the second
order partial derivatives also exists, except possibly at (0, 0).

In order to calculate
∂f

∂x
(0, 0) we set y = 0 in the expression for f . The

resulting function of x is identically 0 and, hence, has derivative 0 with respect

to x. Similar reasoning leads to the same conclusion for
∂f

∂y
(0, 0). Since both

the expressions in (9.1.5) have limit 0 as (x, y) → (0, 0), the first order partial
derivatives are continuous everywhere, including at (0, 0), where they both have
the value 0.

To calculate
∂2f

∂x∂y
, we first note that

∂f

∂y
(x, 0) = x, for all x. Hence,

∂2f

∂x∂y
(0, 0) = 1.

On the other hand,
∂f

∂x
(0, y) = −y, and so

∂2f

∂y∂x
(0, 0) = −1.
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The two mixed partials are not equal at (0, 0) even though they both exist
everywhere. Why doesn’t this contradict the previous theorem? It must be the
case that niether of these mixed partial derivatives is continuous at (0, 0) – a
fact that will be verified in the exercises.

An important hypothesis in many theorems is that a function f belongs to
the class Ck(U) defined below.

Definition 9.1.8. If U is an open subset of Rp then a function F : U → Rq is
said to be Ck on U if, for each coordinate function fj of F , all partial derivatives
of fj of total order less than or equal to k exist and are continuous on U .

Functions which are C1 on U will be called smooth functions on U .

By using Theorem 9.1.6 to interchange pairs of adjacent first order partial
differential operators, the following theorem may be proved:

Theorem 9.1.9. If a real valued function f is Ck on U ⊂ Rp and m ≤ k,

then the mth order partial derivative
∂mf

∂xj1 · · · ∂xjm
is independent of the order

in which the first order partial derivatives
∂

∂ji
are applied.

Exercise Set 9.1

1. If f(x, y) =
√

x2 + y2, find
∂f

∂x
and

∂f

∂y
. Are there any points in the plane

where they don’t exist?

2. If f(x, y) = xy2+xy+y3, find all first and second order partial derivatives
of f .

3. If f(x, y) = x cos y, find
∂f

∂x
,
∂f

∂y
,
∂2f

∂x∂y
, and

∂2f

∂y∂x
.

4. If f(x, y) = exy sin y, find
∂f

∂x
,
∂f

∂y
,
∂2f

∂x∂y
, and

∂2f

∂y∂x
.

5. If f is the function of Example 9.1.5 directly calculate

∂5f

∂x2∂y2∂z
.

Verify that it is the same as the mixed partial derivative of f calculated
in the example.

6. Let f : R → R be differentiable on R and define a function g : R2 → R by

g(x, y) = f(x+ y). Use (9.1.1) to show that
∂g

∂x
=
∂g

∂y
on R2.
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7. Theorem 9.1.6 is a statement about a function of two variables. Show how
it can be applied several times in a step by step procedure to prove that
if U ⊂ R3 and f is C3 on U , then

∂3f

∂x∂y∂z
=

∂3f

∂z∂y∂x
.

8. If p > 0, let f be the function

f(x, y) =







x2

(x2 + y2)p
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

For which values of p is
∂f

∂x
continuous at (0, 0)?

9. If f is the function of Example 9.1.7, show by direct calculation that
∂2f

∂x∂y

is not continuous at (0, 0). A similar calculation shows that
∂2f

∂y∂x
is not

continuous at (0, 0) (you need not do both calculations).

10. If f is defined on R2 by

f(x, y) =







xy

x2 + y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0),

show that both
∂f

∂x
and

∂f

∂y
exist everywhere, but they are not continuous

at (0, 0). In fact, f itself is not continuous at (0, 0) (see Example 8.1.3).

9.2 The Differential

Let f be a real valued function defined on an interval on the line. Recall that
the equation of the tangent line to the curve y = f(x), at a point a where f is
differentiable, is:

y = f(a) + f ′(a)(x− a)

This is the equation of the line which best approximates the curve when x is
near a. The right side, is an affine function,

T (x) = f(a) + f ′(a)(x− a),

of x. What is special about T that makes its graph the line which best approx-
imates the curve y = f(x) near a? For convenience of notation let h = x − a,
so that x = a+ h. Then

f(a+ h)− T (a+ h) = f(a+ h)− f(a)− f ′(a)h



9.2. THE DIFFERENTIAL 251

and so

lim
h→0

f(a+ h)− T (a+ h)

h
= lim
h→a

f(a+ h) − f(a)

h
− f ′(a) = 0.

In other words, not only do f and T have the same value at a, but as h ap-
proaches 0, the difference between f(a+h) and T (a+h) approaches zero faster
than h does. No affine function other than T has this property (Exercise 9.2.7).

Example 9.2.1. What is the best affine approximation to f(x) = x3 − 2x+ 1
at the point (2, 5)?

Solution: Here, a = 2, f(a) = 5, and f ′(a) = f ′(2) = 22, so the best affine
approximation to f(x) at x = 2 is T (x) = 5 + 22(x− 2) = 22x− 39.

Affine Approximation in Several Variables

By analogy with the single variable case, if F : D → Rq is a function defined on
a subset D of Rp, then the best affine approximation to F at a ∈ D would be an
affine function T : Rp → Rq such that F (a+h)−T (a+ h) goes to 0 faster than
h as the vector h approaches 0. In order for this to make sense at all, a must be
a limit point of D and, in fact, we will require that a be an interior point of D.
This ensures that there is an open ball, centered at a, which is contained in D.

It must also be the case that F and its affine approximation T have the same
value at a. However, if T is affine, then T (a+h) = b+L(a+h) where L : Rp → Rq

is linear and b ∈ Rq is a constant. If T (a) = F (a), then b = T (a)−L(a) and so
T has the form T (a+ h) = F (a)− L(a) + L(a+ h). Then, since L is linear,

T (a+ h) = F (a) + L(h).

A function which has a best affine approximation at a is said to be differen-
tiable at a. The precise definition of this concept is as follows:

Definition 9.2.2. Let F : D → Rq be a function with domain D ⊂ Rp, and
let a be an interior point of D. We say that F is differentiable at a if there is a
linear function L : Rp → Rq such that

lim
h→0

F (a+ h) − F (a)− L(h)

||h|| = 0. (9.2.1)

In this case, we call the linear function L the differential of F at a and
denote it by dF (a).

Just as in the single variable case, if F is differentiable, then the function

T (x) = F (a) + dF (a)(x− a)

is the best affine approximation to F (x) for x near a.
Also, as in the single variable case, differentiability implies continuity. We

state this in the following theorem, the proof of which is left to the exercises.
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Theorem 9.2.3. If F : D → Rq is differentiable at a ∈ D, then F is continuous
at a.

Example 9.2.4. Let F be the function from R2 to R2 defined by

F (x, y) = (x2 + y2, xy).

Show that F is differentiable at (1, 2) and its differential is the linear function
with matrix

A =

(

2 4
2 1

)

.

Find the affine function which best approximates F near (1, 2).
Solution: With a = (1, 2) and h = (x− 1, y − 2) = (s, t) , we have F (a) =

(5, 2) and

F (a+ h) − F (a)−Ah

= ((1 + s)2 + (2 + t)2 − 5 − 2s− 4t, (1 + s)(2 + t) − 2 − 2s− t)

= (s2 + t2, st)

Thus, the error F (a+h)−F (a)−Ah if F (a+h) is approximated by F (a)+Ah
is

(s2 + t2, st).

Then,
||F (a+ h) − F (a)− Ah||2 = (s2 + t2)2 + (st)2 ≤ 2||h||4.

This implies,
||F (a+ h) − F (a)−Ah||

||h|| ≤
√

2||h||,

which has limit 0 as h → 0. This shows that F is differentiable at (1, 2) and
that dF (1, 2) = A.

The best affine approximation to F (x, y) near (1, 2) is

T (x, y) = (5, 2) +

(

2 4
2 1

)(

x− 1
y − 2

)

=(5 + 2(x− 1) + 4(y − 2), 2 + 2(x− 1) + (y − 2))

= (−5 + 2x+ 4y,−2 + 2x+ y).

The Differential Matrix

Let F : D → Rq be a function with D ⊂ Rp and a an interior point of D.
If F is differentiable at a, then it is easy to compute the matrix (cij) of its
differential dF (a). This is called the differential matrix of F at a. As usual, we
will tend to ignore the technical difference between the linear function dF (a)
and its corresponding matrix (see Remark 8.4.13).

We suppose that F (x) = (f1(x), f2(x), · · · , fq(x)), so that fi is the ith co-
ordinate function of F . For j = 1, · · · , p, we apply (9.2.1) in the special case in
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which h approaches 0 along the line h = tej – that is, along the jth coordinate
axis. Since the vector expression in 9.2.1 converges to 0, the same thing is true
of each of its coordinate functions. This means,

lim
t→0

fi(a+ tej) − fi(a)− cijt

t
= 0,

which implies

cij = lim
t→0

fi(a+ tej) − fi(a)

t
.

The limit that appears in this equation is just the partial derivative

∂fi
∂xj

(a),

of fi with respect to its jth variable at the point a. This is true for each i and
each j. Thus, we have proved the following theorem.

Theorem 9.2.5. If F : D → Rq is differentiable at an interior point a of
D ⊂ Rp, then its differential at a is the linear function dF (a) : Rp → Rq with
matrix

(

∂fi
∂xj

(a)

)

ij

=



























∂f1
∂x1

(a)
∂f1
∂x2

(a) · · · ∂f1
∂xp

(a)

∂f2
∂x1

(a)
∂f2
∂x2

(a) · · · ∂f2
∂xp

(a)

· · · · · ·
· · · · · ·
· · · · · ·

∂fq
∂x1

(a)
∂fq
∂x2

(a) · · · ∂fq
∂xp

(a)



























. (9.2.2)

If F is defined and differentiable at all points of an open set U ⊂ Rp, then
we say that F is differentiable on U . Its differential dF is then a function on
U whose values are linear transformations from Rp to Rq. Equivalently, its
differential matrix dF is a q × p matrix whose entries are functions on U .

Example 9.2.6. Assuming that the function F of Example 9.2.4 is differen-
tiable everywhere, find its differential matrix. Verify that, at a = (1, 2), it is the
matrix A of the example.

Solution The coordinate functions for F are given by f1(x, y) = x2+y2 and
f2(x, y) = xy. The point a in this example is a = (1, 2). The partial derivatives
of f1 and f2 are

∂f1
∂x

= 2x,
∂f1
∂y

= 2y

∂f2
∂x

= y,
∂f2
∂y

= x.
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Thus, the differential matrix at a general point (x, y) is
(

2x 2y
y x

)

At the particular point a = (1, 2), this is
(

2 4
2 1

)

.

This is, indeed, the matrix A of Example 9.2.4.

A Condition for Differentiability

Since the vector function in (9.2.1) has limit 0 if and only if each of its coordinate
functions has limit 0, we have the following theorem.

Theorem 9.2.7. If D ⊂ Rp and F = (f1, · · · , fq) : D → Rq is a function, then
F is differentiable at a ∈ D if and only if, for each i, the coordinate function
fi is differentiable at a. In this case, the differential matrix dF is the matrix
whose ith row is the differential dfi of the coordinate function fi.

This result allows us to reduce the proof of following theorem to the case
q = 1.

Theorem 9.2.8. Let F = (f1, · · · , fq) : U → Rq be a function defined on an
open subset U of Rp. If each first order partial derivative of each coordinate
function fi exists on U , then F is differentiable at each point of U where these
partial derivatives are all continuous. Thus, if F is C1 on all of U , then F is
differentiable on all of U .

Proof. By the previous theorem, it is enough to prove that each of the coordinate
functions of F is differentiable at the point in question. Hence, it is enough to
prove the theorem in the case q = 1. To complete the proof, we will prove the
following statement by induction on p: If f is a real valued function defined on
an open set U ⊂ Rp and each first order partial derivative of f exists on U , then
f is differentiable at each point of U where all of these partial derivatives are
continuous.

If p = 1, then the hypothesis implies, in particular, that f has a derivative
at each point of U . For a function of one variable, this means the function is
differentiable at each point of U . This completes the base case of the induction
argument.

We now assume our statement is true for functions of p variables and let f
be a function of p+1 variables. We write points of Rp+1 in the form (x, y) with
x ∈ Rp and y ∈ R. For some a = (a1, · · · , ap) ∈ Rp and b ∈ R we suppose (a, b)
is a point of U at which the first order partial derivatives of f are all continuous.

If h = (h1, · · · , hp) ∈ Rp and k ∈ R, then

f(a+h, b+ k)− f(a, b))

= f(a+ h, b) − f(a, b) + f(a+ h, b + k) − f(a+ h, b).
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If we set g(x) = f(x, b) for x in an appropriate neighborhood of a in Rp and use
the Mean Value Theorem in the last variable on the last two terms above, then
this becomes

f(a+ h, b+ k) − f(a, b) = g(a+ h)− g(a) +
∂f

∂y
(a+ h, c)k, (9.2.3)

for some c between b and b+ k.
Since g is a function of p variables which satisfies the hypotheses of the

theorem, g is differentiable at a by our induction assumption. Hence, dg(a)
exists and

lim
h→0

g(a+ h)− g(a) − dg(a)h

||h|| = 0.

Because ||h|| ≤ ||(h, k)|| this implies

lim
(h,k)→0

g(a+ h) − g(a) − dg(a)h

||(h, k)|| = 0. (9.2.4)

Since
∂f

∂y
is continuous at (a, b), |k| ≤ ||(h, k)||, and (a + h, c) → (a, b) as

(h, k) → (0, 0), we also have

lim
(h,k)→0

1

||(h, k)||

(

∂f

∂y
(a+ h, c) − ∂f

∂y
(a, b)

)

k = 0. (9.2.5)

Let v be the vector whose first p components are the components of dg(a)

and whose last component is
∂f

∂y
(a, b). Then, by (9.2.3),

f(a+h, b+ k) − f(a, b) − v · (h, k)

= g(a+ h) − g(a) − dg(a)h+

(

∂f

∂y
(a+ h, c) − ∂f

∂y
(a, b)

)

k,
(9.2.6)

On combining (9.2.4), (9.2.5), and (9.2.6), we conclude that

lim
(h,k)→(0,0)

f(a+ h, b+ k) − f(a, b) − v · (h, k)
||(h, k)|| = 0,

and, hence, that f is differentiable at (a, b) with differential v. This completes
the induction and finishes the proof of the theorem.

Example 9.2.9. Show that the function F : R2 → R3 defined by

F (x, y) = (x ey, y ex, xy)

is differentiable everywhere, and then find its differential matrix.
Solution: The first order partial derivatives of the coordinate functions of

F exist and are continuous everywhere. Hence, F is differentiable everywhere
by the previous theorem. Its differential matrix is

dF (x, y) =





ey x ey

y ex ex

y x



 .
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A Function Which is not Differentiable

The existence of the first order partial derivatives is not, by itself, enough to
ensure that a function is differentiable. This is demonstrated by the next ex-
ample.

Example 9.2.10. Show that the function f defined by

f(x, y) =







xy

x2 + y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0).

is not differentiable at (0, 0) even though its first order partial derivatives exist
everywhere.

Solution: This is a rational function with a denominator which vanishes
only at (0, 0). Hence, its first order partial derivatives exist everywhere except
possibly at (0, 0). However f is identically 0 on both coordinate axes (that is,

f(x, 0) = 0 = f(0, y). Hence, both
∂f

∂x
and

∂f

∂y
exist at (0, 0) and equal 0.

However, f is clearly not differentiable at (0, 0), since it is not even continuous
at this point (see Example 8.1.3).

Exercise Set 9.2

1. If L : Rp → Rp is a linear function, show that dL = L. In other words,
if L has matrix A, then A is the differential matrix of the linear function
L(x) = Ax.

2. Find the best affine approximation near (0, 0) to the function F : R2 → R2

defined by

F (x, y) = (xy − 2x+ y + 1, x2 + y2 + x− 3y + 6).

3. If F is the function of the previous exercise, find the best affine approxi-
mation to F near (1,−1).

4. Find the differential matrix for the function G : R+ ×R → R3 defined by

G(x, y) = (y lnx, x ey, sin xy).

Then find the best affine approximation to G at the point (1, π).

5. Find the differential of the real valued function function f(x, y, z) =
xy2 cosxz. Then find the best affine approximation to f at the point
(1, 1, π/2).

6. Find the differential of the curve, γ(t) = (sin(2πt), cos(2πt), t2). Then find
the best affine approximation to the curve γ at the point t = 1.
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7. Prove that if f is a real valued function defined on an open interval con-
taining a and if S is an affine function such that f(a) = S(a) and

lim
h→0

f(a+ h)− S(a+ h)

h
= 0,

then S(a+ h) = f(a) + f ′(a)h.

8. Prove that if U is a neighborhood of 0 in Rp and if F : U → Rq is a
function such that F (0) = 0, then F is differentiable at 0 with dF = 0 if
and only if limx→0 ||F (x)||/||x|| = 0.

9. Prove Theorem 9.2.3. That is, prove that if a function is differentiable at
a point in its domain, then it is continuous at that point.

10. Does the function defined by

f(x, y) =







x3

x2 + y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

have first order partial derivatives at every point of R2? Is this function
differentiable at (0, 0)? Give reasons for your answers.

11. If f : Rp → R is differentiable at a ∈ Rp, then show that, for each h ∈ Rp,
the function g : R → R defined by g(t) = f(a + th) has a derivative at
t = 0. Can you compute it in terms of df(a) and h?

12. Prove that a function F : Rp → Rq is affine if and only if it is differentiable
everywhere and its differential matrix is constant.

9.3 The Chain Rule

The differential of a function of several variables has properties similar to those
of the derivative of a real valued function of a single variable. The simplest of
these are stated in the following theorem, whose proof is left to the exercises.

Theorem 9.3.1. Suppose F and G are functions defined on an open set U ⊂
Rp, with values in Rq, and c is a scalar. If F and G are differentiable at a point
x ∈ U , then

(a) cF is differentiable at x and d(cF )(x) = cdF (x); and

(b) F +G is differentiable at x and d(F +G)(x) = dF (x) + dG(x).

A result which is more difficult to prove, but is of great importance is the
chain rule for functions of several variables. The proof becomes considerably
simpler if we reformulate the concept of differentiability in the following way.
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An Equivalent Formulation of Differentiability

If f is a real valued function defined on an open interval containing the point
a ∈ R, then we can always express f(a+ h) − f(a) for h near but not equal to
0 in the following way:

f(a+ h)− f(a) = q(h)h, (9.3.1)

where q(h) is just the difference quotient

q(h) =
f(a+ h) − f(a)

h
.

Of course, f is differentiable at a if and only if q has a limit as h → 0. The
derivative is then defined to be this limit. The function q becomes continuous
at 0 if it is given the value f ′(a) at h = 0 and then (9.3.1) holds at h = 0 as well
as at all nearby points. In fact, the differentiability of f at a is equivalent to
the existence of a function q which satisfies (9.3.1) and is continuous at h = 0.
This suggests the following reformulation of the definition of differentiability.

Theorem 9.3.2. Let F be a function defined on an open set U ⊂ Rp with
values in Rq and let a be a point of U . Then F is differentiable at a if and only
if there is a q × p matrix valued function Q(h), defined in a neighborhood of 0,
such that Q is continuous at 0 and F (a+h)−F (a) is the vector-matrix product

F (a+ h)− F (a) = Q(h)h

for all h in a neighborhood of 0. If this condition holds, then dF (a) = Q(0).

Proof. Suppose a matrix Q with the required properties exists on some neigh-
borhood V of 0. Then, for h ∈ V ,

F (a+ h) − F (a)−Q(0)h

||h|| =
Q(h)h−Q(0)h

||h|| =
(Q(h)−Q(0))h

||h|| .

This expression has norm less than or equal to ||Q(h)−Q(0)|| which converges
to 0 as h → 0, since Q is continuous at 0. Thus, F is differentiable and its
differential matrix is Q(0).

Conversely, suppose F is differentiable at a. If we set

ǫ(h) = F (a+ h) − F (a)− dF (a)h.

Then ǫ is a function on a neighborhood of 0 with values in Rq and

lim
h→0

ǫ(h)

||h|| = 0.

If, when written out in terms of coordinate functions, ǫ = (ǫ1, ǫ2, · · · , ǫq), and
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h = (h1, h2, · · · , hp), then we define a q × p matrix ∆(h) by

∆(h) = ||h||−2

















ǫ1h1 ǫ1h2 · · · ǫ1hp
ǫ2h1 ǫ2h2 · · · ǫ2hp
· · · · · ·
· · · · · ·
· · · · · ·

ǫqh1 ǫqh2 · · · ǫqhp

















.

This is a matrix valued function of h, defined on a neighborhood of 0, except
at 0 itself. Moreover, if we define this function to be 0 when h = 0, then it
becomes continuous at h = 0, since

|ǫi(h)hj |
||h||2 ≤ ||ǫ(h)||||h||

||h||2 =
||ǫ(h)||
||h|| ,

and this has limit 0 as h → 0. Note also that if we apply the matrix ∆(h) to
the vector h, the result is

∆(h)h = ǫ(h),

Thus, if we set
Q(h) = dF (a) + ∆(h),

then Q is continuous at h = 0, Q(0) = dF (a), and

F (a+ h) − F (a) = dF (a)h+ ǫ(h) = dF (a)h+ ∆(h)h = Q(h)h.

This completes the proof.

The Chain Rule

After the above reformulation of differentiability, the chain rule has a simple
proof.

Theorem 9.3.3. Let U and V be open subsets of Rr and Rp. respectively, and
let G : U → Rp and F : V → Rq be functions with G(U) ⊂ V . Suppose a ∈ U ,
G is differentiable at a, and F is differentiable at b = G(a). Then F ◦ G is
differentiable at a and

d(F ◦G)(a) = dF (G(a))dG(a).

Proof. By the previous theorem, there are matrix valued functions QG and QF ,
defined in neighborhoods of 0 in Rr and Rp, respectively, each continuous at 0,
with QF (0) = dF (b) , QG(0) = dG(a), and such that

G(a+ h) −G(a) = QG(h)h and F (b+ k)− F (b) = QF (k)k

for h and k in appropriate neighborhoods of 0. Then, since G(a) = b,

F ◦G(a+ h) − F ◦G(a) = F (b+QG(h)h)− F (b) = QF (QG(h)h)QG(h)h.
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Since QG and QF are both continuous at 0, we have

lim
h→0

QF (QG(h)h)QG(h) = QF (0)QG(0) = dF (b)dG(a) = dF (G(a))dG(a).

Thus, if we choose QF◦G(h) to be QF (QG(h)h)QG(h), it satisfies the conditions
of the previous theorem with F replaced by F ◦G and, hence, by that theorem,
d(F ◦G)(a) exists and equals dF (G(a))dG(a).

Example 9.3.4. Let f(x, y) be a real valued function of two variables and let

φ(r, s, t) = f(r(s+ t), r(s− t)).

Find dφ(1, 2, 1) if
∂f

∂x
(3, 1) = 4 and

∂f

∂y
(3, 1) = −5.

Solution: The function φ is just f ◦G, where G : R3 → R2 is defined by

G(r, s, t) = (r(s+ t), r(s− t)).

We have G(1, 2, 1) = (3, 1) and

dG(1, 2, 1) =

(

3 1 1
1 1 −1

)

.

Thus, dφ(1, 2, 1) = dF (G(1, 2, 1))dG(1, 2, 1) is
(

∂f

∂x
(3, 1),

∂f

∂y
(3, 1)

)(

3 1 1
1 1 −1

)

=
(

4, −5
)

(

3 1 1
1 1 −1

)

= (7,−1, 9).

Example 9.3.5. If F (x, y) = (f1(x, y), f2(x, y)) is a differentiable function from
R2 to R2 and we define G : R2 → R2 by G(s, t) = F (s2 + t2, s2 − t2), find an
expression for the differential matrix of G in terms of the partial derivatives of
f1 and f2.

Solution: The function G is F ◦H where H(s, t) = (s2 + t2, s2 − t2). The
differential matrices of F and H are

dF =







∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y






and dH =

(

2s 2t
2s −2t

)

.

By the chain rule,

dG(s, t) = d(F ◦H)(s, t) = dF (H(s, t))dH(s, t)

=









2s

(

∂f1
∂x

+
∂f1
∂y

)

2t

(

∂f1
∂x

− ∂f1
∂y

)

2s

(

∂f2
∂x

+
∂f2
∂y

)

2t

(

∂f2
∂x

− ∂f2
∂y

)









,

where the partial derivatives of f1 and f2 are to be evaluated at the point
H(s, t) = (s2 + t2, s2 − t2).
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Differential of an Inner Product

The following theorem is a nice application of the chain rule.

Theorem 9.3.6. Suppose F and G are functions defined in a neighborhood of
a point a ∈ Rp and with values in Rq. If F and G are both differentiable at a,
then F ·G is also differentiable at a and

d(F ·G)(a) = G(a)dF (a) + F (a)dG(a),

where each of the products on the right is the matrix product of a 1× q times a
q × p matrix.

Proof. Let H : R2q → R be defined by

H(u, v) = u · v,

where, if u = (u1, · · · , uq) and v = (v1, · · · , vq) are vectors in Rq, then (u, v)
denotes the vector (u1, · · · , uq , v1, · · · , vq) in R2q .

Now F · G = H ◦ (F,G), where (F,G) denotes the function with values in
R2q whose first q coordinate functions are the coordinate functions of F and
whose last q coordinate functions are the coordinate functions of G.

The function H is differentiable everywhere because its coordinate functions
uivi have continuous partial derivatives everywhere. That is,

∂uivi
∂ui

= vi,
∂uivi
∂vi

= ui,

and all other first order partial derivatives are zero. This means that its differ-
ential is the 1 × 2q matrix

(v1, · · · , vq , u1, · · · , uq).

Since F and G are differentiable at a, the coordinate functions of both are
all differentiable at a. This implies that the function (F,G) is differentiable
at a, since each of its coordinate functions is a coordinate function of F or a
coordinate function of G. Furthermore,

d(F,G)(a) =

(

dF (a)
dG(a)

)

,

where the matrix on the right has its first q rows the rows of dF (a) and its last
q rows the rows of dG(a).

By the chain rule,

d(F ·G)(a) = dH(F (a),G(a))d(F,G)(a)

= (G(a), F (a))

(

dF (a)
dG(a)

)

= G(a)dF (a) + F (a)dG(a).
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Dependent Variable Notation

A notation that is often used in connection with differentiation and specifically
the chain rule is one which emphasizes the variables in a problem, some of which
depend on others through functional relations, but which de-emphasizes the
functions defining these relations. In this notation, a function F of p variables
with values in Rq determines a vector of q dependent variables

u = (u1, u2, · · · , uq)
which depend on a vector of p variables

x = (x1, x2, · · · , xp)
through the relation u = F (x). The differential matrix is then the matrix

(

∂ui
∂xj

)

ij

=



























∂u1

∂x1

∂u1

∂x2
· · · ∂u1

∂xp
∂u2

∂x1

∂u2

∂x2
· · · ∂u2

∂xp
· · · · · ·
· · · · · ·
· · · · · ·
∂uq
∂x1

∂uq
∂x2

· · · ∂uq
∂xp



























.

where
∂ui
∂xj

is understood to be the partial derivative
∂fi
∂xj

of the ith coordinate

function of F evaluated at a generic point x of the domain of F .
Now the variables xj themselves may depend on a vector of variables

t = (t1, t2, · · · , tr)
through a function G. The differential matrix for this relationship would be the
matrix

(

∂xj
∂tk

)

jk

.

Since the variables ui depend on the variables xj , which in turn depend on
the variables tk, the variables ui also depend on the variables tk (through the
function F ◦G), and the differential matrix for this relationship is denoted

(

∂ui
∂tk

)

ik

.

Using this notation, the chain rule becomes
(

∂ui
∂tk

)

ik

=

(

∂ui
∂xj

)

ij

(

∂xj
∂tk

)

jk

, (9.3.2)

where the expression on the right is the product of the indicated matrices. This
product will involve the variables xj as well as the variables tk and it is important
to remember that the xjs are themselves functions of the variables tk.



9.3. THE CHAIN RULE 263

A Change of Variables

Example 9.3.7. If u = f(x, y) expresses the variable u as a function of Carte-
sian coordinates (x, y) on an open subset of the plane, what is the relationship
between the differential matrix of u as a function of (x, y) and its differential ma-
trix as a function of the corresponding polar coordinates (r, θ), where x = r cos θ
and y = r sin θ.

Solution: The change of coordinate transformation (x, y) = (r cos θ, r sin θ)
has differential matrix

(

cos θ −r sin θ
sin θ r cos θ

)

.

Thus,
(

∂u

∂r

∂u

∂θ

)

=

(

∂u

∂x

∂u

∂y

)(

cos θ −r sin θ
sin θ r cos θ

)

,

or

∂u

∂r
= cos θ

∂u

∂x
+ sin θ

∂u

∂y

∂u

∂θ
= −r sin θ

∂u

∂x
+ r cos θ

∂u

∂y

.

Exercise Set 9.3

1. If F is a function from an open subset U of Rp to Rq which is differentiable
at a and if B is an r × q matrix, then show that d(BF )(a) = BdF (a).
Here, BF (x) is the matrix B applied to the vector F (x) and BdF (a) is
the product of the matrix B and the matrix dF (a).

2. If f(x, y) is a differentiable function of (x, y) ∈ R2, and g(t) = f(tx, ty),
for all t ∈ R, find g′(1) in terms of the partial derivatives of f .

3. An n-homogeneous function on R2 is a function that satisfies f(tx, ty) =
tnf(x, y) for all t ∈ R and (x, y) ∈ R2. Show that a differentiable function
on R2 is n-homogeneous if and only it satifies the differential equation

x
∂f

∂x
+ y

∂f

∂y
= nf

at each (x, y) ∈ R2.

4. If f is a differentiable function on R and g(x, y) = f(xy), show that

x
∂g

∂x
− y

∂g

∂y
= 0.

5. If f and g are twice differentiable functions on R and

h(x, y) = f(x− y) + g(x+ y),
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show that h satisfies the wave equation:

∂2h

∂x2
− ∂2h

∂y2
= 0.

6. If u is a variable which is a differentiable function of (x, y) in an open set
U ⊂ R2, if x and y are differentiable functions of (s, t) ∈ V for an open set
V ⊂ R2, and if (x, y) ∈ U whenever (s, t) ∈ V , then use the chain rule to

obtain expressions for
∂u

∂s
and

∂u

∂t
on V in terms of the partial derivatives

of u with respect to x and y and the partial derivatives of x and y with
respect to s and t.

7. Do the preceding exercise in the special case where

x = as+ bt and y = cs+ dt.

for some constants a, b, c, d.

8. If F (x, y) = (f1(x, y), f2(x, y)) is a differentiable function from R2 to R2

and we define G : R2 → R2 by G(s, t) = F (st, s+ t), find an expression for
the differential matrix of G in terms of the partial derivatives of f1 and
f2.

9. If (x, y, z) are the Cartesian coordinates of a point in R3 and the spherical
coordinates of the same point are r, θ, φ, then

x = r cos θ sinφ, y = r sin θ sinφ, z = r cosφ.

Let u be a variable which is a differentiable function of (x, y, z) on R3.
Find a formula for the partial derivatives of u with respect to r, θ, φ in
terms of its partial derivatives with respect to x, y, z.

10. Suppose U and V are open subsets of Rp and F : U → V has an inverse
function G : V → U . This means F ◦ G(y) = y for all y ∈ V and
G ◦ F (x) = x for all x ∈ U . Show that, if F is differentiable on U and G
is differentiable on V , then dF (x) is non-singular at each x ∈ U , and for
each x ∈ U ,

dF (x)−1 = dG(y) where y = F (x).

11. Show that if F is differentiable function on an open set U ⊂ Rp with values
in Rq , then the real valued function ||F (x)||2 on U has zero differential at
x if and only if the vector F (x) is orthogonal to each of the columns of
dF (x).

12. Prove Theorem 9.3.1.

13. If f(x, y) = x2 + y2 find a 1 × 2 matrix valued function Q which satisfies
the conclusion of Theorem 9.3.2 for f .
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14. In the proof of Theorem 9.3.3, the following fact is used twice: If A(h)
is a q × p matrix whose entries are functions of h ∈ Rp and if A(h) is
continuous at h = 0, then limh→0A(h)h = 0, where A(h)h is the result of
the matrix A(h) acting via vector-matrix product on the vector h. Prove
that this limit is 0, as claimed.

9.4 Applications of the Chain Rule

The Gradient

The case q = 1 is of special interest in this discussion. In this case, we are
dealing with a real valued function f on a domain D ⊂ Rp. At any point x
where the function f is differentiable, its differential matrix is a 1× p matrix –
that is, a row vector

df =

(

∂f

∂x1
, · · · , ∂f

∂xp

)

,

The resulting vector is called the gradient of f at x. It is sometimes denoted
∇f and sometimes denoted grad f .

If f(x1, · · · , xp) is the function f with its argument written out in terms of
coordinates, then a notation often used for df is

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 + · · · ∂f

∂xp
dxp. (9.4.1)

The interpretation of this is as follows: It is understood that df and the partial
derivatives in this equation are evaluated at some generic point x of the domain
of f . For each j, dxj is the differential of the jth coordinate function xj on
Rp. As such, it is the linear transformation from Rp to R which sends a vector
(v1, · · · , vp) ∈ Rp to its jth component vj . As a row vector, it is the vector which
has 1 as jth component and 0 for all other components. Earlier we called this
vector ej , but in the context of differentials it is common to call it dxj . Equation
9.4.1 expresses the fact that, for each function f as above, df at a given point
is a linear combination of the basis elements dxj with the coefficients being the
corresponding partial derivatives of f at that point.

Example 9.4.1. If f(x, y, z) = z2 + sin xy, find the gradient of f at a generic
point (x, y, z) and at the particular point (1, 0, 3).

Solution: At (x, y, z) the gradient of f is

df = (y cosxy, x cosxy, 2z).

At (x, y, z) = (1, 0, 3) this is the vector (0, 1, 6). In terms of the basis vectors
dx, dy, dz, we have

df = y cosxy dx+ x cosxy dy + 2z dz,

which, at (x, y, z) = (1, 0, 3) is dy + 6 dz.
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Directional Derivatives

We specify a direction in Rp by specifying a unit vector (vector of length 1)
that points in this direction. For example, in R2 we may specify a direction by
specifying an angle θ relative to the positive x axis, but this is equivalent to
specifying the unit vector (cos θ, sin θ) which points in this direction.

Given a function f , defined on a neighborhood of a point a ∈ Rp, each first
order partial derivative of f at a is defined by restricting f to a line through a
parallel to one of the coordinate axes and differentiating the resulting function
of one variable. However, there is nothing special about the coordinate axes. We
may restrict f to a line in any direction through a and differentiate the resulting
function of one variable. This leads to the concept of directional derivative.

Definition 9.4.2. Suppose f is a function defined in a neighborhood of a ∈ Rp

and and u is a unit vector in Rp. The directional derivative of f at a, in the
direction u, is defined to be

Duf(a) =
d

dt
f(a+ tu)|t=0

If f happens to be differentiable at a, then its directional derivatives all exist
and are easily calculated.

Theorem 9.4.3. Suppose f is a function defined in a neighborhood of a ∈ Rp

and differentiable at a. If u is a unit vector in Rp, then the directional derivative
Duf(a) exists and

Duf(a) = df(a)u.

Proof. If g : R → Rp is defined by g(t) = a + tu, then dg(t) = g′(t) = u and
Duf(a) = d(f ◦ g)(0). The chain rule implies that this exists and is equal to
df(a)dg(0) = df(a)u.

The directional derivative Duf(a) represents the rate of change of f as we
pass through a in the direction specified by u. If this is positive, then it repre-
sents the rate of increase of f in the u direction as we pass through a.

The proof of the following theorem is left to the exercises.

Theorem 9.4.4. Suppose f is a real valued function which is defined and dif-
ferentiable in a neighborhood of a ∈ Rp, and suppose that df(a) 6= 0. Then
the gradient df(a) points in the direction of greatest increase for f at a – that
is, Duf(a) has its maximum value when the unit vector u is a positive scalar
multiple of df(a).

Example 9.4.5. If f(x, y) = 2−x2 − y2, find the direction of greatest increase
of f at (1, 1) and the rate of increase of f in this direction at (1, 1).

Solution: The gradient of f is

df(x, y) = (−2x,−2y).

At (1, 1) this is
df(1, 1) = (−2,−2).
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A unit vector which points in the same direction is u = (−1/
√

2,−1/
√

2). The
directional derivative in the direction of u is

Duf(1, 1) = df(1, 1) · u =
√

2 +
√

2 = 2
√

2.

The Derivative of a Curve

Another special case of importance in the study of differentials is the case of a
curve in Rq – that is, a function

γ(t) = (γ1(t), γ2(t), · · · , γq(t)),

defined on an interval I ⊂ R, with values in Rq . In this case, the differential
matrix dγ, at an interior point of I is a q× 1 matrix – that is, a column vector.
This is the column vector obtained by transposing the vector

γ′(t) = (γ′1(t), γ
′
2(t), · · · , γ′q(t)).

of derivatives of the coordinate functions of γ.
If a ∈ I, the best affine approximation to γ(t) for t near a is the function

τ(t) = γ(a) + γ′(a)(t− a).

Assuming γ′(a) 6= 0, this is a parametric equation for a line through b = γ(a)
which is parallel to the vector γ′(a). If one more restriction on the curve γ is
met, this line will be called the tangent line to the curve at γ(a).

The additional restriction needed on γ is that a is the only point on the
interval I at which γ has the value b. Otherwise, the curve crosses itself at b
and the tangent line to the curve at b is not well defined – there is a different
tangent line for each branch of the curve passing through b (see Figure 9.1). In
this case, we will say that b is a crossing point for γ. Crossing points can be
eliminated by replacing the interval I with a smaller open interval, containing a,
but no other points at which γ has the value γ(a). In our continuing discussion
of curves and their tangent lines, we will assume that γ(a) is not a crossing
point of γ. This assumption and the assumption that γ′(a) 6= 0 ensure that γ
has a well defined tangent line at γ(a).

Note that each point τ(t) which is on the tangent line and sufficiently close
to γ(a) determines a parameter value t ∈ I and this, in turn, determines a point
γ(t) on the curve. The two points γ(t) and τ(t) differ from one another by

γ(t)− γ(a)− γ′(a)(t− a)

and the norm of this vector approaches 0 faster than t−a approaches 0 as t→ a.
This justifies the claim that the curve γ and the line τ are tangent at the point
γ(a). Note, however, that this line of reasoning is only valid if γ′(a) 6= 0, since,
otherwise, τ is constant and fails to determine a non-degenerate line.

If γ′(a) 6= 0, the vector

T (a) =
γ′(a)

||γ′(a)||
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Figure 9.1: Curve With a Crossing Point

is a unit vector (a vector of length one) which is parallel to the tangent line at
a. It is called the tangent vector to the curve at γ(a).

The vector γ′(a) is sometimes called the velocity vector of the curve at γ(a),
since it does represent velocity in the case where the curve is describing the
motion of a body through space.

Example 9.4.6. The parameterized curve γ(t) = (cos t, sin 2t), 0 < t < 2π,
passes through the origin. At the origin, find its velocity vector, tangent vector,
and tangent line. Do the same problem if the domain of γ is restricted to (0, π).

Solution: The origin is a crossing point for this curve (see Figure 9.1). The
curve passes through the origin when t = π/2 and when t = 3π/2. Thus, there
is no well defined velocity vector, tangent vector, or tangent line. If we restrict
the domain of γ to the interval (0, π), then the effect is to choose one branch of
the curve and the crossing is eliminated. Then the curve passes through (0, 0)
only at π/2. We have

γ′(t) = (− sin t, 2 cos 2t) and γ′(π/2) = (−1,−2).

Hence, the velocity vector at (0, 0) is γ′(π/2) = (−1,−2), the tangent vector

at this point is
γ′(π/2)

||γ′(π/2)|| =

(−1√
5
,
−2√

5

)

and a parametric equation for the

tangent line to this curve at (0, 0) is

τ(t) = (0, 0) + (t− π/2)(−1,−2) = (π/2− t, π − 2t).

If we define the domain of γ to be (π, 2π), then we are choosing the other
branch of the curve – the one which passes through (0, 0) at t = 3π/2. We
leave the problem of finding the tangent line to the curve at this point to the
exercises.

Higher Dimensional Tangent spaces

The following discussion is a higher dimensional version of the above discussion
of curves and tangent lines. Suppose p < q, U ⊂ Rp is open, and F : U → Rq
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is a smooth function. Since dF is a q × p matrix at each point of U and p < q,
the maximal possible rank of dF is p. Suppose a ∈ U is a point at which dF
has rank p. Then the function

Φ(x) = F (a) + dF (a)(x− a) (9.4.2)

is an affine function of rank p (Definition 8.5.8). This implies that its image
is a p-dimensional affine subspace of Rq (a translate of a p-dimensional linear
subspace). Each point in this subspace which is sufficiently near F (a) is Φ(x)
for some x ∈ U and, for such a point, there is a corresponding point F (x) in
the image of F . Now Φ is the best affine approximation to F near a and so the
norm of

F (x)− Φ(x) = F (x)− F (a)− dF (a)(x− a)

approaches 0 faster than ||x − a|| approaches 0 as x → a. This justifies calling
the image of Φ the tangent space to the image of F at F (a). At least, this is
the case if a is the only point in U at which F has the value F (a) (so that
F (a) is not a crossing point of F ). The situation described in this discussion is
important enough to warrant a definition.

A function F , defined on U , is one to one if there are no two distinct points
of U at which F has the same value.

Definition 9.4.7. With p < q, let U be an open subset of Rp and F : U → Rq

be a one to one smooth function on U such that dF (a) has rank p at each point
a ∈ U . Then we will call the image S of F a smoothly parameterized p-surface
in Rq and we will say that F is a smooth parameterization of S.

We define the tangent space of S at each b = F (a) ∈ S to be the affine
subspace of Rq which is the image of the function Φ of (9.4.2).

In the case where p = q − 1, a p-surface in Rq is called a hypersurface in Rq

and its tangent space at b = F (a) is its tangent hyperplane at b. If q = 3 and
p = 2, then a 2-surface in R3 is just a surface and its tangent space at b is its
tangent plane at b.

Example 9.4.8. . With a = r0 cos θ0, b = r0 sin θ0, and r0 > 0, find the tangent
plane at (a, b, r0) to the cone in R3 parameterized by the function G defined by

G(r, θ) = (r cos θ, r sin θ, r).

Is there a point on the cone where the tangent plane is not defined?
Solution: The differential dG at (r0, θ0) is





cos θ0 −r0 sin θ0
sin θ0 r0 cos θ0

1 0



 =





a/r0 −b
b/r0 a
1 0



 .

If r0 6= 0, this matrix has rank 2. It defines a parameterized plane by

Φ(r, θ) =





a
b
r0



+





a/r0 −b
b/r0 a

1 0





(

r − r0
θ − θ0

)

or

Φ(r, θ) = (ar/r0 − b(θ − θ0), br/r0 + a(θ − θ0), r) .
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Figure 9.2: Cone in R3

There is no tangent plane to the curve at the origin. The differential of G
at this point has rank 1 rather than rank 2 and the origin is a crossing point,
which means that G does not satisfy the conditions of Definition 9.4.7. In
fact, it is apparent from Figure 9.2 that there is no parametization of the cone
in a neighborhood of the origin that will make it a smooth p-surface and no
reasonable candidate for a tangent plane.

Level Sets

If F : U → Rd is a function defined on an open subset U of Rq , then a level set
for F is a set of the form

S = {y ∈ U : F (y) = c}

where c is a constant vector in Rd. By subtracting c from F , we can always
arrange things so that S is the subset of U defined by the equation F (y) = 0.

Under these circumstances, it is often the case that locally (meaning near a
given point b ∈ S) S can be represented as a smoothly parameterized surface of
some dimension and its tangent space can be realized as the set of solutions y
to the equation

dF (b)(y− b) = 0.

We will learn more about when this is true in the last section of this chapter.
For now, we settle for a couple of preliminary results.

Theorem 9.4.9. With F as above, let V be an open subset of Rp and G : V →
Rq a smooth function such that G(V ) is contained in a level set of F . Then

dF (y)dG(x) = 0, where y = G(x),

for each x ∈ V .
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Proof. If the image of G lies in a level set of F , then there is a constant c ∈ Rd

such that
(F ◦G)(x) = c for all x ∈ V.

Then, by the chain rule,

0 = d(F ◦G)(x) = dF (G(x))dG(x).

Example 9.4.10. Show that a curve γ in Rp of constant norm, ||γ(t)||, has its
tangent vector orthogonal to its position vector at each point.

Solution: If ||γ(t)|| is constant, then so is ||γ(t)||2. This means that γ has
its image in a level set of the function f(x) = ||x||2 = x · x. By the previous
theorem, df(x)dγ(t) = 0 if x = γ(t) is a point on the curve. This means that
the velocity vector γ′(t) is orthogonal to the gradient 2x of the function f at
each point x = γ(t) of the curve (see Exercise 9.4.6). Hence, γ′(t) is orthogonal
to γ(t) at each t. Since the tangent vector T (t) = γ′(t)/||γ(t)|| is a scalar times
γ′(t), it is also orthogonal to the position vector γ(t) for each t.

How smooth is a level set for a smooth function F : U → Rd? Does it have
a tangent space at some or all of its points? If so, does it resemble a curved
version of its tangent space?

By Definition 9.4.7, In order for a level set S for F to have a tangent space
at a point b ∈ S, there must be a neighborhood of b in which S is a smoothly
parameterized p-surface. That is, near b, S must be the image of a smooth
function G : V → Rq, with V an open subset of Rp, and the rank of dG equal
to p (the maximal rank possible) at each a ∈ V . Then the image of the affine
function Φ(x) = b+ dG(a)(x− a) is a p dimensional affine subspace of Rq (The
tangent space to S at b = G(a)). Also, by the previous theorem

0 = dF (b)dG(a)(x− a) = dF (b)(Φ(x)− b)

This means that the image of Φ−b is a linear subspace ofK = ker dF (b). Hence,
K has dimension at least p and it has dimension exactly p if and only if the
image of Φ − b is equal to K. The dimension of K is p if and only if the rank
of dF (b) is q − p. Hence, we have proved:

Theorem 9.4.11. With F as above and S a level set of F containing the point
b, if in some neighborhood of b the space S is a smoothly parameterized p surface,
and if dF (b) has rank q−p then the tangent space to S at b is the set of solutions
y to the equation dF (b)(y− b) = 0. If the rank of dF (b) is less than q− p, then
the set of solutions to this equation contains the tangent space to S at b as a
proper subset.

Example 9.4.12. If f(x, y, z) = x2+y2−z2 and S = {(x, y, z) : f(x, y, z) = 0},
show that at every point (a, b, c) on S, except at the origin, S is a smoothly
parameterized 2-surface with tangent space defined in terms of the kernel of df
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as in the previous theorem. Give the resulting equation for the tangent space.
Then show that all of this fails at the origin.

Solution: The surface S is the same as the parameterized surface of Ex-
ample 9.4.8 and Figure 9.2. By that example, S is a smoothly parameterized
2 surface near each such point except the origin. At (a, b, c) 6= (0, 0, 0), df is
(2a, 2b, 2c). This has rank 1 = 3−2. Therefore, by the previous theorem, S has
a tangent space given by

2a(x− a) + 2b(y − b) + 2c(z − c) = 0.

At 0 df is the 0 matrix. Hence, the kernel of df(0) is all of R3. Since S is
the cone of Example 9.4.8, it is a 2 dimensional surface and it does not seem
reasonable for it to have a 3-dimensional tangent space at a point. The problem
is that S is not a smoothly parameterized surface in a neighborhood of the origin
and, hence, does not have a tangent space there in the sense we are using the
term in this text.

When can a level set of a function F : U → Rd be represented as a smoothly
parameterized p-surface where q − p is the rank of dF (b)? That is the subject
of the implicit function theorem discussed in the last section of this chapter. At
this point, it is not clear that a level set of a smooth function F has a smooth
parameterization near any of its points.

For some level sets the construction of a smooth parameterization of the
right dimension is easy. This is true of a level set which arises as the graph of
a function, as the next example shows.

Example 9.4.13. Show that if g is a smooth real valued function defined on R2,
then each level set of the function f : R3 → R defined by f(x, y, z) = z− g(x, y)
may be represented as a parameterized 2-surface.

Solution: Choose G(x, y) = (x, y, g(x, y) + c). This is a smooth function
from R2 to R3 with differential of rank 2 at each point and image equal to the
level set S = {(x, y, z) : f(x, y, z) = c}.

Exercise Set 9.4

1. If f(x, y, z) = x sin z+y cos z at each (x, y, z) ∈ R3, then find the gradient
df of f at any point (x, y, z). What is df(1, 2, π/4)?

2. For the function f(x, y) = x2 + y3 + xy, find the gradient at the point
(1, 1), the direction of greatest ascent of f at this point, and a direction
in which the rate of increase of this function is 0 (the answers to the last
two questions should be unit vectors).

3. Find a parametric equation for the tangent line to the curve

γ(t) = (t3, 1/t, e2t−2)

at the point where t = 1.
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4. For the curve γ of Example 9.4.6, find a parametric equation of the tangent
line to this curve at (0, 0) if the domain of γ(t) is {t : π < t < 2π}.

5. Prove Theorem 9.4.4

6. Show that the gradient at x ∈ Rp of the function g(x) = x ·x is the vector
2x.

7. Let γ : R → Rp be a curve which passes through the origin in Rp at a
point where its velocity vector is non-zero (that is, assume γ(t0) = 0 and
γ′(t0) 6= 0 at some point t0 ∈ R). Prove that there is an interval I centered
at t0 such that ||γ(t)|| is decreasing for t < t0 and increasing for t > t0.
Hint: ||γ|| is increasing (decreasing) wherever ||γ||2 = γ · γ is increasing
(decreasing).

8. Find the tangent space at (2, 4, 1) for the parameterized surface in R3

parameterized by the function G : U → R3, where

U = {(u, v) ∈ R2 : u > 0, v > 0} and G(u, v) = (uv, u2, v2).

9. If a surface in R3 is defined by the equation z = g(x, y), where g is a
differentiable function of (x, y) in an open set U , find the equation for the
tangent plane to this surface at a point (a, b, c) on the surface.

10. Find an equation for the tangent plane to the surface z = x2 sin y+ 2x at
the point (1, 0, 2). Also find parametric equations for a line which passes
through this point and is perpedicular to the tangent plane.

11. Find the equation for the tangent plane to the cone z = x2 + y2 at the
point (1, 2, 5).

12. Show that for each point (a, b, c) on the surface x2 + y2 + z2 = 1, there
is a neighborhood of (a, b, c) in which the surface may be represented as a
smoothly parameterized 2-surface. Hence, there is a tangent plane to this
surface at every point.

13. Find an equation for the tangent plane to the surface of the previous
problem at each point (a, b, c) on the surface.

14. Find an equation for the tangent plane to the surface x2 + y2 − z2 = 1 at
each point (a, b, c) on the surface.

9.5 Taylor’s Formula

In this section we discuss Taylor’s formula in several variables and some of its
applications.
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The Formula

If a and x are points of Rp, then a parameterized line passing through a and x
is given by

γ(t) = a+ t(x− a)

Note γ(0) = a and γ(1) = x. The line segment joining a to x is the closed
interval [a, x] on this line defined by

[a, x] = {a+ t(x− a) : t ∈ [0, 1]}.

Let f be a real valued function defined on an open subset U ⊂ Rp and
suppose that all partial derivatives of f through degree n exist on U and are
themselves differentiable on U . If a, x ∈ U and the line segment joining a to x
is contained in U , then we set h = x − a and define a function g on an open
interval I containing [0, 1] by

g(t) = f(a+ th).

The function g is n + 1 times differentiable on I (by the chain rule) and so g
satisfies Taylor’s Formula (Theorem 6.5.3):

g(t) = g(0) + g′(0)t+
g′′(0)

2
t2 + · · · + g(n)(0)

n!
tn +Rn(t), (9.5.1)

Where

Rn(t) =
g(n+1)(s)

(n+ 1)!
tn+1 (9.5.2)

for some s between 0 and t.
Since g(1) = f(a+h), to get a formula for f(a+h) we need only set t = 1 in

the above formula and then find expressions for the functions gk(0) and g(n))(c)
in terms of f and its derivatives. This is not difficult for the first few terms:

g(0) = f(a)

g′(0) = df(a)h =

p
∑

j=1

∂f

∂xj
(a)hj

g′′(0) = h · d2f(a)h =

p
∑

i=1

p
∑

j=1

∂2f

∂xi∂xj
(a)hihj

(9.5.3)

Here we have used d2f(a) to stand for the matrix

(

∂2f

∂xi∂xj
(a)

)

ij

.

If we apply this matrix to h, the result is a vector of length p and we may take
the inner product of h with this vector. The result is the formula for g′′(0) in
(9.5.3).
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The kth derivative of g at 0 is

g(k)(0) =

p
∑

i1=1

· · ·
p
∑

ik=1

∂kf

∂xi1 · · · ∂xik
(a)hi1 · · · hik . (9.5.4)

We may think of this as a k dimensional array (a tensor of rank k)

dkf(a) =

(

∂kf

∂xi1 · · · ∂xik
(a)

)

,

applied k times to the vector h. Here applying a tensor of rank k to a vector h
yields a tensor of rank k− 1 in the same way applying a matrix (tensor of rank
2) to a vector produces a vector (a tensor of rank 1). Thus, applying the tensor
dkf(a) to the vector h produces the tensor of rank k − 1:

dkf(a)h =

(

p
∑

ik=1

∂kf

∂xi1 · · · ∂xik
(a)hik

)

.

This has rank k−1 because we have summed over the index ik, and so the result
is no longer a function of this index. If we repeat this k times, we obtain the
number (tensor of rank 0) expressed in (9.5.4). This is the result of applying
dkf(a) a total of k times to the vector h and, hence, we will denote it by
dkf(a)hk. Note, in particular, that d2f(a)h2 is just h · d2f(a)h.

If we use this notation for the derivatives of g in (9.5.1) and (9.5.2) the result
is :

f(a+ h) = f(a) + df(a)h+
1

2
d2f(a)h2 + · · · + 1

n!
dnf(a)hn + Rn, (9.5.5)

where

Rn =
1

(n+ 1)!
dn+1f(c)hn+1, (9.5.6)

for some point c on the line segment joining a to a+h. This is Taylor’s formula
in several variables. Expressed in terms of the variable x = a + h (so that
h = x− a), this becomes the formula of the following theorem.

Theorem 9.5.1. Let f be a real valued function defined on an open set U ⊂ Rp

and suppose all partial derivatives of f through degree n exist and are differen-
tiable on U . If a, x ∈ U and U contains the line segment [a, x], then

f(x) = f(a) + df(a)(x− a) +
1

2
d2f(a)(x− a)2 + · · · + 1

n!
dnf(a)(x− a)n +Rn,

where

Rn =
1

(n+ 1)!
dn+1f(c)(x− a)n+1,

for some point c on the line segment [a, x].
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Example 9.5.2. Find the degree n = 2 Taylor’s formula for f(x, y) = ln(x+y)
at the point a = (0, 1).

Solution: We will need expressions for all partial derivatives of f through
degree 3. However, these are easy to calculate because each nth order partial
derivative of f is just the nth derivative of ln evaluated at x+y. Thus, f(0, 1) =
0, all first order partial derivatives of f are (x+ y)−1, which is 1 at (0, 1). The
second degree partial derivatives are all equal to −(x + y)−2, which is −1 at
(x, y) = (0, 1). Each third degree partial derivative is 2(x + y)−3. Thus, the
degree 2 Taylor formula for f is

ln(x+ y) = (1, 1)

(

x
y − 1

)

− 1

2
(x, y − 1) ·

(

1 1
1 1

)(

x
y − 1

)

+ R2

= x+ y − 1 − 1

2
(x+ y − 1)2 + R2,

where

R2 =
1

3c3
(x+ y − 1)3,

for some c between 1 and x+y. Here the expression in parentheses is the result
of applying the rank three tensor which is 1 in every entry three times to the
vector (x, y − 1). The result is (x+ y − 1)3.

The Mean Value Theorem

The Mean Value Theorem for a real valued function on an open subset of Rp

is a special case of Taylor’s formula. In fact, if we apply Theorem 9.5.1 in the
case n = 0, it yields:

f(x) = f(a) + R0,

where
R0 = df(c)(x− a)

for some c on the line segment joining a to x. Thus, we have proved,

Theorem 9.5.3. If f is a differentiable real valued function on Br(a) ⊂ Rp,
then for x ∈ Br(a) we have

f(x) − f(a) = df(c)(x− a)

for some point c on the line segment joining a to x.

As is the case for functions of one variable, the several variable mean value
theorem has a host of applications. We point out two of these in the following
corollaries, the proofs of which are left to the exercises.

Definition 9.5.4. A subset A ⊂ Rp is said to be convex if, for each pair of
points x, y ∈ A, the line segment [x, y] is also contained in A.
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Figure 9.3: Convex and Nonconvex Sets

Figure 9.3 illustrates examples of a convex set and a set which is not convex.

Corollary 9.5.5. Suppose U is an open convex set and f is a differentiable real
valued function on U . If there is a number M > 0 such that ||df(x)|| ≤ M for
all x ∈ U , then

|f(x)− f(y)| ≤M ||x − y||
for all x, y ∈ U .

Corollary 9.5.6. Let U be a connected open subset of Rp and f a differentiable
function on U . If df(x) = 0 for all x ∈ U , then f is a constant.

Max and Min

We know that if f is a real valued function of one variable, defined on an interval
I, which has a local maximum or minimum at an interior point a of I, then either
f ′(a) fails to exist or f ′(a) = 0. We now discuss the several variable analogue
of this result.

A function defined on a subset D ⊂ Rp is said to have a local maximum at
a ∈ D if there is a ball Br(a), centered at a, such that

f(x) ≤ f(a) for all x ∈ D ∩Br(a).

If a is an interior point of D, then r may be chosen so that Dr(a) ⊂ D and then
this inequality holds for all x ∈ Br(a). The concept of local minimum is defined
in the same way, but with the inequality reversed.

Theorem 9.5.7. If f is a function defined on D ⊂ Rn and if f has a local max-
imum or a local minimum at an interior point a ∈ D at which f is differentiable,
then df(a) = 0.

Proof. Given any unit vector u, the function g(t) = f(a+ tu) is defined for all
real numbers t in an open interval containing 0 and it has a local maximum (or
minimum) at t = 0. By the chain rule, g is differentiable at 0 and its derivative
at 0 is the directional derivative df(a) · u of f at a in the direction u. Since the
derivative of g at 0 must be 0, we conclude that df(a) ·u = 0 for all unit vectors
u and, hence, df(a) = 0.
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This theorem does not tell us that a function must have a local max or min
at a point where df is 0. However, for functions of one variable, the second
derivative test does give conditions that ensure that a local max or a local min
occurs at a.

The second derivative test for functions of one variable says that if f is a
real valued function on an interval I, then f has a local maximum at a ∈ I
if f ′(a) = 0 and f ′′(a) < 0. It has a local minimum at a if f ′(a) = 0 and
f ′′(a) > 0. The analogue of this in several variables will be presented below,
but it requires the concept of a positive definite matrix.

Definition 9.5.8. A p× p matrix A is said to be positive definite if h ·Ah > 0
for every non-zero vector h ∈ Rp. It is negative definite if h · Ah < 0 for every
non-zero vector h ∈ Rp.

Note that, in checking to see if a matrix is positive definite, we only need
to check that u · Au > 0 for every unit vector u in Rp. This is because, if h is
any non-zero vector, then u = h/||h|| is a unit vector and h · Ah = ||h||2u · Au,
which is positive if and only if u · Au is positive.

It turns out that if a matrix is positive definite, then all nearby matrices are
also positive definite. We will prove this using the concept of operator norm for
a matrix (Definition 8.4.9). Recall that ||Ax|| ≤ ||A||||x|| if x is a vector in Rp,
A is a p× p matrix, and ||A|| is the operator norm of A.

Lemma 9.5.9. If A is a positive definite p×p matrix, then there is is a positive
number m such that if B is any p × p matrix with ||B − A|| < m/2, then
u ·Bu ≥ m/2 for all unit vectors u ∈ Rp and, hence, B is also positive definite.

Proof. The set of all unit vectors u is a closed bounded subset of Rp. It is,
therefore, compact. The function g(u) = u · Au is a continuous real valued
function on this set and, hence, by Corollary 8.2.5, it takes on a minimum value
m. Since u ·Au > 0 for all such u, we conclude that m > 0. Now it follows from
the Cauchy-Schwarz inequality that

u · (A− B)u ≤ ||u|| ||(A −B)u|| ≤ ||u||2||A− B)|| = ||A−B||.

This implies

u · Bu = u · Au− u · (A−B))u ≥ m− ||A− B|| (9.5.7)

for all unit vectors u. Hence, if ||A−B|| < m/2, then u ·Bu > m/2 for all unit
vectors u, which implies that B is positive definite.

Theorem 9.5.10. Let f be a real valued function defined on a neighborhood of
a ∈ Rp. Suppose the second order partial derivatives of f exist in this neighbor-
hood and are continuous at a. If df(a) = 0 and d2f(a) is positive definite, then
f has a local minimum at a. If df(a) = 0 and d2f(a) is negative definite, then
f has a local maximum at a.
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Proof. We use Taylor’s formula with n = 1. Since, df(a) = 0, It tells us that
there is an r > 0 such that, for each h ∈ Br(0),

f(a+ h) = f(a) + h · d2f(c)h, (9.5.8)

for some c on the line segment joining a to a+ h.
Assume d2f(a) is positive definite. By the previous lemma, there is anm > 0

such that if
||d2f(a) − d2f(c)|| < m/2, (9.5.9)

then d2f(c) is also positive definite.
Since the second order partial derivatives of f are continuous at a and since

||c− a|| ≤ ||h||, it follows from Theorem 8.4.11 that we can ensure (9.5.9) holds
by choosing ||h|| sufficiently small. Hence, there is an δ > 0, with δ ≤ r, such
that ||h|| < δ implies that d2f(c) is positive definite for all c on the line segment
joining a to h. By 9.5.8, this implies that f(a+ h) > f(a). Thus, f has a local
minimum at a in this case.

The case where d2f(a) is negative definite follows from the above by simply
applying the above result to −f .

Max/Min for Functions of 2 Variables

Let f be a function of 2 variables with second order partial derivatives which
are defined in a neighborhood of (x0, y0) ∈ R2 and continuous at this point.
The matrix d2f has the form









∂2f

∂x2

∂2f

∂x∂y
∂2f

∂y∂x

∂2f

∂y2









.

Since the second order partial derivatives are continuous at (x0, y0), the cross
partials are equal and so this matrix is symmetric (meaning it is its own trans-
pose) at (x0, y0). There is a simple criteria for a symmetric 2 × 2 matrix to be
positive definite. This is described in the next theorem, the proof of which is
left to the exercises.

Theorem 9.5.11. Let A =

(

a b
b c

)

be a symmetric 2 × 2 matrix and let ∆ =

ac− b2 be its determinant. Then

(a) A is positive definite if and only if ∆ > 0 and a > 0;

(b) A is negative definite if and only if ∆ > 0 and a < 0;

(c) if ∆ < 0, then there are vectors u, v ∈ R2 with u ·Au > 0 and v ·Av < 0.

For a function f on R2, a point where the expression u · d2f(a)u is positive
for some unit vectors u and negative for others is called a saddle point. At such
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Figure 9.4: Surfaces With Max, Min, and Saddle Points.

a point, there will exist lines through a along which f has a local maximum at
a and other lines through a along which f has a local maximum at a.

The previous theorem has the following corollary, the proof of which is also
left to the exercises.

Corollary 9.5.12. Let f be a function of 2 variables with second order partial
derivatives which are defined in a neighborhood of (x0, y0) ∈ R2 and continuous

at this point. Let ∆ =
∂2f

∂x2

∂2f

∂y2
−
(

∂2f

∂x∂y

)2

evaluated at (x0, y0). Then

(a) f has a local minimum at (x0, y0) if ∆ > 0 and
∂2f

∂x2
> 0 at (x0, y0);

(b) f has a local maximum at (x0, y0) if ∆ > 0 and
∂2f

∂x2
< 0 at (x0, y0);

(c) if ∆ < 0, then f has a saddle point at x0, y0.

Example 9.5.13. Find all points where the function f(x, y) = x2 + xy + y2 −
2x− 4y+ 1 has a local maximum and all points where it has a local minimum.

Solution: We have df(x, y) = (2x+ y− 2, x+ 2y− 4). Thus, the only point
at which df(x, y) = 0 is the point a = (0, 2). This is the only possible point
at which a local max or min can occur. The second differential d2f(x, y) is the
constant matrix

d2f(x, y) =

(

2 1
1 2

)

.

This has determinant ∆ = 3. By the previous corollary, we conclude that (0, 2)
is a point at which a local minimum occurs and there is no local maximum.

Example 9.5.14. Find all points where the function

f(x, y) = x2 + 3xy + y2 − x− 4y + 5

has a local maximum, minimum, or saddle.
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Solution: We have df(x, y) = (2x + 3y − 1, 3x + 2y − 4). Thus, the only
point at which df(x, y) = 0 is the point a = (2,−1). This is the only possible
point at which a local max or min can occur. The second differential d2f(x, y)
is the constant matrix

d2f(x, y) =

(

2 3
3 2

)

.

This has determinant ∆ = −5 . Thus, (2,−1) is a saddle point for f .

Lagrange Multipliers

Suppose U is an open subset of Rq and f : U → R and G : U → Rd are differ-
entiable functions. The subject of Lagrange multipliers concerns the problem
of finding points of local maximum or local minimum of f subject to the con-
straint that G(x) = 0. That is, we wish to find the points of local maximum
and local minimum of f considered as a function on the level set G(x) = 0 for
G. The following theorem applies to this problem. Its proof uses a corollary of
the Implicit Function Theorem which will be proved at the end of this chapter.

Theorem 9.5.15. With U , F and G as above, suppose that dG has rank d on
U and S is the level set S = {x ∈ U : G(x) = 0}. If b is a point of relative max
or min for f on S, then there is a linear transformation Λ : Rd → R such that
df(b) = ΛdG(b).

Proof. In Corollary 9.7.3 we will prove that, under the above conditions, S is a
smoothly parameterized p surface in a neighborhood of each point of S. We will
assume this result here and we may as well assume that U is the neighborhood.
Then there is an open subset V of Rp such that S is the image of a one-to-one
differentiable function H : V → U with RankdH = p on V . Furthermore,
dG(H(a)) ◦ dH(a) = 0 for each a ∈ V . Thus, if a ∈ V and b = H(a), then
the kernel of dG(b) contains the image of dH(a). However, the kernel of dG(b)
has dimension q − d = p as does the image of dH(a). It follows that the two
subspaces of Rq are equal.

Since f has a local max or min on S at b, f ◦H has a local max or min on V
at a. This implies df(b)dH(a) = d(f ◦H) = 0. Since dG(b) has rank d , its image
is all of Rd. Thus, for each y ∈ Rd, there is an x ∈ Rq such that dG(b)x = y.
We then set Λ(y) = df(x). If x1 is another vector in Rq with dG(b)x1 = y, then
x − x1 ∈ ker dG(b) = ℑdH(b) and so df(b)(x− x1) = 0 . This means df(b)x is
the same vector no matter which vector x is chosen with dG(b)x = y. Thus,
Λ(y) is well defined by the condition

Λ(y) = df(x) whenever dG(b)x = y. (9.5.10)

For vectors y1, y2 ∈ Rd we may choose x1, x2 such that dG(b)xi = yi. Then,
dG(x1 + x2) = dG(x1) + dG(x2) = y1 + y2 and so

Λ(y1 + y2) = df(x1 + x2) = df(x1) + df(x2) = Λ(y1) + Λ(y2).

A similar argument shows that Λ(kx) = kΛ(x) if k is a scalar. Thus, Λ is a
linear transformation. By (9.5.10) Λ satisfies df(b) = ΛdG(b).
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The above result looks less mysterious if we write it out in terms of the
coordinate functions of G. If G = (g1, · · · , gd), then S is the surface of vectors
x ∈ Rq which satisfy the constraints

g1(x) = 0, · · · , gd(x) = 0. (9.5.11)

The theorem says that, if b is a point of S on which f has a local max or min
on S, then there is a vector Λ = (λ1, · · · , λd) such that

∂f

∂xk
(b) =

d
∑

j=1

λj
∂fj
∂xk

(b) for k = 1, · · · q. (9.5.12)

Thus, to find candidates for points on S where a local max or min could oc-
cur, one should simultaneously solve the equations (9.5.11) and (9.5.12) for
x1, · · · , xq, λ1, · · · , λd. Note, this system of equations has d + q equations and
d+q unknowns. The components λ1, · · · , λd of Λ are called Lagrange multipliers.

Example 9.5.16. Find where the function f(x, y, z) = 2xy + z attains its
maximum and minimum values on S = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.

Solution: Since the unit sphere in R3 is compact and f is continuous, there
are points on S where f attains its maximum and minimum values. We use the
method of Lagrange multipliers, as described in the previous theorem to obtain
candidates for these points. Here, d = 1 and q = 3 in (9.5.11) and (9.5.12).

With g(x, y, z) = x2 + y2 + z2 − 1, we must solve the system of equations:

g(x, y, z) = 0,
∂f

∂x
= λ

∂g

∂x
,

∂f

∂y
= λ

∂g

∂y
,

∂f

∂z
= λ

∂g

∂z
.

These are the equations

x2 + y2 + z2 = 1, 2x = 2λy, 2y = 2λx, 1 = 2λz.

The second and third equations yield x = λ2x and y = λ2y. These hold if
and only if x = y = 0 or λ = ±1. But λ = ±1 implies x = ±y and, together
with the fourth equation, implies z = ±1/2. This, and the first equation imply
x = ±

√

3/8, y = ±
√

3/8. Thus, the solutions of the above system of equations
are

(0, 0, 1),
(

√

3/8,
√

3/8, 1/2
)

,
(

−
√

3/8,−
√

3/8, 1/2
)

,
(

−
√

3/8,
√

3/8,−1/2
)

, and
(

√

3/8,−
√

3/8,−1/2
)

.

The values of f at these five points are, respectively, 1, 5/4, 5/4,−5/4, −5/4.

Thus, f has maximum value 5/4 on S which is attained at
(

√

3/8,
√

3/8, 1/2
)

,

and at
(

−
√

3/8,−
√

3/8, 1/2
)

, while the minimum value is −5/4 attained at
(

−
√

3/8,
√

3/8,−1/2
)

and
(

√

3/8,−
√

3/8,−1/2
)

.
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Exercise Set 9.5

1. Find the degree n = 2 Taylor’s formula for f(x, y) = x2 + xy at the point
a = (1, 2).

2. Find the degree n = 2 Taylor’s formula for f(x, y) = exy at the point
a = (0, 0).

3. Suppose a ∈ Rp and f is a real valued function whose second order partial
derivatives all exist and are continuous on Br(a). Also, suppose that the
operator norm ||d2f(x)|| of the matrix d2f(x) is bounded by M on Br(a).
Prove that

|f(x)− f(a)− df(a)(x− a)| ≤ M

2
||x − a||2

for all x ∈ Br(a).

4. Prove Corollary 9.5.5.

5. Prove Corollary 9.5.6.

6. Show that the following form of the Mean Value Theorem is not true: If
F : R2 → R2 is a differentiable function and a, b ∈ R2, then there is a c
on the line segment joining a to b such that F (b)− F (a) = dF (c)(b− a).
The problem here is that F is vector valued, not real valued.

7. Show that the following version of the Mean Value Theorem for vector
valued functions is true: If U is an open set in Rp containing the line
segment joining a to b and if F : U → Rq is a differentiable function on U ,
then, for each vector u ∈ Rq , there is a point c on the line segment joining
a to b such that

u · (F (b)− F (a)) = u · dF (c)(b− a).

8. Find all points of relative maximum and relative minimum and all saddle
points for

f(x, y) = 1 − 2x2 − 2xy − y2.

9. Find all points of relative maximum and relative minimum and all saddle
points for

f(x, y) = y3 + y2 + x2 − 2xy − 3y.

10. Prove Theorem 9.5.11.

11. Prove Corollary 9.5.12.

12. Show that it is possible for a function to have a relative minimum or
maximum or a saddle at a point where both df and d2f are 0.

13. Use the Lagrange multiplier method to find the maximal and minimal
values of f(x, y, z) = x− 2y + 3z on the sphere x2 + y2 + z2 = 1.
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9.6 The Inverse Function Theorem

If f is a real valued function of one variable which is C1 on an open interval
containing a and if f ′(a) 6= 0, then f ′(a) is either positive or negative. Because
f ′ is continuous, f ′(x) will have the same sign as f ′(a) for all x in some neigh-
borhood of a. This implies that f is strictly monotone in a neighborhood of a
and, hence, has an inverse function. This inverse function is differentiable at
b = f(a) and (f−1)′(b) = 1/f ′(a) (Theorem 4.2.9). In this section we will prove
an analogous result for a vector valued function F of several variables.

The condition that f ′(a) 6= 0 is replaced in several variables by the condition
that dF (a) is a non-singular matrix (a matrix for which there is an inverse
matrix). The conculsion that f is strictly monotone in some open interval
containing a is replaced by the conclusion that F is a one to one function in
some neighborhood of a in Rp.

A function F : V → W is one to one on V if whenever x, y ∈ V and x 6= y
then F (x) 6= F (y). It is onto W if every u ∈W is F (x) for some x ∈ V .

Definition 9.6.1. With F as above, we will say that F has a smooth local
inverse near a if there are neighborhoods V of a and W of F (a) such that F is
a one to one function from V onto W and the function F−1 : W → V , defined
by F−1(u) = x if F (x) = u, is smooth on W .

In what follows (until the proof of the Inverse Function Theorem is com-
plete), U will be an open subset of Rp, F : U → Rp a smooth (that is, C1)
function on U . We will prove that F has a smooth local inverse near any point
a ∈ U at which its differential is non-singular.

The proof involves three steps. Assuming dF (a) is non-singular: (1) we show
F is one-to-one in a neighborhood of a; (2) we show F maps this neighborhood
onto an open set; (3) we show the resulting inverse function is smooth and we
calculate its differential.

One to One

The next theorem shows that our function F is necessarily one to one on some
open ball centered at a point where dF is non-singular. In fact, it shows much
more.

Theorem 9.6.2. If a ∈ U and dF (a) is non-singular, then there is an open
ball Br(a), centered at a, and a positive number M such that :

(a) the matrix dF (x) is non-singular for all x ∈ Br(a);

(b) ||x − y|| ≤M ||F (x)− F (y)|| for all x, y ∈ Br(a),

(c) the function F is one to one on Br(a).

Proof. Let B be an inverse matrix for dF (a). Then d(BF )(a) = BdF (a) = I,
where I is the p× p identity matrix (Exercise 9.3.1).
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Let G(x) = BF (x). Note that dG(a) = I, which is positive definite (since
u · Iu = ||u||2 = 1 for every unit vector u ∈ Rp). Hence, by Lemma 9.5.9, there
is an m > 0 such that dG(x) is also positive definite and, in fact,

m/2 ≤ u · dG(x)u whenever ||dG(x)− dG(a)|| < m/2

and u is a unit vector in Rp.

The partial derivatives of the coordinate functions of F are all continuous
and so the same thing is true of G. If follows from Theorem 8.4.11 that, given
m > 0, there is an r such that Br(a) ⊂ U and

||dG(x)− dG(a)|| < m/2 whenever ||x − a|| < r.

Thus,

u · dG(x)u ≥ m/2 (9.6.1)

for all x ∈ Br(a) and all unit vectors u ∈ Rp. In particular, dG(x) is positive
definite and, hence, non-singular, for all x ∈ Br(a). Since dF (x) = B−1dG(x),
this matrix is also non-singular for all x ∈ Br(a). This proves part (a).

Given two distinct points x, y ∈ Br(a), we set k = ||y − x|| 6= 0 and u =
(y − x)/k. Then u is a unit vector and the function φ, defined by,

φ(t) = u ·G(x+ tu).

is a real valued differentiable function on an open interval containing [0, k].

By the Mean Value Theorem, there is an s ∈ [0, k] at which

kφ′(s) = φ(k)− φ(0).

By the chain rule, kφ′(s) = ku ·dG(x+su)u and φ(k)−φ(0) = u ·(G(y)−G(x)).
Thus,

ku · dG(c)u = u · (G(y)−G(x)),

where c = x+ su. Then, by (9.6.1),

mk/2 ≤ ku · dG(c)u = u · (G(y)−G(x))

≤ ||u||||G(y) −G(x)|| ≤ ||B||||F (y) − F (x)||, (9.6.2)

which, since k = ||y − x||, implies

||y − x|| ≤ 2||B||
m

||F (x)− F (y)||.

This concludes the proof of part (b) if we set M = 2||B||/m.

Part (c) – that F is one to one on Br(a) – follows immediately from part
(b) which shows that, for x, y ∈ Br(a), x = y whenever F (x) = F (y).
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Open Mapping Theorem

An open map is a function F such that F (V ) is open whenever V is open.

Theorem 9.6.3. With F as above, if dF is non-singular at every point of an
open subset V of U , then F : V → Rp is an open map.

Proof. Given a ∈ V , set b = F (a). We will show that F (V ) contains an open
ball centered at b. If we can do this for every a ∈ V , then F (V ) is open. The
same argument can be applied to every open subset of V and, hence, we may
conclude that F is an open map.

The fact that dF (a) is non-singular implies there is a open ball Br(a) ⊂ V
for which the conclusions of the previous theorem hold. We will show that the
image of this ball contains an open ball Bδ(b)

Let r1 be a positive number less than r. Then part (b) of the previous
theorem implies that there is a positive number M such that

||x − y|| ≤M ||F (x)− F (y)|| for all x, y ∈ Br1(a).

Since b = F (a), this implies, in particular, that

||F (x)− b|| ≥ r1
M

whenever ||x − a|| = r1. (9.6.3)

We set δ =
r1

2M
and let v be any element of Bδ(b). If

g(x) = ||F (x)− v|| for x ∈ Br1(a),

then our objective is to show that g(u) = 0 for some u in this ball.
We will first show that g takes on its minimum value at an interior point of

Br1(a). It does take on a minimum value, since g is a continuous function on
the compact set Br1(a) (Corollary 8.2.5). Thus, we need to show that it does
not take on this minimum at a boundary point of Br1.

If x is a boundary point of Br1 , then ||x− a|| = r1 and (9.6.3) applies. Also,

v ∈ Bδ(b) means ||b − v|| < r1
2M

. Thus,

g(x) = ||F (x)− v|| ≥ ||F (x)− b|| − ||b− v|| ≥ r1
2M

= δ

on the boundary of Br1 .
Since g(a) = ||F (a)−v|| = ||b−v|| < δ, the function g(x) does not achieve its

minimum value on the boundary of Br1(a). Hence, it must achieve its minimum
value at a point u in the open ball Br1(a). Then g2(x) = (F (x)−v) · (F (x)−v)
has a local minimum at u and, hence, its differential vanishes at u, by Theorem
9.5.7. By Theorem 9.3.6, its differential is 2(F (x)− v)dF (x). This expression
vanishes at u if and only if F (u)− v is orthogonal to all the columns of dF (u).
Since dF (u) is non-singular, by Theorem 9.6.2 part (a), this can happen only if
F (u)− v = 0. Hence, we have shown that each v ∈ Bδ(b) is the image under F
of some u ∈ Br(a), as required.
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The Inverse Function and its Differential

With F as above, if F is one-to-one with a non-singular differential on an open
subset V of U then φ(V ) = W is also open, by the previous theorem. In this
situation, F has an inverse function F−1 : W → V defined by the condition
that, for each y ∈W , F−1(y) is the unique x ∈ V such that F (x) = y.

Theorem 9.6.4. With F , V and W as above, the inverse function F−1 : W →
V is a smooth function on W with differential given by

dF−1(b) = (dF (a))−1 = (dF (F−1(b)))−1 (9.6.4)

for each b ∈W . Here a = F−1(b) ∈ V .

Proof. Given b ∈ W and a = F−1(a), we choose r as in Theorem 9.6.2 and we
choose it small enough that Br(a) ⊂ V . Then F (Br(a)) is also open, by the
previous theorem.

If y ∈ F (Br(a)) and and x = F−1(y), then x ∈ Br(a). By the choice of r,
the inequality in part (b) of Theorem 9.6.2 holds for x and a and says that

||F−1(y)− F−1(b)|| = ||x− a|| ≤M ||y − b||.

This implies that F−1 is continuous at b. We calculate the differential of F−1

at b as follows:
The fact that F is differentiable at a means that if we set

ǫ(x) = F (x)− F (a)− dF (a)(x− a), (9.6.5)

then

lim
x→a

ǫ(x)

||x − a|| = 0.

If we apply the matrix (dF (a))−1 to both sides of (9.6.5) and use a = F−1(b),
x = F−1(y), the result is

dF (a)−1ǫ(y) = (dF (a))−1(y − b) − (F−1(y)− F−1(b)),

or
F−1(y) − F−1(b)− dF (a)−1(y − b) = −dF (a)−1ǫ(x).

If we set K = ||(dF (a))−1||, then

||F−1(y)− F−1(b)− (dF (a))−1(y − b)||
||y − b|| ≤ K||ǫ(x)||

||y − b|| ≤ KM ||ǫ(x)||
||x − a|| .

Since F−1 is continuous at b, x = F−1(y) approaches a = F−1(b) as y ap-
proaches b. Thus, the right side of the above inequality approaches 0 as y → b.
By definition, this means that F−1 is differentiable at b and

dF−1(b) = (dF (a))−1 = (dF (F−1(b)))−1.
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The partial derivatives of the coordinate functions of F−1 are the entries of
its differential matrix dF−1, which we just concluded is given by (9.6.4). Since,
F−1 is continuous on W , the entries of dF (x) (the partial derivatives of the
coordinate functions of F ) are continuous on V , and the determinant of dF (x)
is continuous and non-vanishing on V , we conclude that the partial derivatives
of the coordinate functions of F−1 are continuous on W . This means that F−1

is C1, as claimed. This completes the proof.

The Inverse Function Theorem

The proof of the Inverse Function Theorem is now just a matter of combining
the previous three theorems.

Theorem 9.6.5. Let U be an open subset of Rp and F : U → Rp a smooth
function. If a ∈ U and detdF (a) 6= 0, then F has a smooth local inverse
function near a, with differential given by (9.6.4).

Proof. By Theorem 9.6.2, F is one-to-one with a non-singular differential in an
open ball Br(a). By Theorem 9.6.3, the image of Br(a) under F is an open set
W . Then F has an inverse function F−1 : W → Br(a) and, by Theorem 9.6.4,
the inverse function is smooth with differential as claimed.

Example 9.6.6. Find all points a = (r, θ) ∈ R2 such that the polar change of
coordinates function

F (r, θ) = (r cos θ, r sin θ)

has a smooth local inverse near a. Find the inverse and its differential near one
such point

Solution: The differential of F is

dF (r, θ) =

(

cos θ −r sin θ
sin θ r cos θ

)

.

The determinant of this matrix is r, and so dF is non-singular everywhere
except at r = 0. By the previous theorem, this implies that F has a smooth
local inverse near each a = (r, θ) with r 6= 0.

If we choose the point a = (1, 0), then F (a) = (1, 0). If V is the neighborhood
of a defined by

V = {(r, θ) : r > 0, −π/2 < θ < π/2},
and W is the neighborhood of b = F (a) defined by

W = {(x, y) : x > 0},

then

F−1(x, y) =
(

√

x2 + y2, tan−1(y/x)
)

(9.6.6)

defines the inverse function F−1 : W → V .
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The inverse matrix (dF (r, θ))−1 of the differential matrix dF (r, θ) of F is
(

cos θ sin θ
−r−1 sin θ r−1 cos θ

)

.

By the previous theorem, this is the differential of the inverse function F−1 at
the point (x, y) = F (r, θ). If express r and θ in terms of x and y using (9.6.6),
we obtain

dF−1(x, y) =







x
√

x2 + y2

y
√

x2 + y2

− y

x2 + y2

x

x2 + y2






.

Note that the function F of the above example is definitely not one to one
on all of R2 or on {(r, θ) ∈ R2 : r 6= 0} and so, as a function with either of
these sets as domain, it does not have an inverse function. It is only when we
restrict the domain of F to a set like the set V in the above example that it
has an inverse function. What are some other sets V with the property that
the restriction of F to the set V has an inverse function? This question is left
to the exercises.

Exercise Set 9.6

1. According to the Inverse Function Theorem, near which points of R does
the sin function have a smooth local inverse function? According to this
theorem, what is the derivative of the inverse function when it exists?

2. Show that the function F : R2 → R2 defined by F (x, y) = (x2 + y2, xy)
has a smooth local inverse near points (x, y) where x 6= ±y. On the set
{(x, y) : −x < y < x} find the inverse function F−1 and identify its
domain. Calculate the differential of this inverse function (1) directly, and
(2) by using the Inverse Function Theorem. Verify that the two methods
give the same answer.

3. Near which points of R3 does the spherical change of coordinates function

F (ρ, θ, φ) = (ρ cosθ sinφ, ρ sin θ sinφ, ρ cosφ)

have a smooth local inverse? What is the differential of the local inverse at
those points, where it exists? To avoid tedious computation, express this
in terms of (r, θ, φ) rather than in terms of the image variables (x, y, z) =
F (r, θ, φ).

4. Show that the system of equations

x = u4 − u+ uv + v2

y = cosu+ sin v

can be solved for (u, v) as a smooth function F of (x, y), in some neigh-
borhood of (0, 0), in such a way that (u, v) = (0, 0) when (x, y) = (0, 1).
What is the differential of the resulting function F at (0, 1)?
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5. Find a smooth local inverse function near (1, π/2) for the function F of
Example 9.6.6.

6. Find a smooth local inverse function near (1, 2π) for the function F of
Example 9.6.6. Note that this is different from the inverse function found
in the example, even though the point b = F (a) is the same in both cases.

7. Show that if U is a convex open subset of Rp and F : U → Rp is a C1

function on U with a differential dF which is positive definite at every
point of U , then F is one to one. Hint: examine the role played by the
function φ in the proof of Theorem 9.6.2.

8. Show by example that the result of the previous problem is not true if U is
only assumed to be connected, rather than convex. Hint: try the function
F (x, y) = (x2 − y2, 2xy) on R2 \ {0}.

9. Show that if F = (f1, f2) : R3 → R2 is a C1 function and a is a point of
R3 at which dF has rank 2, then there is a C1 function f3 : R3 → R such
that Φ = (f1, f2, f3) : R3 → R3 has a C1 inverse function near a.

10. Show that the condition that dF (a) be non-singular is necessary in the
Inverse Function Theorem, by showing that if a function F from a neigh-
borhood of a in Rp to Rp is differentiable at a and has an inverse function
at a which is differentiable at F (a), then dF (a) is non-singular.

11. Let γ : I → R3 be a smooth parameterized curve, defined on an open
interval I, and let t0 be a point of I with γ′(t0) 6= 0, Prove that there are
neighborhoods U ⊂ I of t0 and V of γ(t0) and a pair f, g of C1 functions
defined in V such that the image of U under γ is the set of solutions in
V of the system of equations f(x, y, z) = 0, g(x, y, z) = 0. Hint: show
that there is a C1 function F from a neighborhood of (t0, 0, 0) in R3 to R3

with F (t, 0, 0) = γ(t) and with dF (t0, 0, 0) non-singular. Then apply the
Inverse Function Theorem to F . The functions f and g are then two of
the coordinate functions of F−1.

12. If F : Rp → Rp is a C1 function, what can you say about F at a point of
Rp where ||F || has a local minimum? How about a point where ||F || has
a local maximum?

9.7 The Implicit Function Theorem

In this section we continue to develop consequences of the Inverse Function
Theorem. The most notable of these is the Implicit Function Theorem. First
we interpret the Inverse Function Theorem in the context of local systems of
coordinates
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Local Systems of Coordinates

Let F be a smooth function defined on an open subset U of Rp which has values
in Rp and which has a smooth local inverse near a point a ∈ U . Then there is a
neighborhood V of a and a neighborhood W of b = F (a) such that F : V →W
is one to one and onto and has a smooth inverse function G = F−1 : W → V .

We define a change of coordinates for points in V as follows: If

F = (f1, f2, · · · , fp),

then we define new coordinates (u1, u2, · · · , up) for a point x = (x1, x2, · · · , xp)
in V by setting

ui = fi(x1, x2, · · · , xp) for i = 1, · · · , p.

These new coordinates u1, · · · up are smooth functions of the old coordinates
x1, · · · , xp and, similarly, the old coordinates are smooth functions of the new
coordinates since

xj = gj(u1, u2, · · · , up) for j = 1, · · · , p,

where gj is the jth coordinate function of the inverse function G.
By subtracting the constant b from F , if necessary, we may assume that

F (a) = 0 and W is a neighborhood of 0. This just makes the point a the origin
in the new coordinate system.

A coordinate hyperplane (intersected with W ) in the new coordinates is a
set of the form

Hi = {u ∈ W : ui = 0}.
In the original coordinates, this is the set

{x ∈ V : fi(x) = 0}.

This means that the level set {x ∈ V : fi(x) = 0} for the function fi looks like
a smoothly deformed hyperplane (intersected with V ). Similarly, the subset
obtained by setting k of the coordinates {u1, · · · , up} equal to zero is a p − k
dimensional subspace of Rp. In the old coordinates this looks like a smoothly
deformed p − k subspace intersected with V . If k = p − 1 the result is a line
through the origin in the new coordinates and a curve through a in the old
coordinates.

Parameterizing a Curve

A key question raised in in the last subsection of Section 9.4 is: when does a
level set for a smooth function from one Euclidean space to another locally have
a smooth parameterization and, hence, a tangent space at each of its points?
The following example gives an answer to this question in the case of a level set
for a real valued function on R2. The method used in this example is a model
for the proof of the Implicit Function Theorem, which will be proved next.
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Example 9.7.1. Show that if f : R2 → R1 is a smooth function and (a, b) is
a point of R2 such that f(a, b) = 0 and df(a, b) 6= 0, then there is a neighbor-
hood V of (a, b) in which S = {(x, y) : f(x, y) = 0} is the image of a smooth
parameterized curve. Find the tangent line to this curve at (a, b).

Solution: Since df(a, b) 6= 0, either
∂f

∂x
or

∂f

∂y
is non-zero at (a, b). Assume

∂f

∂y
(a, b) 6= 0 (the analysis in the other case is the same, but with the roles of x

and y reversed). We define a function H : R2 → R2 by

H(x, y) = (x, f(x, y)).

The differential matrix of this function is




1 0
∂f

∂x

∂f

∂y



 .

which has determinant
∂f

∂y
. Since

∂f

∂y
(a, b) 6= 0, this matrix is non-singular at

(a, b). Hence, there is a neighborhood V of (a, b), a neighborhood W of (a, 0),
and a smooth inverse function H−1 : W → V for H. We have

H−1(x, 0) = (k(x), g(x)),

for some smooth real valued functions k, g, defined for all x with (x, 0) ∈ W .
Then,

(x, 0) = H ◦H−1(x, 0) = (k(x), f(k(x), g(x)) whenever (x, 0) ∈ W.

It follows that k(x) = x and f(x, g(x)) = 0 for all such x. On the other hand,
if (x, y) ∈ V and f(x, y) = 0, then H(x, y) = (x, 0) and so

(x, y) = H−1 ◦H(x, y) = H−1(x, 0) = (x, g(x)).

Thus, y = g(x). We conclude that, for (x, y) ∈ V , f(x, y) = 0 if and only if
y = g(x). Since, (a, b) ∈ V and f(a, b) = 0, this means, in particular, that
g(a) = b. Thus, we have proved that, near (a, b), S is the graph of the smooth
function g and

γ(x) = (x, g(x))

is a smooth parameterization of S near (a, b).
The tangent line to S at (a, b) is given parametrically by

τ(x) = (a, b) + γ′(a, b)(x− a)

= (a, b) + (1, g′(a))(x− a) = (x, b+ g′(a)(x− a)),

where, since f(x, g(x)) = 0, the chain rule tells us that

g′ = −
(

∂f

∂y

)−1
∂f

∂x
.
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The tangent line can also be described as the set of all (x, y) such that (x−a, y−b)
is orthogonal to the gradient of f at (a, b) – that is, all solutions to the equation

∂f

∂x
(a, b)(x− a) +

∂f

∂y
(a, b)(y− b) = 0.

The Implicit Function Theorem

The proof of the Implicit Function Theorem follows exactly the same pattern
as the solution to the preceding exercise.

The Implicit Function Theorem provides the answer to a very simple ques-
tion: When can an equation of the form

F (x, y) = 0

be solved for y as a function of x? That is, when can we find a function g such
that F (x, g(x)) = 0? We note several things about this problem:

1. The problem makes perfectly good sense if F is a real valued function of
2 real variables (as in the previous example), but it also makes sense if F
is a vector valued function of variables x and y which are also vectors.

2. As was the case with the Inverse Function Theorem, we might expect that
there are local solutions to this problem for (x, y) near a point (a, b) where
F (a, b) = 0, even though global solutions may not be possible.

3. Whether such a local solution is possible near a given point may depend
on conditions on the differential matrix of F at the point.

In the statement and the proof of the Implicit Function Theorem, we will
need to deal with certain submatrices of the full differential matrix of a function
F . In this regard, the following notation will be useful. If f1, f2, · · · , fk are
smooth functions defined on an open set U in some Euclidean space Rd (these
may be some or all of the coordinate functions of a vector function F defined
on U) and if y1, · · · , ym are some of the coordinates describing points in Rd),
then we set

∂(f1, · · · , fk)
∂(y1, · · · , ym)

=



























∂f1
∂y1

∂f1
∂y2

· · · ∂f1
∂ym

∂f2
∂y1

∂f2
∂y2

· · · ∂f2
∂ym

· · · · · ·
· · · · · ·
· · · · · ·
∂fk
∂y1

∂fk
∂y2

· · · ∂fk
∂ym



























If F = (f1, · · · , fq) : U → Rq is a function on a subset U of Rp with the

coordinates in Rp labeled x1, · · · , xp, then
∂(f1, · · · , fq)
∂(x1, · · · , xp)

is just another notation
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for dF . However, we will want to use this notation in cases where only some of
the coordinate functions and/or some of the variables of F are used.

In the following theorem, Rp+q will be identified with Rp×Rq and points in
this space will be expressed in the form (x, y) = (x1, · · · , xp, y1, · · · , yq).

Theorem 9.7.2. Let U ⊂ Rp+q be open, let F = (f1, · · · , fq) : U → Rq be a
smooth function, and let (a, b) be a point of U with F (a, b) = 0. Also, suppose
the square matrix

∂(f1, · · · , fq)
∂(y1, · · · , yq)

is non-singular. Then there are neighborhoods V ⊂ U of (a, b) and A of a and
a smooth function G : A→ Rq such that (x,G(x)) ∈ V for all x ∈ A, G(a) = b,
and

F (x, y) = 0 for x, y ∈ V if and only if y = G(x).

Furthermore the differential of G on A is given by

dG =
∂(g1, · · · , gq)
∂(x1, · · · , xp)

= −
(

∂(f1, · · · , fq)
∂(y1, · · · , yq)

)−1
∂(f1, · · · , fq)
∂(x1, · · · , xp)

. (9.7.1)

Proof. We will prove this by applying the Inverse Function Theorem to another
function H, constructed from F . We define H : U → Rp × Rq by

H(x, y) = (x,F (x, y)). for (x, y) ∈ U.

The function H is C1 on U because F is C1. The differential of H is

dH =







































1 · · · 0 0 · · · 0
0 · · · 0 0 · · · 0
· · · · · ·
· · · · · ·
0 0 1 0 · · · 0
∂f1
∂x1

· · · ∂f1
∂xp

∂f1
∂y1

· · · ∂f1
∂yq

· · · · · ·
· · · · · ·
· · · · · ·
∂fq
∂x1

· · · ∂fq
∂xp

∂fq
∂y1

· · · ∂fq
∂yq







































with an identity matrix in the upper left p×p block and a 0 matrix in the upper
right p × q block. The bottom q rows form the differential matrix dF for F .
The determinant of dH is just the determinant of the lower right q × q block

– that is, the determinant of
∂(f1, · · · , fq)
∂(y1, · · · , yq)

. This determinant is non-zero at

(a, b) by hypothesis. Hence, dH also has a non-zero determinant at (a, b) and
is, therefore, non-singular at this point.
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By the Inverse Function Theorem (Theorem 9.6.5) there are neighborhoods
V ⊂ U of (a, b) and W of H(a, b) such that H has a smooth inverse function
H−1 : W → V . We have

H−1(x, 0) = (K(x),G(x)),

for some smooth functions K and G, defined on A = {x ∈ Rp : (x, 0) ∈ W}
with values in Rq. The set A is open because it is the inverse image of W under
the continuous function x→ (x, 0) : Rp → Rp × Rq. Furthermore,

(x, 0) = H ◦H−1(x, 0) = (K(x), F (K(x),G(x)) whenever x ∈ A.

Thus, K(x) = x and F (x,G(x)) = 0 for all x ∈ A. On the other hand, if
(x, y) ∈ V and F (x, y) = 0, then H(x, y) = (x, 0) and so

(x, y) = H−1 ◦H(x, y) = H−1(x, 0) = (x,G(x)).

Thus, y = G(x). We conclude that if (x, y) ∈ V , then F (x, y) = 0 if and only if
y = G(x). This applies, in particular, when (x, y) = (a, b) and so G(a) = b.

If we take the differential of both sides of the equation F (x,G(x)) = 0 the
result is

∂(f1, · · · , fq)
∂(x1, · · · , xp)

+
∂(f1, · · · , fq)
∂(y1, · · · , yq)

∂(g1, · · · , gq)
∂(x1, · · · , xp)

= 0.

On solving this for
∂(g1, · · · , gq)
∂(x1, · · · , xp)

, we obtain (9.7.1).

The Implicit Function Theorem leads to conditions under which a level set of
a function has a smooth parameterization and, hence, a tangent space. This is
the issue raised at the end of Section 9.4. This is also a key issue in the hypothe-
ses of the theorem concerning the method of Largrange Multipliers (Theorem
9.5.15).

Corollary 9.7.3. Let U ⊂ Rd be an open set and F : U → Rq a smooth
function. Suppose c ∈ U , F (c) = 0, and dF (c) has rank q. Then there is a
neighborhood V of c, V ⊂ U , such that the level set S = {u ∈ V : F (u) = 0 is
a smooth p-surface, where p = d− q. That is, S has a smooth parameterization
of dimension p. Hence, S has a tangent space at each point of S. Furthermore,
the tangent space at c is the set of solutions u to the equation

dF (c)(u− c) = 0.

Proof. Since dF (c) has rank q, there is a q × q submatrix of the q × d matrix
dF (c) which is non-singular. By rearranging the variables in F , if necessary,
we may assume that the last q columns of dF form a non-singular matrix.
With p = d − q, we may represent Rd as Rp × ×Rq and label the variables
by (x, y) = (x1, · · · , xp, y1, · · · , yq), as in the preceding theorem. Then the
hypothese of that theorem are satisfied, with c = (a, b).



296 CHAPTER 9. DIFFERENTIATION IN SEVERAL VARIABLES

By the Implicit Function Theorem, there are neighborhoods V of c = (a, b)
and A of a and a smooth function G : A→ Rq with (x,G(x)) ∈ V for all x ∈ A
and such that F (x, y) = 0 for (x, y) ∈ V if and only if y = G(x).

Thus, S = {u = (x, y) ∈ V : F (u) = 0} is the graph of the smooth function
G. Then the function H(x) = (x,G(x)) is a smooth parameterization of S.

Example 9.7.4. For the system of equations

u2 + v2 − x = 0

u+ v + y = 0,

find the points on the solution set S at which it may not be possible to solve
for u and v as smooth functions of x and y in some neighborhood of the point.

Solution According to the Implicit Function Theorem, there will be smooth
solutions in a neighborhood of any point where the following matrix is non-
singular:

∂(f1, f2)

∂(u, v)
=

(

2u 2v
1 1

)

,

where f1(x, y, u, v) = u2 + v2 − x and f2(x, y, u, v) = u+ v + y. This matrix is
singular only when u = v. This happens at a point on S if and only if u = v
and y2 = 2x.

Recall that the kernel of an affine transformation L : Rp → R of rank 1 is a
hyperplane in Rp. The Implicit Function Theorem allows us to draw a similar
conclusion for functions which are not affine.

Example 9.7.5. For the equation

x2 + y2 + z3 = 0,

at which points on its solution set S can we be assured that there is a neigh-
borhood of the point in which S is a smoothly parameterized surface? Find an
equation of the tangent space at each such point.

Solution: By the corollary to the Implicit Function Theorem, there will be
a smooth parameterization of S in a neighborhood of any point at which df has
rank 1, where f(x, y, z) = x2 + y2 + z3, Since

df(x, y, z) = (2x, 2y, 3z2),

the only point at which such a parameterization may not be possible is the
origin.

At any point (a, b, c) which is not the origin, an equation for the tangent
space is

df(a, b, c)(x− a, y − b, z − c) = 0,

or
2a(x− a) + 2b(y− b) + 3c2(z − c) = 0.



9.7. THE IMPLICIT FUNCTION THEOREM 297

Exercise Set 9.7

1. Are there any points on the graph of the equation x3 + 3xy2 + 2y3 = 1
where it may not be possible to solve for y as a smooth function of x in
some neighborhood of the point?

2. Can the equation xz+yz+sin(x+y+z) = 0 be solved, in a neighborhood
of (0, 0, 0) for z as a smooth function z = g(x, y) of (x, y), with g(0, 0) = 0?

3. Find
∂(f1, f2)

∂(u, v)
if

f1(x, y, u, v) = u2 + v2 + x2 + y2

f2(x, y, u, v) = xu+ yv + x− y.

At which points (x, y, u, v) is this matrix non-singular?

4. Show that the system of equations

u2 + v2 + 2u− xy + z = 0

u3 + sin v − xu+ yv + z2 = 0

has a solution for (u, v) as a smooth function of (x, y, z), in some neigh-
borhood of (0, 0, 0), with the property that (u, v) = (0, 0) when (x, y, z) =
(0, 0, 0).

5. Show that the system of equations

u3 + x2v2 − 2y + w = 0

v3 + y2u2 − 2x+ w = 0

w2 + wx− y2 = 0

has a solution for u, v,w as functions of (x, y) in a neighborhood of the
point (x, y, u, v,w) = (1, 1, 1, 1, 0) with u(1, 1) = 1, v(1, 1) = 1, w(1, 1) = 0.

6. For the equation xy + yz + xz = 1, at which points on the solution set S
is there a neighborhood in which S is a smooth 2 surface? At each such
point (a, b, c), find an equation of the tangent plane.

7. For the system of equations

x2 + y2 − z2 = 0

x+ y + z = 0,

at which points of the solution set S is there a neighborhood in which S
is a smooth curve? At each such point, find an equation of the tangent
line.
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8. For the system of equations

x2 + y2 + u2 − 3v = 1

2x+ xy − y + 3u2 − 9v = 0,

find all points on the solution set S for which there is a neighborhood in
which S is a smooth 2 surface.

9. If F (x, y, u, v) = (x eu+y eu, xv + yu) ∈ R2, find those points (x, y, u, v)
at which the level set of F , containing this point, is a smooth 2-surface in
a neighborhood of the point.

10. If F : Rp → Rq is a smooth function and dF has rank q at a certain point
a ∈ Rp, prove that there is a neighborhood of a in which dF has rank q.



Chapter 10

Integration in Several
Variables

Integration theory for functions of several variables has much in common with
integration for functions of a single variable, Many of the proofs are almost
identical. However, there are some fundamental differences.

In one variable, we only have to worry about integrating over an interval.
However, in several variables the sets we integrate over can be much more com-
plicated. There are issues concerning the boundary of the set and how large
it can be. Such issues don’t arise in the theory of integration of a function of
one variable. In one variable, the change of variable formula for integration
(the substitution formula) is quite simple and has a simple proof – it follows
directly from the chain rule for differentiation and the Fundamental Theorem
of Calculus. The analogous formula in several variables is much more compli-
cated – it involves the determinant of the differential of the change of variables
transformation. Its proof is long and complicated.

We begin with a definition of the integral of a function over a multidimen-
sional rectangle.

10.1 Integration over a Rectangle

An aligned rectangle in Rd is a set of the form

R = [a1, b1] × · × [ad, bd] = {(x1, · · · , xd) ∈ Rd : ak ≤ xk ≤ bk, k = 1 · · · d}.

We call such a rectangle aligned because each of its edges is parallel to a coor-
dinate axis. Unless otherwise specified, in this chapter the term rectangle will
mean aligned rectangle.

The d-volume of a rectangle is the product of the lengths of its edges – that

299



300 CHAPTER 10. INTEGRATION IN SEVERAL VARIABLES

is, the d-volume V (R) of the rectangle R above is

V (R) =
d
∏

k=1

(bk − ak).

Thus, the 1-volume of a rectangle (an interval) in R is its length; the 2-volume
of a rectangle in R2 is its area. The 3-volume of a rectangle in R3 is its ordinary
volume.

Note that it is possible for one of the intervals [ak, bk] defining a rectangle
in Rd to be degenerate – that is, it could be that ak = bk. In this case, the
rectangle has d-volume 0. This makes sense, because it is actually a rectangle
of dimension d− 1 in this case.

As long as the dimension of the ambient space Rd is understood, we will
drop the d and just refer to the d-volume of a rectangle as its volume.

An aligned partition P of an aligned rectangle R = [a1, b1] × · × [ad, bd] is a
partition

{ak = x0,k ≤ x1,k ≤ · · · ≤ xd,k = bk}

of each of the intervals [ak, bk]. Such a thing divides R up into subrectangles of
the form

[xj1−1,1, xj1,1] × · · · × [xjd−1,d, xjd,d]

= {(x1, · · · , xd) ∈ Rd : xjk−1,k ≤ xk ≤ xjk,k, k = 1 · · · d}.

Each of these will be called a subrectangle for the partition P of the rectan-
gle R. If n is the number of subrectangles for P , then we will number these
subrectangles in some fashion so that we have a list {R1, R2, · · · , Rn} of all the
subrectangles for P . We will not attempt to arrange this numbering scheme in a
way that has anything to do with the indexing of the points in the corresponding
partitions of the individual intervals [ak, bk]. To do so would lead to an awful
mess.

Note that R is the union of the subrectangles determined by a partition of R
and any two of these subrectangles are either disjoint or have a lower dimensional
rectangle as intersection. The volume of R is the sum of the volumes of the
subrectangles determined by the partition.

Unless otherwise specified, in this chapter, the term partition will mean
aligned partition.

Upper and Lower Sums

Let f be a bounded real valued function defined on a rectangle R and let P be
a partition of R determining a list of subrectangles R1, R2, · · · , Rn,

Definition 10.1.1. If f , R, P , and {R1, R2, · · · , Rn} are as above, then we
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Figure 10.1: Partition of a Rectangle

define the upper and lower sums for f and P by

U(f, P ) =
n
∑

j=1

MjV (Rj),

L(f, P ) =
n
∑

j=1

mjV (Rj),

(10.1.1)

where
Mj = sup

Rj

f and mj = inf
Rj

f.

This is exactly the way we defined the upper and lower sums for f and
the partition P in Definition 5.1.1, except there we were partitioning intervals
into subintervals and here we are partitioning d-dimensional rectangles into
subrectangles.

As in Section 5.1, a Riemann Sum for f and P on R is a sum of the form

n
∑

j=1

f(uj)V (Rj) (10.1.2)

where, for each j, uj is some point in the rectangle Rj . For each j, the term
f(uj)V (Rj) represents the volume (or minus the volume, if f(ūj) < 0) of a
d+1-dimensional rectangle with base Rj and with height |f(uj)|. Now, for each
j we have

mj ≤ f(uj) ≤ Mj ,

which implies

L(f, P ) ≤
n
∑

j=1

f(uj)V (Rj) ≤ U(f, P ).

Thus, as in Section 5.1, every Riemann sum for f and P lies between the lower
and upper sums for f and P .
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Refinement

If R is a rectangle in Rd, and P and Q partitions of R, then Q is said to be a
refinement of P if every subrectangle of R determined by Q is a subset of some
subrectangle determined by P .

If R = [a1, b1]×·×[ad , bd], then the partition P consists of a partition of each
of the intervals [ak, bk], as does the partition Q. It is not difficult to see that
Q is a refinement of P if and only if, for k = 1, · · · , d, the partition of [ak, bk]
determined by Q is a refinement of the partition of this same interval determined
by P . For this reason, it is also easy to see that any two partitions P , Q of R
have a common refinement, since this is true for partitions of intervals.

If Q is a refinement of P , then since R is the union of the subrectangles of
itself determined by a given partition, each subrectangle for P is a union of the
subrectangles for Q which it contains. This is the key fact needed to prove the
following theorem in essentially the same way as the analogous theorem in one
variable (Theorem 5.1.4). The details are left to the exercises.

Theorem 10.1.2. Let f be a bounded function on a rectangle R in Rd. If Q
and P are partitions of R and Q is a refinement of P , then

L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P ). (10.1.3)

Let P1 and P2 be any two partitions of R and let Q be a common refinement
of P1 and P2, then (10.1.3) holds with P replaced by P1 and with P replaced
by P2. The resulting inequalities imply the following.

Theorem 10.1.3. If P1 and P2 are partitions of R, then

L(f, P1) ≤ U(f, P2).

Thus, any lower sum for f is less than or equal to any upper sum for f .

Upper and Lower Integrals

Definition 10.1.4. LetR be a rectangle in Rd and f a bounded real valued
function on R. The upper and lower integrals of f on R are defined by

∫

R

f(x)dV (x) = inf{U(f, P ) : P a partition of R}
∫

R

f(x)dV (x) = sup{L(f, P ) : P a partition of R}
(10.1.4)

The set of all upper sums for f is bounded below by any lower sum and the
set of lower sums is bounded above by any upper sum. Thus, the inf (greatest
lower bound) of the set of upper sums is greater than or equal to any lower sum
and, hence, also greater than or equal to the sup (least upper bound) of the set
of all lower sums. Thus,
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Theorem 10.1.5. If f is a bounded real valued function on a rectangle R and
if P and Q are arbitrary partitions of R then

L(f, P ) ≤
∫

R

f(x)dV (x) ≤
∫

R

f(x)dV (x) ≤ U(f,Q)

The Integral

A bounded function on R is integrable if its upper and lower integrals are the
same. That is:

Definition 10.1.6. LetR be a rectangle in Rd and f a bounded real valued
function on R. If

∫

R
f(x)dV (x) =

∫

Rf(x)dV (x), then we will say that f is inte-

grable on R. In this case, we will call the common value of these two expressions
the Riemann integral of f on R and denote it by

∫

R

f(x)dV (x).

The proofs of the following two theorems are exactly the same as the proofs
of Theorems 5.1.7 and 5.1.8 and we will not repeat them here.

Theorem 10.1.7. If f is a bounded function on a rectangle R, then f is Rie-
mann integrable on R if and only if, for each ǫ > 0, there is a partition P of R
such that

U(f, P )− L(f, P ) < ǫ. (10.1.5)

Theorem 10.1.8. With f and R as above, f is Riemann integrable on R if
and only if there is a sequence {Pn} of partitions of R such that

lim(U(f, Pn) − L(f, Pn)) = 0. (10.1.6)

In this case,
∫

R

f(x)dV (x) = limSn(f)

where, for each n, Sn(f) may be chosen to be U(f, Pn), L(f, Pn) or any Riemann
sum (10.1.2) for f and the partition Pn.

Remark 10.1.9. The preceding two theorems both involve the difference be-
tween the upper and lower Riemann sums for f and P . This can be written
as

U(f, P )− L(f, P ) =
n
∑

j=1

(Mj −mj)V (Rj). (10.1.7)

The factors Mj −mj that appear in this expression are non-negative numbers,
as are the numbers Vj . Hence, any operation that reduces or eliminates some
of the terms in this sum will result in a smaller sum.
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Properties of the Integral

The next theorem states one of the most important properties of the integral.
The proof of this theorem differs in no essential way from the proof of the
analogous theorem for functions of one variable (Theorem 5.2.3). In fact, the
only difference is that intervals on the line are replaced by aligned rectangles in
Rd. We will not repeat the proof here.

Theorem 10.1.10. If f and g are integrable functions on an aligned rectangle
R in Rd and c is a constant, then

(a) cf is integrable and

∫

R

cf(x)dV (x) = c

∫

R

f(x)dV (x);

(b) f+g is integrable and

∫

R

(f+g)(x)dV (x)) =

∫

R

f(x)dV (x)+

∫

R

g(x)dV (x).

Taken together, the statements of the above theorem mean that the inte-
grable functions on R form a vector space under pointwise addition and scalar
multiplication of functions, and the integral is a linear transformation from this
vector space to the vector space R.

The order preserving property is another key property of the integral. The
version stated in the next theorem is somewhat more general than the analogous
result, proved earlier for functions of a single variable (Theorem 5.2.4), and it
has a different proof. Hence, we include the proof.

Theorem 10.1.11. If f and g are functions on an aligned rectangle R in Rd,
and f(x) ≤ g(x) for all x ∈ [a, b], then

(a)

∫

R

f(x)dV (x) ≤
∫

R

g(x)dV (x) and

∫

R

f(x)dV (x) ≤
∫

R

g(x)dV (x));

(b)

∫

R

f(x)dV (x) ≤
∫

R

g(x)dV (x) if f and g are integrable.

Proof. We will prove this result for the upper integrals. The result for the
lower integrals has an analogous proof. The result for the integral in the case
of integrable functions then follows because upper integral, lower integral, and
integral are all the same for an integrable function.

Given a partition P of R, determining subrectangles {R1, · · · , Rn} of R, we
set

Mj(f) = sup
Rj

f and Mj(g) = sup
Rj

g.

Then Mj(f) ≤Mj(g) for all j because f(x) ≤ g(x) for all x ∈ R. Hence,

U(f, P ) =

n
∑

j=1

Mj(f)V (Rj) ≤
n
∑

j=1

Mj(g)V (Rj) = U(g, P ).
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It follows that
∫

R

f(x)dV (x) = inf
P
U(f, P ) ≤ inf

P
U(g, P ) =

∫

R

g(x)dV (x)

This completes the proof.

A Simple Example

So far we have not computed a single integral or shown that a single function is
integrable. We do so now. The function we will integrate is very simple, though
not continuous, but the computation of its integral is an important step in our
development of integration theory.

Definition 10.1.12. Let E be a subset of Rd. Then the characteristic function
of E, denoted χE is the real valued function on Rd defined by

χE(x) =

{

1 if x ∈ E

0 if x /∈ E.

Our example is as follows:

Example 10.1.13. Let R and S be aligned rectangles with S ⊂ R. Show that
χS is an integrable function on R and

∫

R

χS(x)dV (x) = V (S).

Solution: Let

R = [a1, b1] × · · · × [ad, bd] and

S = [s1, t1] × · · · × [sd, td],

where aj ≤ sj ≤ tj ≤ bj for each j. Given ǫ > 0, We choose a partition
of R as follows: for each j, we partition each interval [aj , bj ] with the points
{aj ≤ uj ≤ sj ≤ tj ≤ vj ≤ bj}, where the points uj and vj are chosen so that if
A is the rectangle

A = [u1, v1] × · · · × [ud, vd]

Then V (A) < V (S) + ǫ (see Figure 10.2 for a two dimensional version of this
setup).

The sup of χS on a given subrectangleRj is 1 if Rj∩S 6= ∅ and is 0 otherwise.
The inf of χS on Rj is 1 if Rj ⊂ S and is 0 otherwise.

There is only one subrectangle for this partition which is contained in S and
that is S itself. Thus,

L(χS, P ) = V (S).

The union of the subrectangles Rj that meet S is A. Hence,

U(χS, P ) = V (A).
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Figure 10.2: Computing the Integral of χS

Since V (S) < V (A) < V (S) + ǫ, we have V (A)− V (S) < ǫ. Hence,

U(χS, P ) − L(χS, P ) < ǫ.

By Theorem 10.1.7, χS is integrable on R. Its integral is within ǫ of L(χS, P ) =
V (S) for every ǫ > 0 and so

∫

R χS(x)dV (x) = V (S).

Exercise Set 10.1

1. Let R = [0, 1] × [0, 1] be the square with vertices at (0, 0), (1, 0), (1, 1),
and (0, 1) and let P be the partition of R consisting of the partition
{0, 1/4, 1/2, 3/4, 1} in both factors of [0, 1] × [0, 1]. Find U(f, P ) and
L(f, P ) if f(x, y) = xy.

2. With R and P as in the previous problem, find U(χ∆, P ) and L(χ∆, P ) if
∆ is the closed, solid triangle with vertices at (0, 0), (1, 0), (1, 1).

3. Suppose f and g are functions defined on an aligned rectangle R. Suppose
there is a positive constant K such that |f(x)−f(y)| ≤ K|g(x)− g(y)| for
all x, y ∈ R. Prove that if g is integrable on R, then so is f .

4. Use the result of the preceding exercise to prove that if f is an integrable
function on an aligned rectangle R, then |f | is also integrable on R.

5. Prove that if f is integrable on R, then f2 is also integrable on R.

6. Use the result of the preceding exercise to prove that if f and g are inte-
grable on R, then fg is also integrable on R.

7. Show that each constant function k is integrable and
∫

R
kdV (x) = kV (R).

8. If f is an integrable function defined on the rectangle R and |f(x)| ≤ M
on R, where M is a positive constant, then prove that

∣

∣

∣

∣

∫

R

f(x)dV (x)

∣

∣

∣

∣

≤MV (R).
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9. Prove that if R is an aligned rectangle and f is a continuous function on
R, then f is integrable on R.

10. If A and B are subsets of Rd, then

(a) describe χA∩B in terms of χA and χB;

(b) describe χA∪B in terms of χA and χB;

(c) describe the meaning of B ⊂ A in terms of χA and χB;

(d) if B ⊂ A, describe χA\B in terms of χA and χB.

10.2 Jordan Regions

The concept of characteristic function of a set (Definition 10.1.12) allows us to
define the volume of a set in terms of the integral that we just defined. The
volume (or inner or outer volume) of a set E, as defined below, depends very
much on the dimension of the ambient space Rd and so, technically, it should
be called the d-volume (or inner or outer d-volume) of the set. However, as
with rectangles, we will drop the d when the dimension of the ambient space is
understood.

Definition 10.2.1. If E is a bounded subset of Rd, letR be an aligned rectangle
containing E. Then we define the outer volume V (E), inner volume V (E), and
volume V (E) (if it exists) for E by

(a) V (E) =
∫

R
χE(x)dV (x);

(b) V (E) =
∫

R
χE(x)dV (x); and

(c) V (E) =
∫

R χE(x)dV (x) if the latter exists – that is if
∫

R
χEdV (x) =

∫

R
χE(x)dV (x).

If V (E) exists, then we call E a Jordan region.

Note that E is a Jordan region if and only if V (E) = V (E) and, in this case,
V (E) is their common value.

Note also that, if E is an aligned rectangle, thenE is a Jordan region and the
above definition of V (E) agrees with our earlier definition. This is demonstrated
in Example 10.1.13.

Implicit in the above definition is the fact that the upper and lower integrals
of χE over R do not depend on the rectangle R, as long as R contains E. We
leave a proof of this to the exercises (Exercise 10.2.1).

Example 10.2.2. Show that the closed, solid right triangle ∆ in R2 with ver-
tices at (0, 0), (a, 0), and (0, b) is a Jordan region and has area (2-volume) ab/2.

Solution: We choose R to be the rectangle [0, a] × [0, b]. This contains the
triangle ∆. For each n, we choose a partition Pn of R consisting of partitions
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Figure 10.3: Computing the Area of a Triangle

{0, a/n, 2a/n, · · · , na/n = a} of [0, a] and {0, b/n, 2b/n, · · · , nb/n = b} of [0, b].
This determines n2 subrectangles of R, each of volume ab/n2.

Now for each of these subrectangles Rj , the sup, Mj , and inf, mj , of χ∆ on
Rj is either 1 or 0. In fact,

Mj = 1 if and only if Rj ∩ ∆ 6= ∅
mj = 1 if and only if Rj ⊂ ∆.

Thus, the only subrectangles Rj on which Mj 6= mj are those which are not
contained in ∆ but have non-empty intersection with it (the light grey sub-
rectangles in Figure 10.3). There are two kinds of these, those of the form
[(k− 1)a/n, ka/n]× [(k− 1)b/n, kb/n] which are bisected by the line from (0, 0)
to (a, b) and those of the form [(k− 1)a/n, ka/n]× [kb/n, (k+1)b/n] which just
have a lower right vertex on this line. There are n of the former and n − 1 of
the latter. The difference U(χ∆, Pn)−L(χ∆, Pn) is just the sum of the areas of
these 2n− 1 rectangles, which is (2n− 1)ab/n2. Hence,

lim
n→∞

(U(χ∆, Pn) − L(χ∆, Pn)) = lim
n→∞

(2n− 1)ab

n2
= 0.

By Theorem 10.1.8, the Riemann integral
∫

R
χ∆(x)dV (x) exists and so the 2-

volume (area) of the set ∆ exists – that is, ∆ is a Jordan region.

Also by Theorem 10.1.8 the integral
∫

R χ∆(x)dV (x) is the limit of the se-
quence {L(χ∆, Pn)}. However, L(χ∆, Pn) is the sum of the areas of the sub-
rectanges that are contained in ∆ (the dark grey subrectangles in Figure 10.3).
There are n(n − 1)/2 of these (half the number remaining after the ones that
are bisected by the line from (0, 0) to (a, b) are removed). Hence,

V (∆) =

∫

R

χ∆(x)dV (x) = lim
n→∞

n(n− 1)ab

2n2
=
ab

2
.



10.2. JORDAN REGIONS 309

Properties of Volume

Many properties of the integral translate directly into properties of volume. For
example, Theorem 10.1.11 implies that

Theorem 10.2.3. If E and F are bounded subsets of Rd and E ⊂ F , then

V (E) ≤ V (F ) and V (E) ≤ V (F ).

If E and F are Jordan regions, then V (E) ≤ V (F ).

Theorem10.1.10 and the fact that χE∪F = χE+χR−χE∩F (Exercise 10.1.10)
imply

Theorem 10.2.4. If E, F and E ∩ F are Jordan regions and V (E ∩ F ) = 0,
then E ∪ F is a Jordan region and

V (E ∪ F ) = V (E) + V (F ).

In particular, this identity holds if E and F are disjoint Jordan regions.

In particular, if R is an aligned rectangle in Rd and Rj 6= Rk are two of the
subrectangles determined by a partition P , then Rj ∩ Rk is either empty or is
a degenerate aligned rectangle in R – that is, its dimension is lower than that
of R. Hence, V (Rj ∩Rk) = 0. Thus, by Theorem 10.1.10,

V (Rj ∪Rk) = V (Rj) + V (Rk).

An induction argument then shows that if F is the union of any number of the
subrectangles determined by P , then F is a Jordan region and V (F ) is the sum
of the volumes of these subrectangles. This is used in the proof of the following
theorem.

Theorem 10.2.5. If E is a bounded subset of Rd, then V (E) = V (E) and
V (E) = V (E◦).

Proof. Let R be an aligned rectangle containing E, let P be a partition of R,
and let {Rj} be the list of subrectangles of R determined by P . Then U(χE, P )
is the sum of the volumes of the rectangles Rj in this list that have a non-empty
intersection with E (those for which χE takes on the value 1 somewhere on Rj).
If we set

F =
⋃

{Rj : E ∩Rj 6= ∅},
then U(χE, P ) = V (F ), by the paragraph preceding this theorem.

Now F is a finite union of closed sets and so it is also closed. Since E ⊂ F ,
we also have E ⊂ F . Then

V (E) ≤ V (E) ≤ V (F ) = V (F ) = U(χE, P ).

Since V (E) = inf{U(χE, P ) : P a partition of R}, we have

V (E) ≤ V (E) ≤ V (E).
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Thus, V (E) = V (E).
Similarly, if we set

G =
⋃

{Rj : Rj ⊂ E},

then, since G◦ ⊂ E◦,
V (G◦) ≤ V (E◦) ≤ V (E).

However, V (G◦) = V (G) = L(χE, P ), since the boundary of G consists of a
finite union of rectangles of dimension lower than d, and these all have volume 0.
Since supP L(χE, P ) = V (E), we conclude that V (E◦) = V (E). This completes
the proof.

Theorem 10.2.6. If E is a Jordan region, then so are E and E◦. Furthermore,
V (E) = V (E) = V (E◦).

Proof. In view of the previous theorem,

V (E) ≤ V (E) ≤ V (E) ≤ V (E).

If E is a Jordan region, then V (E) = V (E) and, hence, each of the above
inequalities is an equality. This implies E is a Jordan region and V (E) = V (E).
The proof of the statement for E◦ is similar.

Sets of Volume Zero

We leave the proof of the following theorem to the exercises.

Theorem 10.2.7. If E is a bounded set with V (E) = 0, then E is a Jordan
region with volume 0. Any subset of a Jordan region of volume 0 is also a
Jordan region of volume 0. A finite union of Jordan regions of volume 0 is also
a Jordan region of volume 0.

We will, henceforth, refer to a set E with V (E) = 0 as simply a set of volume
0.

Theorem 10.2.8. A set E is a set of volume 0 if and only if, for each ǫ > 0,
there is a finite set {R1, · · · , Rn} of aligned rectangles such that

E ⊂
n
⋃

j=1

Rj and
n
∑

j=1

V (Rj) < ǫ.

Proof. If V (E) = 0, then there exist an aligned rectangleR with E in its interior
and a partition P of R such that U(χE, P ) < ǫ. This just means that those
subrectangles determined by P which meet E have volumes which add up to a
number less than ǫ. Since E is contained in the union of these rectangles, the
proof of the ”only if” part of the theorem is complete.
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On the other hand, if E ⊂ F = ∪nj=1Rj for a set of aligned rectangles with

volumes adding up to a number less than ǫ, then V (F ) < ǫ since

χF ≤
n
∑

j=1

χRj
,

which, together with the fact that each χRj
is integrable, implies

V (F ) =

∫

R

χF (x)dV (x) ≤
∫

R

n
∑

j=1

χRj
(x)dV (x)

=
n
∑

j=1

∫

R

χRj
(x)dV (x) =

n
∑

j=1

V (Rj) < ǫ.

This proves the ”if” part of the theorem.

A Characterization of Jordan Regions

Theorem 10.2.9. A bounded set E is a Jordan region if and only if its bound-
ary, ∂E, is a set of volume 0.

Proof. If P is a partition of R determining a list of subrectangles {Rj}, then
L(χE◦ , P ) is the sum of the areas of those Rj which are entirely contained in
E◦, while U(χE, P ) is the sum of the areas of those Rj which have non-empty
intersection with E. It follows that

U(χE, P ) − L(χE◦ , P ) = U(χ∂E, P ).

Hence, a sequence {Pn} of partitions has the property that limU(χ∂E, Pn) = 0
if and only if it has the property that

lim(U(χE, Pn)− L(χE◦ , Pn)) = 0.

Since, for an appropriately chosen sequence of partitions, this limit is

V (E) − V (E◦) = V (E)− V (E),

by Theorem 10.2.5, we conclude that V (E) = V (E) if and only if V (∂E) = 0 –
that is, E is a Jordan region if and only if ∂E is a set of volume 0.

Theorem 10.2.10. If A and B are Jordan regions, then A ∩ B, A ∪ B, and
A \ (A ∩B) are also Jordan regions. Furthermore,

V (A ∪B) = V (A) + V (B)− V (A ∩B), and

V (A \ (A ∩ B)) = V (A)− V (A ∩B).
(10.2.1)
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Proof. Each of the sets A∩B, A∪B, and A\(A∩B) has its boundary contained
in ∂A ∪ ∂B. Since A and B are Jordan regions, ∂A and ∂B are sets of volume
0. Then Theorem 10.2.7 implies that ∂A∪ ∂B has volume 0, as does each of its
subsets. It follows from the previous theorem that A∩B, A∪B, and A\(A∩B)
are Jordan regions.

The second statement of the theorem follows from the identities

χA∪B = χA + χB − χA∩B, and

χA\(A∩B) = χA − χA∩B.
(10.2.2)

Example 10.2.11. Let K be a compact subset of Rd−1 and let f : K → R be
a continuous function. Show that the graph G(f) of f is a set of d-volume 0,
where G(f) = {(x, f(x)) : x ∈ K}.

Solution: Since K is compact, it is bounded, and so we may choose a
rectangle R in Rd−1 which contains K. Let W be the (d− 1)-volume of R.

Since K is compact and f is continuous, f is actually uniformly continuous.
Thus, given ǫ > 0 we may choose a δ > 0 such that

|f(x)− f(y)| < ǫ/W whenever ||x − y|| < δ.

We let P be a partition of R such that the diameter of each subrectangle for
the partition is less than δ (diameter in this case means maximal distance be-
tween two points in the subrectangle). Let R1, R2, · · · , Rn be a list of those
subrectangles for this partition which meet K. If

mj = min{f(x) : x ∈ K ∩Rj} and Mj = max{f(x) : x ∈ K ∩Rj},

then
G(f) ⊂

⋃

j

(Rj × [mj ,Mj ]).

The sum of the volumes of the rectangles Rj × [mj ,Mj ] is

∑

j

V (Rj)(Mj −mj) ≤
ǫ

W

∑

V (Rj) ≤
ǫ

W
W = ǫ.

By Theorem 10.2.8 the graph G(f) of f is a set of volume 0.

Exercise Set 10.2

1. Prove that
∫

R
χE(x)dV (x) and

∫

R
χE(x)dV (x) do not depend on the

choice of the aligned rectangle R as long as it contains E.

2. Prove Theorem 10.2.7 – that is, show that if a subset A of Rd has outer
volume zero, then it and each of its subsets is a Jordan region of volume
0.
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3. Show that a finite set in Rd has volume 0.

4. If E is the subset of the unit square [0, 1]× [0, 1] consisting of points with
both coordinates rational numbers, find its inner volume V (E) and outer
volume V (E). Is E a Jordan region?

5. Show that if A and B are sets of volume 0 in Rd, then A ∪B is also a set
of volume 0.

6. Let U be an open subset of R2 and K ⊂ U a compact set. Suppose
f : U → R is a smooth function and E = {(x, y) ∈ K : f(x, y) = 0}. If df
is never 0 on E, then show that E is a set of area 0 in R2.

7. Show that an ellipse in R2 is a set of area 0 in R2 and the solid ellipse
that it bounds is a Jordan region.

8. Show that a bounded subset of R2 whose boundary is a finite union of
smooth parameterized curves, is a Jordan region.

9. Consider the following three reflection transformations of R2:

T1(x, y) = (−x, y), T2(x, y) = (x,−y) and T3(x, y) = (y, x).

These are reflection through the y-axis, reflection through the x-axis, and
reflection through the line y = x, respectively. Prove that if E is a Jordan
region, then, for j = 1, 2, 3, so is Tj(E) and V (Tj(E)) = V (E). Hint:
what do these reflections do to aligned rectangles and their volumes?

10. Using the previous two exercises and theorems from this section, but with-
out using Example 10.2.2, give a proof that the area of a triangle with one
side parallel to a coordinate axis is one half its base times its height. Hint:
prove this first for right triangles with legs parallel to the axes.

11. Using the result of the preceding exercise, show that a parallelogram in
R2 with one side parallel to a coordinate axis has area equal to its base
times its height.

12. Suppose B ⊂ Rd is a compact Jordan region and f and g continuous real
valued functions on B with g(x) ≤ f(x). Show that the set

A = {(x, t) ∈ Rd+1 : x ∈ B, and g(x) ≤ t ≤ f(x)}

is also a Jordan region.

10.3 The Integral over a Jordan Region

In this section we extend the definition of the integral to cover integration over
a Jordan region. We also prove an existence theorem which shows that the class
of integrable functions is quite large.
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An Existence Theorem

So far we have only proved the existence of the integral for a few functions of
the form χE. Our next objective is to prove a general existence theorem for the
integral over an aligned rectangle. We will then extend this theorem to integrals
over Jordan regions.

Theorem 10.3.1. Let f be a bounded function on an aligned rectangle R. If
the set of points of R at which f is not continuous is a set of volume 0, then f
is integrable on R.

Proof. Let E be the set of points of R at which f is not continuous. Since E
is a set of volume 0, its outer volume V (E) is 0. Hence, given ǫ > 0, there is a
partition P of R such that U(χE, P ) < ǫ/(4M), where M is the sup of |f | on
R. If A is the union of the subrectangles for P which meet E, then this means
that

V (A) = U(χE, P ) <
ǫ

4M
.

Let B be the union of the subrectangles for P which do not meet E. Note
that A ∪ B = R and B is a closed, bounded (hence compact) set on which f
is continuous. Hence, f is uniformly continuous on B by Theorem 8.2.12. This
implies that we may choose a δ > 0 such that

|f(x) − f(y)| < ǫ

2V (R)
whenever ||x− y|| < δ.

We next choose a refinement Q for the partition P in such a way that the
diameter of each subrectangle for Q is at most δ. If R1, R2, · · · , Rn is a list of
the subrectangles for Q, then each Rj is either in A or in B. We let S be the
set of integers j in [1, n] such that Rj ⊂ A and T the set of integers j in this
interval such that Rj ⊂ B. If Mj and mj are the sup and inf of f on Rj , then

U(f,Q)− L(f,Q) =
n
∑

j=1

(Mj −mj)V (Rj)

=
∑

j∈S
(Mj −mj)V (Rj) +

∑

j∈T
(Mj −mj)V (Rj)

≤ 2MV (A) +
ǫ

2V (R)
V (B) <

ǫ

2
+
ǫ

2
= ǫ.

In view of Theorem 10.1.7, the proof is complete.

The Integral over a Jordan Region

Definition 10.3.2. Let A be a Jordan region and f a bounded function defined
on a set containing A. We define a new function fA, with domain all of Rd, as
follows:

fA(x) =

{

f(x) if x ∈ A

0 if x ∈ Rd \A.
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Thus, fA is a function defined on all of Rd. It agrees with f on A and is
0 on the complement of A. Note that f may be originally defined on a larger
set than A or it may be defined just on A. In the definition of fA, it doesn’t
matter.

Example 10.3.3. Let A = D1(0, 0) in R2. Find fA and gA if f is defined on

R2 by f(x, y) = x2 + y2 and g is defined on A by g(x, y) =
√

1 − x2 − y2.
Solution: From the above definition, we have

fA(x, y) =

{

x2 + y2 if (x, y) ∈ D1(0)

0 if (x, y) /∈ D1(0).

and

gA(x, y) =

{

√

1 − x2 − y2 if (x, y) ∈ D1(0)

0 if (x, y) /∈ D1(0).

Note that here f is defined originally on all of R2 while g is defined only on A.

Definition 10.3.4. With A, f and fA as in the preceding definition, let R be
an aligned rectangle containing A. If fA is integrable on R we say f is integrable
on A and we write

∫

A

f(x)dV (x) =

∫

R

fA(x)dV (x).

Implicit in the above definition is the assumption that
∫

R fA(x)dV (x) does
not depend on which rectangle R is chosen, as long as it contains A. We leave
the proof of this to the exercises.

If A happens to be an aligned rectangle, then one choice for R in the above
definition is R = A. Then f = fA on the rectangle R and

∫

A

f(x)dV (x) =

∫

R

fA(x)dV (x) =

∫

R

f(x)dV (x),

where, on the right, the integral over R is the one defined in Section 10.1, while
the one on the left is our new definition of the integral over a Jordan region.
Fortunately, the two agree.

Existence of the Integral over a Jordan Region

Theorem 10.3.5. Let A be a Jordan region and f a bounded function defined
on A. If the set E of points of A at which f is not continuous is a set of volume
0, then f is integrable on A.

Proof. Since both E and ∂A are sets of volume 0, their union F = E ∪ ∂A is
also. We choose an aligned rectangleR such that A ⊂ R. Then fA is continuous
on R \ F . It follows from Theorem 10.3.1 that fA is integrable on R and, by
definition, f is integrable on A.
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Properties of the Integral

For integrals over rectangles, the following theorem is Exercise 10.1.6. The
extension of this result to integrals over Jordan regions is left to the exercises.

Theorem 10.3.6. If A is a Jordan region and f and g are integrable functions
on A, then fg is also integrable on A.

Example 10.3.7. Prove that if B ⊂ A and A and B are Jordan regions, then
each function f which is integrable on A is also integrable on B.

Solution: This follows immediately from the preceding theorem and the
observation that fB = χBfA.

The next three theorems follow from Theorems 10.1.10, 10.1.11, and 10.3.6
and some observations about the passage from f to fA. We leave the details to
the exercises.

Theorem 10.3.8. Let A be a Jordan region, f and g integrable functions on
A and c a scalar constant. Then f + g and cf are integrable on A, and

(a)
∫

A
1 dV (x) = V (A);

(b)

∫

A

(f(x) + g(x))dV (x) =

∫

A

f(x)dV (x) +

∫

A

g(x)dV (x);

(c)

∫

A

cf(x)dV (x) = c

∫

A

f(x)dV (x).

Parts (b) and (c) mean that the integral over A is a linear transformation.

Theorem 10.3.9. Let A and B be Jordan regions with V (A ∩ B) = 0 and let
f be a bounded function on A ∪B. Then f is integrable on A and on B if and
only if it is integrable on A ∪ B. In this case,

∫

A∪B
f(x)dV (x) =

∫

A

f(x)dV (x) +

∫

B

f(x)dV (x).

Theorem 10.3.10. If A is a Jordan region and f and g are integrable functions
on A with f(x) ≤ g(x) for all x ∈ A, then

∫

A

f(x)dV (x) ≤
∫

A

g(x)dV (x).

Integral of a Sequence

Theorem 10.3.11. Let A be a Jordan region and {fn} a sequence of integrable
functions on A. If {fn} converges uniformly on A to a function f , then f is
integrable and

lim
n→∞

∫

A

fn(x)dV (x) =

∫

A

f(x)dV (x).
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Proof. We prove this first in the case where A is an aligned rectangle R.
Given ǫ > 0, there is an N such that |f(x) − fn(x)| < ǫ/V (A) whenever

x ∈ R and n ≥ N . this means that, for n ≥ N ,

fn(x)−
ǫ

V (R)
< f(x) < fn(x) +

ǫ

V (R)
,

for all x ∈ R. By Theorem 10.1.11 this implies that

∫

R

(fn(x)− ǫ/V (R))dV (x) ≤
∫

R

f(x)dV (x)

≤
∫

R

f(x)dV (x) ≤
∫

R

(fn(x) + ǫ/V (R))dV (x).

Since fn and the constant ǫ/(2V (R)) are integrable, their upper and lower in-
tegrals are the same and are equal to their integrals. Thus,

∫

R

fn(x)dV (x)− ǫ ≤
∫

R

f(x)dV (x) ≤
∫

R

f(x)dV (x) ≤
∫

R

fn(x)dV (x) + ǫ.

Since ǫ is an arbitrary positive number, we conclude that

∫

R

f(x)dV (x) =

∫

R

f(x)dV (x)

and, hence, that f is integrable on R. These inequalities also show that

∣

∣

∣

∣

∫

R

fn(x)dV (x)−
∫

R

f(x)dV (x)

∣

∣

∣

∣

< ǫ whenever n ≥ N.

Thus, lim
∫

R fn(x)dV (x) =
∫

R f(x)dV (x).
Now if A is not an aligned rectangle, we simply choose an aligned rectangle

R which contains A and replace f and fn by fA and (fn)A in the above argu-
ment. We note that {(fn)A} converges uniformly to fA on R if {fn} converges
uniformly to f on A. The conclusion is that fA is integrable on R and

lim

∫

R

(fn)A(x)dV (x) =

∫

R

fA(x)dV (x).

This implies that f is integrable on A and

lim

∫

A

fn(x)dV (x) =

∫

A

f(x)dV (x).

Example 10.3.12. Show that if f is a bounded function on a Jordan region A
and if {x ∈ A : f(x) < r} is a Jordan region for each r ∈ R, then f is integrable
on A.
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Solution: Since f is bounded, there is anM > 0 such that−M < f(x) < M
for all x ∈ A. We set

g(x) =
f(x) +M

2M
so that f(x) = 2Mg(x)−M.

The function g also satifies the hypothesis of the theorem, and 0 < g(x) < 1
for all x ∈ A. We will show that g is integrable. This clearly implies that f is
integrable.

We will show that g is integrable by expressing it as a uniform limit of a
sequence of integrable functions. This sequence is constructed as follows. For
each positive integer n and each positive integer k ≤ n, we set

E(n, k) = {x ∈ A : (k − 1)/n ≤ f(x) < k/n}
= {x ∈ A : f(x) < k/n} \ {x ∈ A : f(x) < (k − 1)/n}.

By hypothesis, E(n, k) is a Jordan region and so χE(n,k) is integrable. Also, for
each n, A = ∪nk=1E(n, k). We define an integrable function gn on A by

gn(x) =

n
∑

k=1

k − 1

n
χE(n,k).

That is,

gn(x) =
k − 1

n
if x ∈ E(n, k).

Since gn is a linear combination of integrable functions, it is integrable. Also

0 ≥ g(x)− gn(x) < k/n− (k − 1)/n = 1/n if x ∈ E(n, k).

Since every x ∈ A is in E(n, k) for some k, we conclude that

|g(x) − gn(x)| < 1/n for all x ∈ A.

This implies that {gn} converges uniformly to g on A. By the previous theorem,
g is integrable on A. Hence, f is integrable on A.

Exercise Set 10.3

1. Prove that the integral
∫

R fA(x)dV (x) that appears in Definition 10.3.4
does not depend on the choice of R as long as R contains A.

2. Prove Theorem 10.3.6. You may use the result of Exercise 10.1.6.

3. Prove Theorem 10.3.8.

4. Prove Theorem 10.3.9.

5. Prove Theorem 10.3.10.
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6. Prove that if A and B are Jordan regions with B ⊂ A and f is a non-
negative integrable function on A, then

∫

B
f(x)dV (x) ≤

∫

A
f(x)dV (x).

7. Prove that if f is an integrable function on a Jordan region A, then |f | is
integrable and

∣

∣

∣

∣

∫

A

f(x)dV (x)

∣

∣

∣

∣

≤
∫

A

|f(x)|dV (x).

8. Let A be a Jordan region and f an integrable function on A. For each
x ∈ A define f+(x) and f−(x) by

f+(x) = max{f(x), 0} and f−(x) = max{−f(x), 0} = (−f(x))+.

Prove that f+ and f− are non-negative functions on A with f = f+ − f−

and |f | = f+ + f−. Then prove that f+ and f− are integrable.

9. Prove that if f is a bounded function on a set A of volume 0, then f is
integrable on A and

∫

A f(x)dV (x) = 0.

10. Let U be an open Jordan region and {Kn} an increasing sequence of
compact Jordan subsets of U such that U = ∪nK◦

n. Prove that, for each
integrable function f on U ,

∫

U

f(x) dV (x) = lim
n

∫

Kn

f(x) dx.

11. Prove that if U is an open Jordan region, then there always exists a se-
quence {Kn} like the one in the previous exercise.

12. Let A be a Jordan region and f an integrable function on A. The average
value of f on A is defined to be the number

avg(f,A) =
1

V (A)

∫

A

f(x)dV (x).

If A is compact and connected and f is continuous on A, prove that there
is a point x0 ∈ A at which f(x0) = avg(f,A).

13. Suppose A is a Jordan region in Rd and gk is an integrable function on A
for k = 1, 2, · · · . Prove that if

g(x) =
∞
∑

k=1

gk(x),

where this series converges uniformly on A, then g is integrable and

∫

A

g(x)dV (x) =
∞
∑

k=1

∫

A

gk(x)dV (x).
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14. Prove that the function g on R2, defined by

g(x, y) =

∞
∑

k=1

1

k2
sin(kx) sin(ky),

is integrable on any Jordan region in R2.

10.4 Iterated Integrals

Integrals of functions of a single variable may be calculated exactly in a wide
range of situations. The theorem that makes this possible is the Fundamental
Theorem of Calculus. We calculate an integral by finding (if we can) an an-
tiderivative for the integrand, then evaluating at the endpoints and subtracting.
Fortunately, there is a theorem which often makes it possible to use this same
procedure to compute integrals in several variables. This theorem is Fubini’s
Theorem, and it tells us that, in many situations, we may calculate an integral
in several variables by integrating with respect to one variable at a time.

An Additivity Lemma

We begin our discussion of Fubini’s Theorem with a lemma that will play an
important role in the proof.

Theorem 10.3.9 says that if A and B are Jordan regions with V (A∩B) = 0,
then the integral of an integrable function over A∪B is the sum of the integrals
of the function over A and over B. If f is not integrable, only bounded, the
analogous result holds for the upper integral of f and for the lower integral of
f . We will only need the following special case of this result.

Lemma 10.4.1. Suppose R = [a1, b1] × [a2, b2] × · · · × [ad, bd] is an aligned
rectangle in Rd and f is a bounded function on R. Suppose that R = R1 ∪R2,
where R1 and R2 are obtained from R by partitioning one of the intervals [aj , bj ]
into two adjacent subintervals [aj , c], [c, bj ] and leaving the others alone. Then

∫

R

f(x)dV (x) =

∫

R1

f(x)dV (x) +

∫

R2

f(x)dV (x),

and
∫

R

f(x)dV (x) =

∫

R1

f(x)dV (x) +

∫

R2

f(x)dV (x).

Proof. The proof of this is exactly the same as the proof of the interval additivity
theorem for the single variable integral (Theorem 5.2.7). The key to the proof
is that a partition P1 of R1 and a partition P2 of R2, together form a partition
P of R, and this partition has the property that

L(f, P ) = L(f, P1) + L(f, P2) and U(f, P ) = U(f, P1) + U(f, P2).

Furthermore, each partition of R has a refinement which is of this form.
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Fubini’s Theorem

Let S be an aligned rectangle in Rp and T an aligned rectangle in Rq. Let f
be a bounded function on the aligned rectangle R = S × T in Rp+q. We will
denote the typical point of S × T by (x, y) where x ∈ S and y ∈ T .

If we hold x ∈ S fixed and consider f(x, y) as a function of y ∈ T , then this
function may or may not be integrable on T . In general, it will be integrable
for some values of x and not for others. However, the upper and lower integrals
of this function of y exist for all x and yield new functions of x on S which also
have upper and lower integrals. The key step in the proof of Fubini’s Theorem
is the following theorem which relates these to the upper and lower integrals of
f over S × T .

Theorem 10.4.2. With S, T , and f as above,

∫

S×T
f(x, y)dV (x, y) ≤

∫

S

∫

T

f(x, y)dV (y)dV (x)

≤
∫

S

∫

T

f(x, y)dV (y)dV (x) ≤
∫

S×T
f(x, y)dV (x, y).

(10.4.1)

Proof. The typical partition of S×T has the form P×Q, where P is a partition of
S and Q is a partition of T . Recall that a partition of S consists of a partition
of each of the intervals whose cartesian product is S, while a partition of T
consists of a partition of each of the intervals whose cartesian product is T .
Taken together, these partitions yield partitions of each of the intervals whose
product is S × T . It is this partition of S × T that we denote by P ×Q.

Let {Si}ni=1 be a list of the subrectangles of S determined by the partition
P and {Tj}mj=1 be a list of the subrectangles of T determined by the partition
Q. Then {Si × Tj}n,mi,j=1 is a list of the subrectangles for the partition P × Q.
Let

Mij = sup
Si×Tj

f and mij = inf
Si×Tj

f.

Then, for x ∈ Si, Theorem 10.1.11 implies

mijV (Tj) ≤
∫

Tj

f(x, y)dV (y) ≤
∫

Tj

f(x, y)dV (y) ≤ MijV (Tj).

Applying Theorem 10.1.11 again, in the variable x, implies

mijV (Si)V (Tj) ≤
∫

Si

∫

Tj

f(x, y)dV (y)dV (x)

≤
∫

Si

∫

Tj

f(x, y)dV (y)dV (x) ≤MijV (Si)V (Tj).

If we sum this inequality over i and j, note that V (Si)V (Tj) = V (Si× Tj), and
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make repeated use of the preceding lemma, the result is

L(f, P ×Q) ≤
∫

S

∫

T

f(x, y)dV (y)dV (x)

≤
∫

S

∫

T

f(x, y)dV (y)dV (x) ≤ U(f, P ×Q)

Since the two expressions in the middle of this inequality give an upper bound
for {L(f, P×Q)} and a lower bound for {U(f, P×Q)}, and since the least upper
bound for {L(f, P ×Q)} is

∫

S×T
f(x, y)dV (x, y) and the greatest lower bound

for {U(f, P ×Q)} is
∫

S×T f(x, y)dV (x, y), we conclude that (10.4.1) holds.

In the case where f is integrable on S × T , this yields Fubini’s Theorem:

Theorem 10.4.3. Let S and T be aligned rectangles in Rp and Rq, respectively,
and let f be an integrable function on S × T , then
∫

S×T
f(x, y)dV (x, y)

=

∫

S

∫

T

f(x, y)dV (y)dV (x) =

∫

S

∫

T

f(x, y)dV (y)dV (x).

(10.4.2)

Furthermore, if f(x, y) is an integrable function of y on T for each fixed x ∈ S,
then

∫

T
f(x, y)dV (y) is an integrable function of x on S, and
∫

S×T
f(x, y)dV (x, y) =

∫

S

∫

T

f(x, y)dV (y)dV (x). (10.4.3)

Proof. If f is integrable on S×T , then the first and last expressions in the string
of inequalities (10.4.1) are equal. Hence, each of the inequalities in (10.4.1) is
actually an equality in this case. This proves (10.4.2).

If f(x, y) is an integrable function of y on T for each x ∈ S, then

∫

T

f(x, y)dV (y) =

∫

T

f(x, y)dV (y) =

∫

T

f(x, y)dV (y)

for each x ∈ S. Then (10.4.2) implies that

∫

S

∫

T

f(x, y)dV (y)dV (x) =

∫

S

∫

T

f(x, y)dV (y)dV (x),

which means that
∫

T
f(x, y)dV (y) is an integrable function of x. Then (10.4.2)

implies (10.4.3).

Remark 10.4.4. In (10.4.2) there is nothing special about the order in which
the iterated integrals are taken. The theorem is equally valid if we integrate
first with respect to x and then with respect to y. Of course, for the analogue
of (10.4.3) to be valid with the order of integration reversed, we must assume
that f(x, y) is an integrable function of x for each fixed y.



10.4. ITERATED INTEGRALS 323

This leads to the following consequence of Fubini’s Theorem.

Theorem 10.4.5. Let S and T be aligned rectangles in Rp and Rq, respectively,
and let f(x, y) be an integrable function on S × T which is also integrable as a
function of x for each fixed y and integrable as a function of y for each fixed x.
Then

∫

S f(x, y)dV (x) is an integrable function of y on T and
∫

T f(x, y)dV (y)
is an integrable function of x on S, and

∫

S×T
f(x, y)dV (x, y)

=

∫

S

∫

T

f(x, y)dV (y)dV (x) =

∫

T

∫

S

f(x, y)dV (x)dV (y).

(10.4.4)

Note that the integrability conditions in this theorem will all be satisfied if
f is a continuous function on the rectangle S × T .

The ability to reverse the order of integration in an iterated integral is a real
advantage, as the following example shows.

Example 10.4.6. Find

∫ 1

0

∫

√
π

0

y3 sin(xy2) dydx.

Solution: Computing the inside integral looks difficult. However, if we

reverse the order of integration, the inside integral is just
∫ 1

0
y3 sin(xy2)dx =

y − y cos(y2) and the iterated integral becomes

∫

√
π

0

∫ 1

0

y3 sin(xy2) dxdy =

∫

√
π

0

(y − y cos(y2))dy = π/2.

Iterated Integrals over Non-rectangular Regions

A great advantage of integrals in one real variable is that we can often use the
Fundamental Theorem of Calculus to calculate them. In order to take advantage
of this, we would like to interpret an integral over a Jordan region A in Rd as the
result of repeated applications of integration in one variable. Fubini’s Theorem
is the tool which allows us to do this.

The issue is complicated by the fact that we wish to integrate over a Jordan
region, rather than over a rectangle. To do this, we replace the function f to
be integrated with fA, where f is an integrable function on A (then fA is an
integrable function on any aligned rectangle containing A). We then attempt to
apply Fubini’s Theorem repeatedly to express the integral of fA over a rectangle
containingA as the result of a succession of single variable integrations. In order
for this to work, A must have a special form.

We begin with a result which is a direct application of Fubini’s Theorem.
It will form the basis for the induction argument in the proof of our main
theorem. It concerns the case of an integral over a compact Jordan region
A ⊂ Rk+1, which is constructed as follows: Suppose there is a compact Jordan
region B ⊂ Rk such that A has the form

A = {(x, t) : x ∈ B, and ψ(x) ≤ t ≤ φ(x)},
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where ψ and φ are continuous functions on B. In this case, fA(x, t) = 0 if x /∈ B
or if t /∈ [ψ(x), φ(x)]. Then (10.4.3) implies

Theorem 10.4.7. With A, B, ψ, and φ as above and f an integrable function
on A,

∫

A

f(x, t) dV (x, t) =

∫

B

∫ φ(x)

ψ(x)

f(x, t) dtdV (x).

provided f(x, t) is an integrable function of t on [ψ(x), φ(x)] for each x ∈ B.

If we write

g(x) =

∫ φ(x)

ψ(x)

f(x, t) dt,

then the above theorem reduces the problem of computing
∫

A f(x, t)dV (x, t) to
the problem of computing the lower dimensional integral

∫

B
g(x)dV (x). This is

the basis for the induction argument in the proof of Theorem 10.4.9. Before we
state and prove that theorem, we need the following technical result.

Theorem 10.4.8. Let A, B, ψ, φ, and f be as in the previous theorem. If f
is continuous on A, then the function

g(x) =

∫ φ(x)

ψ(x)

f(x, t) dt

is continuous on B.

Proof. Since A is compact and f continuous on A, |f | has a maximum on A.
Let M1 be a positive number greater than or equal to this maximum.

Since ψ and φ are continuous on B and ψ(x) ≤ φ(x), the non-negative
function φ − ψ is also continuous and, hence, has a maximum. Let M2 be a
positive number greater than or equal to this maximum.

Let x0 be a point of B. We will prove that g is continuous at x0. We need
to consider two cases: (1) φ(x0) − ψ(x0) = 0, and (2) φ(x0) − ψ(x0) > 0.

In case (1), g(x0) = 0. Furthermore, the continuity of φ − ψ implies that,
given ǫ > 0, there is a δ > 0 such that

φ(x)− ψ(x) <
ǫ

M1
whenever ||x− x0|| < δ.

Then,

|g(x) − g(x0)| = |g(x)| =

∣

∣

∣

∣

∣

∫ φ(x)

ψ(x)

f(x, t) dt

∣

∣

∣

∣

∣

≤M1(φ(x)− ψ(x)) < ǫ.

This completes the proof in case (1).
In case (2), we have φ(x0) − ψ(x0) > 0. Given ǫ > 0, we may choose a

positive number ρ such that

ρ <
1

2
(φ(x0) − ψ(x0)) and ρ <

ǫ

12M1
.
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We then set a = ψ(x0) + ρ and b = φ(x0)− ρ. Since ψ and φ are continuous at
x0, there is a δ > 0 such that

|ψ(x)− ψ(x0)| < ρ and |φ(x)− φ(x0)| < ρ,

whenever x ∈ B and ||x − x0|| < δ. For each such x, we have

ψ(x) < a < b < φ(x).

Also, each of the intervals [ψ(x), a] and [b, φ(x)] has length less than 2ρ, and so
the sum of their lengths is less than 4ρ.

Since f is continuous on the compact set A, it is uniformly continuous on A.
Hence, we may choose δ small enough that it is also true that

|f(x1, t1) − f(x2, t2)| <
ǫ

3M2
,

whenever (x1, t1) and (x2, t2) are in A and ||(x1, t1)−(x2, t2)|| < δ. In particular,

|f(x, t) − f(x0, t)| <
ǫ

3M2
whenever ||x− x0|| < δ,

provided that (x, t) and (x0, t) are both in A. Then,

|g(x)− g(x0)| =

∣

∣

∣

∣

∣

∫ φ(x)

ψ(x)

f(x, t) dt−
∫ φ(x0)

ψ(x0)

f(x0, t) dt

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫ φ(x)

ψ(x)

f(x, t) dt−
∫ b

a

f(x, t) dt

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ b

a

(f(x, t)− f(x0, t)) dt

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ b

a

f(x0, t) dt−
∫ φ(x0)

ψ(x0)

f(x0, t) dt

∣

∣

∣

∣

∣

≤ 4ρM1 +
ǫ

3M2
M2 + 4ρM1 = ǫ.

This completes the proof in case (2).

We can now state and prove the form of Fubini’s Theorem which repre-
sents an integral over a Jordan region as the result of repeated single variable
integrations.

Theorem 10.4.9. Suppose f is an integrable function on the closed Jordan
region A. Suppose also that A is the set of x = (x1, · · · , xd) ∈ Rd which satisfy
the inequalities

ψ1 ≤x1 ≤ φ1,

ψ2(x1) ≤x2 ≤ φ2(x1)

...

ψd(x1, · · · , xd−1) ≤xd ≤ φd(x1, · · · , xd−1),
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where ψ1 and φ1 are numbers and ψj(x1, · · · , xj−1) and φj(x1, · · · , xj−1) are
continuous functions on the set of (x1, · · · , xj−1) which satisfy the inequalities
in this list that precede the jth one. Then

∫

A

f(x)dV (x)

=

∫ φ1

ψ1

∫ φ2(x1)

ψ2(x1)

· · ·
∫ φd(x1,··· ,xd−1)

ψd(x1,··· ,xd−1)

f(x1, · · · xd) dxd · · · dx1.

(10.4.5)

provided that each of the successive iterated integrals exists. This condition is
satisfied if f is continuous on A.

Proof. We prove this by induction on d. If d = 1, then there is nothing to prove,
since the two sides of (10.4.5) are the same integral over an interval in this case.

Now suppose the theorem is true in dimension d − 1. To complete the
proof we need to prove that it is then true in dimension d. Let A be a Jordan
region defined by d inequalities as in the hypothesis of the theorem and let f
be an integrable function on A. Let B be the set defined by the first d − 1 of
these inequalities. Then A, B, and f satisfy the conditions of Theorem 10.4.7.
Hence, if x = (x̃, xd) where x̃ = (x1, · · · , xd−1), and f(x̃, xd) is an integrable
function of xd on [ψd(x̃), φd(x̃)] for each x̃ ∈ B, then this theorem implies that

g(x̃) =
∫ φ(x̃)

ψ(x̃)
f(x̃, xd) dxd is integrable on B and

∫

A

f(x) dV (x) =

∫

B

∫ ψd(x̃)

φd(x̃)

f(x̃, xd) dxddV (x̃). (10.4.6)

Now the set B and the function g satisfy the conditions of our theorem in
dimension d− 1. Since we are assuming the theorem is true in dimension d− 1,
we have

∫

B

g(x̃)dV (x̃) =

∫ φ1

ψ1

∫ φ2(x1)

ψ2(x1)

· · ·
∫ φd(x1,··· ,xd−2)

ψd(x1,··· ,xd−2)

g(x1, · · · xd−1) dxd−1 · · · dx1.

If we combine this with (10.4.6), the result is (10.4.5).
It remains to prove that each of the successive iterated integrals exists if

f is continuous on A. However, this also follows from induction on d. It is
clearly true if d = 1 since a continuous function on an interval is integrable.
Assuming it is true in dimension d − 1, then if f is continuous on an A of the
form describe in the theorem in dimension d, we conclude that f is continuous,
hence, integrable in its last variable and the function g, defined by integrating in
this last variable is continuous on the corresponding set B by Theorem 10.4.8.
Since we are assuming the result to be true in dimension d − 1, we conclude
that each of the successive iterated integrals of g exists. Hence, the same thing
is true of f .

Example 10.4.10. Find
∫

A
xyz dV (x, y, z) if A is the Jordan region in R3

defined by the inequalities 0 ≤ x ≤ 1, 0 ≤ y ≤ x, 0 ≤ z ≤ 1 − x2.
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Solution: According to the previous theorem,

∫

A

xyz dV (x, y, z) =

∫ 1

0

∫ x

0

∫ 1−x2

0

xyz dzdydx

=

∫ 1

0

∫ x

0

1

2
xy(1− x2)2 dydx

=

∫ 1

0

1

4
x3(1− x2)2 dx =

1

4

∫ 1

0

(x3 − 2x5 + x7) dx

=
1

4

(

1

4
− 1

3
+

1

8

)

=
1

96
.

Exercise Set 10.4

1. Find the integral of the function g of Exercise 10.3.14 over the square
[−π, π] × [−π, π].

2. Evaluate

∫ 1

0

∫ 1

0

y3x

(1 + y2x2)2
dydx.

3. Find the area of the triangle ∆ with vertices at (0, 0), (a, 0), (a, b) by cal-
culating

∫

∆
1 dV (x, y) (use Theorem 10.4.9).

4. Calculate the area of a disc of radius one by representing it as the integral
of 1 over the disc, expressing this integral as an iterated integral, and then
evaluating this iterated integral.

5. Interpret the iterated integral

∫ 1

0

∫ x

x2

(x2+y2) dydx as an integral of x2+y2

over a certain Jordan region in R2. This, in turn, is equal to a certain iter-
ated integral, first with respect to x and then with respect to y. Describe
this integral and then evaluate it.

6. Write down an integral in R3 which represents the volume of a sphere of
radius 1. Then express this as a triple iterated integral. You do not need
to evaluate this integral.

7. Find
∫

A
xdV (x, y, z) if A is defined by the inequalities

0 ≤ x ≤ 1, 0 ≤ y ≤ x2, 0 ≤ z ≤ x+ y.

8. Show that if f and g are continuous real valued functions on a Jordan
region B ⊂ Rd and g(x) ≤ f(x) for all x ∈ B, then the Jordan region
A = {(x, t) ∈ Rd+1 : x ∈ B and g(x) ≤ t ≤ f(x)} of Exercise 10.2.12 has
volume

V (A) =

∫

B

(f(x)− g(x)) dV (x).
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9. Prove that if A is any bounded subset of Rp and B is a subset of Rq of
volume 0, then A ×B is a subset of Rp+q of volume 0. Use this to prove
that the Cartesian productA×B of two Jordan regions is a Jordan region.

10. Use Fubini’s Theorem and the previous exercise to prove that if A ⊂ Rp

and B ⊂ Rq are Jordan regions, then V (A×B) = V (A)V (B).

11. Suppose A is a compact Jordan region in Rp, B is a compact subset of
Rq, and f is a continuous function on B ×A. Prove that

∫

A
f(x, y)dV (y)

is a continuous function of x on B. Hint: this is similar to but not exactly
the same as Theorem 10.4.8.

12. Prove that if f(t, x) is a continuous function on I ×A, where I is an open

interval in R and A is a compact Jordan region in Rd, and if
∂f

∂t
(t, x)

exists and is continuous on I ×A, then

d

dt

∫

A

f(t, x) dV (x) =

∫

A

∂f

∂t
(t, x) dV (x).

Hint: fix t and consider the function

g(h, x) =











f(t+ h, x) − f(t, x)

h
if h 6= 0

∂f

∂t
(t, x) if h = 0.

Show that this is a continuous function of (h, x) on J×A for some interval
J containing 0 (the Mean Value Theorem is useful in proving this). Then
apply the preceding exercise.

10.5 The Change of Variables Formula

Recall the substitution formula (Theorem 5.3.6) from Chapter 5:

∫ b

a

f(g(t))g′(t) dt =

∫ g(b)

g(a)

f(u) du.

Here, if I = [a, b] and J = g(I), then f is assumed continuous on J and g is
assumed differentiable with an integrable derivative on I.

This can be thought of as a change of variables formula, where u = g(t) is the
transformation from the variable t to the variable u, and the integral formula
relates the integral of f as a function of u to an integral involving the composite
function f ◦ g as a function of t. The formula requires an extra factor g′(t) in
the integrand of the latter integral. This is related to how the transformation g
changes lengths.

In this section we will derive a similar formula for integrals in several vari-
ables. In this case, the extra factor that is needed measures how the transfor-
mation changes volume.
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Factorization of Matrices

We begin by studying how a linear transformation effects the volume of a Jordan
region. The simple way to do this is to factor a given linear transformation as
a product of elementary linear transformations whose effect on volume is easy
to determine. Such a factorization is given by the process of Gauss elimination
(row reduction). The elementary linear transformations in this factorization
correspond to the elementary matrices as described below.

The elementary d× d matrices are of three types:

1. The interchange matrices Eij . For i 6= j, the interchange matrix Eij is
obtained from the identity matrix by interchanging its ith and jth rows.

2. The shear matrices Sij. For i 6= j the shear matrix Sij is obtained from
the identity matrix by adding its jth row to its ith row – that is, by adding
a 1 to the ij position in the identity matrix.

3. The scale matrices Ti(a). For i = 1, · · · , d and a 6= 0, Ti(a) is obtained
from the identity matrix by multiplying its ith row by the scalar a. – that
is, it is the matrix that is a in the ith position on the main diagonal, 1 in
the other positions on the main diagonal and 0 in all other positions.

Note that if A is any d × d matrix, then EijA is the result of interchanging
the ith and jth rows in A and leaving the other rows unchanged, SijA is the
result of adding the jth row of A to its ith row and leaving all but the ith row
unchanged, while Ti(a)A is the result of multiplying the ith row of A by a and
leaving the other rows unchanged.

The process of Gauss elimination is that of successively multiplying a matrix
A on the left by elementary matrices until what is left is a matrix of reduced row
echelon form. In the case of a non-singular matrix A its reduced row echelon
form is just the identity matrix. Thus, for each non-singular d×dmatrix A there
is a matrix B which is a product of elementary matrices and satisfies BA = I.
Then

A = B−1.

Note that the inverse of an elementary matrix is an elementary matrix or a
product of elementary matrices (Exercise 10.5.1) and so B−1 is also a product
of elementary matrices. Thus, we have proved

Theorem 10.5.1. Each non-singular d × d matrix A is a product of matrices
of the form Eij , Sij , Ti(a).

The determinants of the elementary matrices are easily calculated.

Theorem 10.5.2. For each i and each j 6= i we have detEij = 1, detSij = 1,
and detTi(a) = a.

Since the determinant is multiplicative (detAB = detA detB for all pairs
A, B of d× d matrices), it follows that the determinant of a given non-singular
matrix A is just the product of the scale factors a that appear in its factorization
as a product of elementary matrices.
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Linear Transformations and Volume

We wish to understand how the volume of a Jordan region is effected by a linear
transformation. Some linear transformations clearly have no effect on volume.
A transformation that takes each aligned rectangle to an aligned rectangle of
the same volume has no effect on the volume of a Jordan region. The elemen-
tary interchanges Eij have this property. The shear matrices Sij also preserve
volumes of Jordan regions, but the proof of this fact is a little more complicated.

Theorem 10.5.3. A shear transformation Sij takes a Jordan region to a Jordan
region of the same volume.

Proof. The shear matrix S12 on R2 is the matrix

(

1 1
0 1

)

.

It takes the aligned rectangle [a, b] × [c, d], which has vertices (a, c), (b, c), (b, d),
and (a, d) to the parallelogram with vertices (a + c, c), (b + c, c), b + d, d), and
(a+ d, d). This parallelogram has base of length (b+ c) − (a+ c) = b − a and
height d − c. Thus, its area is (b − a)(d − c) (Exercise 10.2.11), which is the
same as the volume of the original rectangle.

In general, an aligned rectangle R in Rd for d > 2 has the form S×T where
S is an aligned rectangle in R2 and T is an aligned rectangle in Rd−2. The shear
transformation S12 on Rd sends this to P × T where, by the above discussion,
P is a parallelogram with the same area as S. It follows from this and Exercise
10.4.10 that S12 sends R to a Jordan region with the same volume as R. Since,
for any i 6= j, Sij is just S12 composed with some elementary interchanges, it
follows that it also takes an aligned rectangle to a Jordan region with the same
volume.

Let A be a Jordan region, R an aligned rectangle containing A, and P a
partition of R. Let R1, R2, · · · , Rn be a list of the subrectangles of R determined
by the partition P . Set

E =
⋃

{Rk : Rk ⊂ A}

F =
⋃

{Rk : Rk ∩A 6= ∅}.

Then U(χA, P ) = V (F ) and L(χA, P ) = V (E). Since A is a Jordan region,
given ǫ > 0, there is a partition P such that V (F ) − V (E) < ǫ. Of course,
regardless of how the partition is chosen

V (E) ≤ V (A) ≤ V (F ). (10.5.1)

Note SijF is the union of those SijRk such that Rk ∩ A 6= ∅, and any two
of these sets meet (if at all) in a set of volume 0. Since V (SijRk) = V (Rk), we
conclude that

V (SijF ) = V (F ).
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A similar argument shows that

V (SijE) = V (E).

Hence,

V (E) = V (SijE) ≤ V (SijA) ≤ V (SijA) ≤ V (SijF ) = V (F ). (10.5.2)

Since, V (F )− V (E) < ǫ, we conclude that

V (SijA)− V (SijA) < ǫ.

Since ǫ was arbitrary, this difference is actually 0. This proves that SijA is a
Jordan region. That it has the same volume as A follows from (10.5.1) and
(10.5.2).

Theorem 10.5.4. If L : Rd → Rd is a linear transformation and E is a Jordan
region, then L(E) is also a Jordan region and V (L(E)) = |detL|V (E), where
detL denotes the determinant of the matrix corresponding to L.

Proof. We first note that if this theorem is true for linear transformationsL1 and
L2, then it is also true for the composition L1◦L2, by the following computation:

V (L1 ◦ L2(E)) = |detL1|V (L2(E))

= |detL1||detL2|V (E) = |detL1L2|V (E),

since determinant and absolute value are both multiplicative functions.
The elementary interchanges Eij and shear transformations Sij do not effect

volume and they are matrices of determinant ±1. Thus, the theorem is true for
these linear transformations.

The scale matrix Ti(a) takes each aligned rectangle to an aligned rectangle
with edges of the same length as the original except for the ith edge, which has
its length multiplied by |a|. Hence, each aligned rectangle is sent to an aligned
rectangle of volume |a| times the volume of the original. It follows that Ti(a)
takes a Jordan region to another Jordan region with volume |a| times the volume
of the original. Since a = detTi(a), the theorem is true for the transformations
Ti(a).

Since every non-singular d × d matrix is a product of interchanges, shear
transformations, and scale transformations, the theorem is true for all non-
singular linear functions from Rd to Rd.

If L is singular, then its determinant is 0. Thus, to finish the proof, we need
to show that if L is a singular linear transformation, then L(E) = 0 for every
Jordan region E. We leave this as an exercise.

Example 10.5.5. If L : R2 → R2 is the linear transformation with matrix

(

1 2
3 4

)



332 CHAPTER 10. INTEGRATION IN SEVERAL VARIABLES

what is the area of the image of the unit disc D1(0, 0) under the transformation
L?

Solution: The unit disc has area π. By the previous theorem, its image
under L has area |detL|π = 2π.

Example 10.5.6. What is the area of an ellipse, with two vertices at distance
3 from (0, 0) along the line y = x and two vertices at distance 2 from (0, 0) along
the line y = −x?

Solution: This ellipse may be obtained from the unit disc by first applying
the transformation with matrix

(

3 0
0 2

)

and then applying the linear transformation which is rotation through the angle
π/4. The first transformation has determinant 6, while the second has determi-
nant 1. Hence the area of the indicated ellipse is 6π.

Smooth Image of a Rectangle

We will prove that, under appropriate conditions, the image of an aligned rect-
angle under a smooth map is a Jordan region. We first prove the the image of
a degenerate rectangle under such a map is a set of volume 0.

Theorem 10.5.7. Let φ be a one-to-one smooth transformation from an open
set U ⊂ Rp to Rp and suppose dφ(x) is non-singular at each point of U . If R
is a degenerate aligned rectangle contained in U , then φ(R) is a set of volume 0
in Rp.

Proof. Since R is degenerate, it is a rectangle of dimension at most p − 1. We
may as well assume that it is contained in Rp−1 = {x = (x1, · · · , xp) : xp = 0}.
Let a be a point of R. We will show first that there is a neighborhood of b = φ(a)
whose intersection with φ(R) has volume 0. If we can do this for each a ∈ R,
then, since φ(R) is compact, we may cover φ(R) with finitely many open sets
whose intersections with φ(R) have volume 0. It follows from this that φ(R)
itself has volume 0.

Since translations do not effect volume, we may as well assume that a and
b = φ(a) are both equal to 0. Also, since applying a non-singular linear trans-
formation does not effect whether or not a set has volume 0, we may replace φ
by (dφ(0))−1φ. In other words, we may as well assume that dφ(0) = I – the
identity transformation.

If φ = (φ1, · · · , φp), and points of Rp are denoted (x, y) with x ∈ Rp−1 and
y ∈ R, then we define g : U ∩ Rp−1 → Rp−1 by

g(x) = (φ1(x, 0), · · · , φp−1(x, 0)).

Then dg(0) is the upper left (p− 1)× (p− 1) subdeterminant of dφ(0) and so it
too is the identity transformation. The Inverse Function Theorem then implies
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that there are neighborhoods V and W of 0 in Rp−1 such that g maps V onto
W and has a smooth inverse g−1 : W → V . Then

φ(g−1(x), 0) = (x, φp ◦ g−1(x))

for x ∈ W . That is, the part of φ(R) consisting of points with first coordinate
in W is the graph of the smooth function φp ◦ g−1. It therefore has volume 0
by Example 10.2.11. This completes the proof.

Theorem 10.5.8. Let φ : U → Rp satisfy the conditions of the previous theo-
rem. If R is a rectangle in U , then φ(R) is a Jordan region.

Proof. If R is a rectangle in U , then its boundary is a union of finitely many
rectangles of dimension p−1 – that is, it is the union of finitely many degenerate
rectangles. The image of each of these under φ has volume 0 by the previous
theorem. Hence, φ(∂R) has volume zero. The proof will be complete if we can
show that ∂φ(R) = φ(∂R).

The image of φ is an open set V by Exercise 9.6.8, and φ : U → V is one-to-
one and onto. Thus, φ has an inverse transformation φ−1 : V → U which is a
smooth transformation, by the Inverse Function Theorem. It is, in particular,
continuous. Since both φ and φ−1 are continuous, a subset A ⊂ U is open if
and only if its image φ(A) ⊂ V is open. It follows that φ takes the interior of
R to the interior of φ(R) and, hence, the boundary of R to the boundary of
φ(R).

Integral over the Smooth Image of a Rectangle

Our next objective is to prove the change of variables formula for integration
over a rectangle. We will need the following lemma, which says that the relative
error in approximating the volume of the image of a rectangle under a smooth
map by the volume of its image under the differential of the map can be made
arbitrarily small. In the lemma, it is crucial that we don’t allow rectangles R
to become too skinny. By this, we mean that we don’t want the ratio of the
length of the shortest edge of R to the diameter of R (greatest distance between
two points of R) to be too small. We will call this ratio the aspect ratio of the
rectangle.

Lemma 10.5.9. Let λ and K be positive constants. Let U be an open subset
of Rp and φ : U → Rp a smooth one-to -one transformation. Suppose dφ(a) is
non-singular and |detdφ(a)| ≤ K for all a ∈ U . Then, given ǫ > 0, there is a
δ > 0 such that if R is a rectangle in U with diameter less than δ and aspect
ratio at least λ, then |V (φ(R))− V (dφ(a)R)| < ǫV (R), where a is the center of
the rectangle R.

Proof. Let R be a rectangle in U with diameter less than a positive number δ
to be detemined below and aspect ratio at least λ. Note that φ(R) is a Jordan
region, by the previous theorem and, hence, it has volume.
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Since translation does not effect volume, we may assume that the center of
the rectangle R is 0 and φ(0) = 0. By hypothesis

|detdφ(0)| ≤ K. (10.5.3)

If 0 < ρ < 1, then (1 + ρ)R is the rectangle created from R by expanding
each edge in a symmetric way about its center by the factor (1 + ρ). Similarly,
(1− ρ)R is the rectangle created from R by shrinking each edge in a symmetric
way about its center by the factor 1 − ρ. Also,

(1 − ρ)R ⊂ R ⊂ (1 + ρ)R,

and, since dφ(0) is linear,

(1 − ρ)dφ(0)R ⊂ dφ(0)R ⊂ (1 + ρ)dφ(0)R.

Comparing volumes and using (10.5.3) yields,

V ((1 + ρ)dφ(0)R)− V ((1− ρ)dφ(0)R)

= ((1 + ρ)d − (1 − ρ)d)V (dφ(0)R)

= ((1 + ρ)d − (1 − ρ)d)|detdφ(0)|V (R)

≤ 2ρd(1 + ρ)d−1|det dφ(0)|V (R)

≤ 2dρdKV (R).

(10.5.4)

If we choose
ρ =

ǫ

2ddK
,

then it follows from (10.5.4) that

V ((1 + ρ)dφ(0)R)− V ((1− ρ)dφ(0)R) ≤ ǫV (R).

The proof will be complete if we can show that, for small enough δ, any rectangle
R containing 0, of diameter less than δ, satisfies

(1− ρ)dφ(0)R ⊂ φ(R) ⊂ (1 + ρ)dφ(0)R, (10.5.5)

since these containments are also satisfied with φ(R) replaced by dφ(0)R.
If x is any non-zero vector in Rd, then

||x|| = ||(dφ(0))−1dφ(0)x|| ≤ ||(dφ(0))−1||||dφ(0)x||.

Thus, ||dφ(0)x|| ≥ ||(dφ(0))−1||−1||x||. In other words, if L is any line segment
in Rd, then the length of the line segment dφ(0)L is at least the factor

A = ||(dφ(0))−1||−1

times the length of L. It follows that the distance from dφ(0)R to the com-
plement of (1 + ρ)dφ(0)R is at least Aρr, where r is one half the length of the
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shortest edge of R. By the definition of the differential dφ(0) , we may choose
δ such that ||x|| < δ and x ∈ R implies

||φ(x) − dφ(0)x|| < Aρλ||x|| < Aρr.

This implies that φ(x) ∈ (1 + ρ)dφ(0)R. A similar argument shows that, with,
δ chosen as above, x ∈ R implies that (1 − ρ)dφ(0)x ∈ φ(R). Hence, (10.5.5)
holds if R has diameter less than δ. This completes the proof.

Theorem 10.5.10. Let U be an open subset of Rp and φ : U → Rp a smooth
one-to -one transformation with dφ non-singular at each point of U . Let R be
an aligned rectangle in U and f a continuous function on φ(R). Then

∫

φ(R)

f(u) dV (u) =

∫

R

f(φ(x)) |detdφ(x)|dV (x).

Proof. For each subrectangle S of R we set

∆(S) =

∫

φ(S)

f(u) dV (u)−
∫

S

f(φ(x)) |detdφ(x)|dV (x),

Q(S) =
∆(S)

V (S)
.

To prove the theorem, we need to show that ∆(R) = 0. This is equivalent to
showing that Q(R) = 0.

Let h be the diameter of R. We will choose inductively a downwardly nested
sequence {Ri}∞i=0 of subrectangles of R in such a way that Ri has diameter h/2i

and |Q(Ri)| ≥ |Q(R)|. We begin by setting R0 = R.
Suppose R0, · · · , Rm have been chosen in such a way that the conditions of

the previous paragraph are met. If Rm = [a1, b1] × · · · × [ap, bp], we partition
Rm by partitioning each interval [ak, bk] into two subintervals of equal length.
There are 2p subrectangles of Rm for this partition and each of them has di-
ameter h/2m+1 since Rm has diameter h/2m. If {S1, · · · , Sn} is a list of these
subrectangles of Rm, then Rm = ∪jSj and

∆(Rm) =
n
∑

j=1

∆(Sj) =
n
∑

j=1

Q(Sj)V (Sj).

For at least one of the rectangles Sj , we must have |Q(Sj)| ≥ |Q(Rm)|, for if
|Q(Sj)| < |Q(Rm)| for all j, then

∆(Rm) =
n
∑

j=1

Q(Sj)V (Sj) <
n
∑

j=1

Q(Rm)V (Sj) = Q(Rm)V (Rm) = ∆(Rm),

which is impossible. Thus, for some j, we have |Q(Sj)| ≥ |Q(Rm)|. We choose
Rm+1 to be an Sj which satisfies this inequality. This proves by induction that
a sequence {Ri} with the required properties can be chosen.
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Since the sequence {Ri} is a downwardly nested sequence of compact sets,
it has a non-empty intersection. Let a be a point in this intersection.

Since φ is smooth, we may choose a neighborhood V of a in which |detdφ(x)|
is bounded above by a positive constant K . If λ is the aspect ratio of R, then
each of the rectangles Rj has the same aspect ratio. By the previous lemma,
there is a δ > 0 such that each rectangle R in V with aspect ratio at least λ
and with diameter less than δ satisfies

|V (φ(R))− V (dφ(b)R)|< ǫV (R),

where b is the center of the rectangle R. These conditions will be met for all
Rj with Rj ⊂ Bδ(a). We will denote the center of Rj by aj . If we also choose
δ small enough that

|f(φ(x))− f(φ(y))| < ǫ, and |f(φ(x))|detdφ(x)| − f(φ(y))|detdφ(y)|| < ǫ

for all x, y ∈ Bδ(a), then

|∆(Rj)| =

∣

∣

∣

∣

∣

∫

φ(Rj)

f(u) dV (u)−
∫

Rj

f(φ(x)) |detdφ(x)|dV (x)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫

φ(Rj)

f(φ(aj)) dV (u)−
∫

Rj

f(φ(aj)) |detdφ(aj)|dV (x)

∣

∣

∣

∣

∣

+

∫

φ(Rj)

|f(u)− f(φ(aj))|dV (u)

+

∫

Rj

|f(φ(x)) |detdφ(x)| − f(φ(aj)) |detdφ(aj)||dV (x)|

≤ |f(φ(aj))| |V (φ(Rj))− V (dφ(aj)Rj)| + ǫV (φ(Rj)) + ǫV (Rj).

Since |V (φ(Rj)) − V (dφ(aj)Rj)| < ǫV (Rj) and V (dφ(Rj)) = |detφ(a)|V (Rj),
it follows that

|∆(Rj)| ≤ ǫV (Rj)(|f(φ(aj))| + |det dφ(aj)| + ǫ+ 1).

Since ǫ was arbitrary and φ(aj) → φ(a) and dφ(aj) → dφ(a) as j → ∞, this
implies that Q(Rj) = ∆(Rj)/V (Rj) can be made smaller than any positive
number by choosing j large enough. Since Q(R) ≤ Q(Rj) for all j, this implies
that Q(R) = 0, as required.

This has the following corollary, the proof of which is left to the exercises.

Corollary 10.5.11. Let U be an open subset of Rd and φ : U → Rd a smooth
one-to-one transformation with non-singular differential on U . If R is an aligned
rectangle in U , then

V (φ(R)) =

∫

R

|det dφ(x)|dV (x).

Furthermore, if M = supR |det dφ| and m = infR |det dφ|, then

mV (R) ≤ V (φ(R)) ≤MV (R).
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Integral over the Smooth Image of a Jordan Region

We can now prove the general change of variables formula. The proof uses the
following lemma, which follows easily from the previous corollary. The proof is
left to the exercises.

Lemma 10.5.12. If φ : U → Rd is a smooth one-to-one function with dφ non-
singular on U and if K ⊂ U is a compact set of volume 0, then φ(K) is also a
set of volume 0.

Theorem 10.5.13. Let A be a compact Jordan region contained in an open set
U ⊂ Rd. Let φ : U → Rd be a smooth one-to-one function with a differential
which is non-singular on A, and let f be a function which is bounded on φ(A)
and continuous except on a subset E of φ(A) of volume 0. Then, φ(A) is a
Jordan region, f is integrable on φ(A), f ◦ φ is integrable on A and

∫

φ(A)

f(u) dV (u) =

∫

A

f(φ(x))|detdφ(x)|dV (x).

Proof. Let V = φ(U). By the Inverse Function Theorem, V is an open set and
φ−1 : V → U is a smooth function with non-singular differential.

The boundary of A is a set of volume 0 since A is a Jordan region. Since
φ and φ−1 are both continuous, ∂φ(A) = φ(∂A). It follows from the previous
lemma that ∂φ(A) is also a set of volume 0 and, hence, that φ(A) is a Jordan
region. Hence, we may extend f to be 0 on the complement of φ(A) in V and
it will still be a function which is continuous except on a set of volume 0. It
follows from Theorem 10.3.5 that f is integrable on φ(A).

Let K be the closure of ∂φ(A) ∪ E. Then f , extended to be 0 on the
complement of φ(A), is continuous on the complement of K. The set K has
volume 0. Hence, by the previous lemma, φ−1(K) is a set of volume 0. Since
f ◦ φ is continuous on U except at points of φ−1(K), it follows that f ◦ φ is
integrable on A.

Let ǫ be any positive number. Let R be a rectangle containing A and P a
partition of R. We choose P so that R1, R2, · · · , Rn is a list of those rectangles
for this partition which are contained in U . If the partition is fine enough, then
it will be true that A ⊂ ∪jRj . Also, the partition may be chosen fine enough
that, if S is the set of j for which Rj ∩K 6= ∅, then

∑

j∈S
V (Rj) < ǫ.

If K ∩ Rj = ∅, then either A ∩ Rj = ∅ or Rj is a rectangle contained in the
interior of A and f is continuous on φ(Rj). If the latter is true, then

∫

φ(Rj)

f(u) dV (u) =

∫

Rj

f(φ(x))|detdφ(x)|dV (x).



338 CHAPTER 10. INTEGRATION IN SEVERAL VARIABLES

Since f is 0 on the complement of φ(A), we have
∣

∣

∣

∣

∣

∫

φ(A)

f(u) dV (u)−
∫

A

f(φ(x))|detφ(x)|dV (x)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

j

(

∫

φ(Rj)

f(u) dV (u)−
∫

Rj

f(φ(x))|detφ(x)|dV (x)

)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

j∈S

(

∫

φ(Rj)

f(u) dV (u)−
∫

Rj

f(φ(x))|detφ(x)|dV (x)

)

∣

∣

∣

∣

∣

∣

≤
∑

j∈S

(

∫

φ(Rj)

M dV (u) +

∫

Rj

MK dV (x)

)

=
∑

j∈S
(MV (φ(Rj) +MKV (Rj)) ≤ 2MKǫ.

whereM = supA |f(φ(x)))| and K = supA |det dφ(x)|. Since, ǫ is arbitrary, this
implies the equality of the theorem.

With some additional hypotheses, the above theorem can be strengthened
so as to apply to integrals over the full open sets U and φ(U) rather that just
to integrals over compact subsets. The next theorem is such a result.

Theorem 10.5.14. Let U be an open Jordan region in Rd and let φ : A→ Rd be
a one to one smooth fuction on U with image φ(U) which is also a Jordan region.
Suppose dφ is non-singular on U and f is bounded on φ(U) and continuous
except on a subset of volume 0. Then f is integrable on φ(U). If, in addition,
f ◦ φ|detφ| is bounded on U , then it too is integrable on U and

∫

φ(U)

f(u) dV (u) =

∫

U

f(φ(x))|detdφ(x)|dV (x).

Proof. Since dφ is non-singular on U , Theorem 9.6.5 implies that φ : U → Rd

is a one-to-one open map onto an open set V .
Since f is bounded on φ(U) and is continuous except on a set of volume 0,

it is integrable on φ(U). The function g(x) = f(φ(x)) |detdφ(x)| is continuous
and bounded and, hence, is an integrable function on U .

Let Kn be a sequence of compact Jordan subsets of U such that ∪nK◦
n = U .

Such a sequence exists by Exercise 10.3.11. Then, by Exercise 10.3.10,
∫

U

g(x) dV (x) = lim
n

∫

Kn

g(x) dV (x). (10.5.6)

Also, since {φ(Kn)} is a sequence of compact subsets of V = φ(U) with the
union of the interiors of the sets in the sequence equal to V , we conclude

∫

φ(U)

f(u) dV (u) = lim
n

∫

φ(Kn)

f(u) dV (u). (10.5.7)
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The previous theorem implies that
∫

φ(Kn)

f(u) dV (u) =

∫

Kn

g(x) dV (x),

for each n. This, together with (10.5.6) and (10.5.7), completes the proof.

The change of variables theorem has the following corollary, the proof of
which is left to the exercises.

Corollary 10.5.15. Let U be an open Jordan region in Rd and φ : U → Rd a
function satisfying the conditions of the previous theorem. Then

V (φ(U)) =

∫

U

|det dφ(x)|dV (x).

Note that, in the change of variables formulas in the above theorem and its
corollary, the sets U and φ(U) may be replaced by their closures, even though
the transformation φ may not be defined on the closure of U . This is due to the
fact that the boundaries of U and φ(U) have volume 0.

Example 10.5.16. Use the preceding corollary to find the area enclosed by
an ellipse with major and minor axes of lengths 2a and 2b without assuming
knowledge of the area of a circle.

Solution: Such an ellipse has equation x2/a2 + y2/b2 = 1. The region it
encloses is the image of the square A = {(r, θ) : 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π}, under
the transformation φ(r, θ) = (ar cos θ, br sin θ). The differential of this map is

dφ(r, θ) =

(

a cos θ −ar sin θ
b sin θ br cos θ

)

The determinant of this matrix is abr, which is non-zero except at r = 0. Thus,
the function φ is one to one and smooth with non-singular differential on the
interior of the square A. The interior of A is taken by φ to the interior of the
ellipse with the line joining (0, 0) to (1, 0) removed. This set differs from the
ellipse itself by a set of volume 0. Thus, the area we seek is, by the previous
corollary and Fubini’s Theorem,

∫ 2π

0

∫ 1

0

abr dr dθ = π ab.

Example 10.5.17. Find

∫ 1

0

∫

√
1−x2

0

cos(x2 + y2) dydx.

Solution: By Fubini’s Theorem, this integral is
∫

D

cos(x2 + y2) dV (x, y),

where D = B1(0, 0). If we change to polar coordinates using the transformation

φ(r, θ) = (r cos θ, r sin θ),
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then detdφ(r, θ) = r and D = φ(R), where R is the rectangle [0, 1] × [0, 2π].
On R, φ is smooth with non-singular differential except when r = 0, and so
Theorem 10.5.14 applies with U = R◦. Hence,

∫

φ(R)

cos(x2 + y2) dV (x, y) =

∫

R

cos(r2) rdrdθ.

Applying Fubini’s Theorem again yields

∫ 1

0

∫

√
1−x2

0

cos(x2 + y2) dydx =

∫ 2π

0

∫ 1

0

cos(r2) rdrdθ = π sin 1.

Exercise Set 10.5

1. Compute the inverse of each elementary matrix Eij , Sij , and Ti(a). Show
that each inverse is itself an elementary matrix or a product of elementary
matrices.

2. Show that if E is a Jordan region and L is a linear transformation whose
matrix is singular, then L(E) has volume 0.

3. Let u and v be two vectors in the plane and define φ : R2 → R2 by φ(s, t) =
su + tv. Let A be the parallelogram which is the image of [0, 1] × [0, 1]
under φ. If f is a continuous function on A, express

∫

A
f(x, y) dV (x, y) as

an integral over [0, 1] × [0, 1].

4. Use the result of the previous exercise to find a formula for the area of the
parallelogram determined by two vectors u and v.

5. An orthogonal transformation is a linear transformation A that preserves
inner products – that is, Au · Av = u · v for each pair of vectors u, v.
Note that a rotation is an orthogonal transformation. Prove that a d× d
orthogonal transformation preserves volume in Rd.

6. Compute

∫ a

0

∫

√
a2−x2

0

ex
2+y2 dydx.

7. Let A = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0, x2 + y2 ≤ 4, x2 − y2 ≥ 1}. Compute

∫

A

xy

x2 + y2
dV (x, y)

by making a change of variables u = x2 + y2, v = x2 − y2 for x ≥ 0, y ≥ 0.

8. Compute the volume of a sphere S of radius r by computing the integral
∫

S

1 dV (x).

Compute this integral by first converting to spherical coordinates.
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9. Compute the volume of a right circular cone with height h and radius a.
Hint: such a cone can be described in cylindrical coordinates as the set of
points

{(r, θ, z) : 0 ≤ r ≤ a

h
z, 0 ≤ θ ≤ 2π}.

Here x = r cos θ, y = r sin θ, z = z describes the transformation from
cylindrical to rectangular coordinates.

10. Show by example that the conclusion of Theorem 10.5.13 does not hold if
the function φ is not one-to-one on A.

11. Prove Corollary 10.5.11

12. Prove Lemma 10.5.12.
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Chapter 11

Vector Calculus

Previous chapters have dealt with integration over intervals on the line and over
Jordan domains in Rd. In this chapter, we study integration over curves and
surfaces in Rd. Here, the surfaces involved could be ordinary two dimensional
surfaces in R3, but they might be p-surfaces in Rd for any p ≤ d. In this study,
the objects to be integrated are no longer functions, but closely related objects
called differential forms. Differential forms, like surfaces, have a dimension.
Thus, there is a notion of a p-form for each non-negative integer p. When a
differential form is integrated over a surface, the dimensions must match. Thus,
we integrate p-forms over p-surfaces.

The culmination of this study is a series of very powerful theorems – Green’s
Theorem, Gauss’s Theorem, Stokes’s Theorem – which are really all special cases
of one very general theorem, which is also usually called Stokes’s Theorem.

11.1 1-Forms and Path Integrals

We begin with the one dimensional case: curves and integration of 1-forms over
curves.

Smooth Curves

Recall from Section 9.4 that a curve in Rd is a continuous function γ : I → Rd

which has an interval I on the line as its domain. The interval I is called the
parameter interval for the curve. We will be focusing on curves which have a
derivative γ′ on the interior of I. The derivative is defined in the usual way:

γ′(t) = lim
s→t

γ(s)− γ(t)

s− t
.

Note that if the curve γ(t) is expressed in terms of its coordinate functions,
γ(t) = (γ1(t), γ2(t), · · · , γd(t)), then γ′(t) = (γ′1(t), γ

′
2(t), · · · , γ′d(t)).

343
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Figure 11.1: A Smooth Curve in R2

Definition 11.1.1. A smooth curve γ is a curve with a bounded, continuous
derivative γ′ on the interior of its parameter interval I.

The trace of a curve γ with parameter interval I is its image γ(I) in Rd. A
curve is said to lie in the subset E of Rd if its trace is contained in E.

Example 11.1.2. Find a smooth curve which traces a straight line from u to
v in Rd. What is the derivative of this curve?

Solution: The curve γ, defined by γ(t) = u+ t(v − u), t ∈ [0, 1], begins at
u = γ(0), moves in the direction of the vector v − u as t increases, and ends at
v = γ(1). The derivative of γ is the constant vector γ′(t) = v − u.

Piecewise Smooth Curves – Paths

We will also need to consider curves which are only piecewise smooth – that
is curves which have a bounded, continuous derivative except at finitely many
points of the parameter interval I. The precise definition is as follows:

Definition 11.1.3. Let γ : I → Rd be a curve. We will say that γ is piecewise
smooth if there is a partition a = t0 < t1 < t2 < · · · < tn = b of I such that ,
for each j, the restriction of γ to the subinterval [tj−1, tj ] is a smooth curve. A
piecewise smooth curve will also be called a path.

If γ is a path as described above, then γ′ exists and is continuous and
bounded on I \ {t0, · · · , tn}.

One may think of a path as finitely many smooth curves which join together
to form a single curve which is smooth everywhere except at points where two of
the original curves join. At such points the curve may abruptly change direction.

Example 11.1.4. Find a path that traces once around the square with vertices
(0, 0), (1, 0), (1, 1), (0, 1) in the counterclockwise direction. Find γ′(t) on the
subintervals where γ is smooth.

Solution: We choose [0, 1] as the parameter interval and define a path γ as
follows:

γ(t) =















(4t, 0) 0 ≤ t ≤ 1/4
(1, 4t− 1) 1/4 ≤ t ≤ 1/2
(3− 4t, 1) 1/2 ≤ t ≤ 3/4
(0, 4 − 4t) 3/4 ≤ t ≤ 1














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Figure 11.2: A Path in R2

This is continuous on [0, 1] and smooth on each subinterval in the partition
0 < 1/4 < 1/2 < 3/4 < 1. It traces each side of the square in succession, moving
in the counterclockwise direction. On the first interval, γ′ is the constant vector
(4, 0), on the second it is (0, 4), on the third it is (−4, 0), and on the fourth it
is (0,−4).

Closed Paths

The preceding example is an example of a closed path – that is, a path γ which
begins and ends at the same point. This means that γ(a) = γ(b), where [a, b] is
the parameter interval. The following is another example of a closed path:

Example 11.1.5. Find a path which traces once around the circle of radius r
in R2, centered at u0.

Solution: The circle of radius r centered at u0 consists of all points in R2

of the form u0 + rv where ||v|| = 1. A parameterized curve which traverses this
set once in the counter-clockwise direction is given by γ(t) = u0+(r cos t, r sin t)
for 0 ≤ t ≤ 2π.

Length of a Path

Definition 11.1.6. The length of a path γ : [a, b] → Rd is the number ℓ(γ)
defined by

ℓ(γ) =

∫ b

a

||γ′(t)||dt.

Note that the integral in this definition exists because γ′(t) is bounded and
is continuous except at finitely many points on [a, b]. It follows that ||γ′(t)|| has
these same properties and is, therefore, integrable.

Example 11.1.7. Find the length of the path in R2 given by γ(t) = (2t3, 3t2)
for t ∈ [0, 1].

Solution: Since γ′(t) = (6t2, 6t) and ||γ′(t)|| =
√

36t4 + 36t2 = 6t
√
t2 + 1,

we conclude

ℓ(γ) = 6

∫ 1

0

t
√

t2 + 1 dt = 3

∫ 2

1

√
u du = 2u3/2

∣

∣

2

1
= 2(2

√
2 − 1)
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where we have made the substitution u = t2 + 1, du = 2t dt.

Differential 1-Forms

Recall from Chapter 9 that if F is a differentiable function from an open subset of
Rp to Rq, then its differential dF (x) at a point x is a linear transformation from
Rp to Rq and, as such, may be represented by a q×pmatrix (the matrix of partial
derivatives of the coordinate functions). In particular, an R-valued function f
on an open subset of Rd has differential df(x) at a point x in its domain which
is a linear function from Rd to R – represented by a 1× d matrix (such a thing
is just a d-vector, but we wish to think of it as a linear transformation from Rd

to R). A notation for df that was introduced in Section 9.4 is

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 + · · · + ∂f

∂xd
dxd.

Here, dxj may be thought of as the differential of the jth coordinate function
xj . When represented as a 1 × d matrix, dxj is 1 in the jth entry and 0 in all
other entries. This determines the linear transformation which sends a vector
of dimension d to its jth component. Similarly, df may be represented as the

1 × d matrix which is
∂f

∂xj
in the jth entry for each j.

A differential 1-form φ on a set E in Rd is just a continuous function which
assigns to each point x of E a linear function φ(x) : Rd → R. Since the dxj
form a basis for the vector space of such functions, each differential form φ may
be written in the form

φ = φ1dx1 + φ2dx2 + · · · + φddxd,

where the functions φj are continuous R-valued functions on E. For example, if
E is a subset of R2, then a 1-form on E is an expression of the form fdx+ gdy,
where f and g are continuous functions on U .

Note that the gradient df of a differentiable function is a special kind of
differential 1-form – one in which the functions φj are the partial derivatives
∂f

∂xj
of f .

Integration Along a Path

Let γ : [a, b] → Rd be a path. Since γ is a function from a subset of R to a
subset of Rd, its differential dγ is a function which assigns to a point t ∈ [a, b]
a linear function from R to Rd – that is, a d × 1 matrix. In fact this matrix is
just the vector γ′(t) regarded as a column vector. In this chapter, we will write

dγ(t) = γ′(t) dt

where dt is to be thought of as the differential of the identity function (the
function that sends t to itself) and γ′(t) is to be thought of as a d × 1 matrix.
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This formalism may seem unnecessarily complicated, but it is very useful in
the coming discussions of transformation laws for paths, differential forms, and
integrals under changes of variables.

If φ is a differential 1-form defined on a set containing the trace of γ, then
φ(γ(t)) acts on dγ(t) through matrix multiplication to produce a real number
φ(t)dγ(t). The resulting real valued function is a bounded function on [a, b]
which is continuous except at finitely many points. We may integrate this
function.

The resulting integral has a very important property – it is independent
of the parameterization of the path. We will prove this in the next section.
An integral of this type is called a line integral or path integral. The formal
definition is as follows:

Definition 11.1.8. If φ = φ1dx1 + φ2dx2 + · · · + φddxd is a continuous 1-form
defined on a set A in Rd and γ = (γ1, γ2, · · · , γd) is a path in A with parameter
interval [a, b], then the integral of φ over γ is defined to be

∫

γ

φ =

∫ b

a

φ(γ(t))dγ(t) =

∫ b

a

φ(γ(t))γ′(t) dt =

∫ b

a

d
∑

j=1

φj(γ(t))γ
′
j(t) dt.

A useful device for remembering and applying this definition is suggested by
the use of differentials in the change of variable formalism for the Riemann inte-
gral: The jth coordinate xj of a point on the curve γ and its formal differential
dxj are given by

xj = γj(t),

dxj = γ′j(t) dt.
(11.1.1)

The formula for the integral given in Definition 11.1.8 is

∫

γ

(φ1(x) dx1 + · · · + φd(x) dxd) =

∫ b

a

(φ1(γ(t))γ
′
1(t) + · · · φd(γ(t))γ′d(t)) dt.

We may think of the right side of this equation as being obtained from the left
side by making the substitutions (11.1.1).

Example 11.1.9. Find

∫

γ

(y dx+ x dy) and

∫

λ

(y dx+ x dy), if

γ(t) = (1 + 2t, 1 + 3t) for 0 ≤ t ≤ 1

λ(t) = (1 + 2t2, 1 + 3t2) for 0 ≤ t ≤ 1.

Solution: On the curve γ, we have x = 1 + 2t, dx = 2 dt, y = 1 + 3t, and
dy = 3 dt. Thus,

∫

γ

(y dx+ x dy) =

∫ 1

0

((1 + 3t)2 + (1 + 2t)3) dt =

∫ 1

0

(5 + 12t) dt = 11.
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On the curve λ, we have x = 1 + 2t2, dx = 4t dt, y = 1 + 3t2, and dy = 6t dt.
Thus,

∫

λ

(y dx+ x dy) =

∫ 1

0

((1 + 3t2)4t+ (1 + 2t2))6t) dt

∫ 1

0

(24t3 + 10t) dt = 11.

Thus, the two integrals yield the same result. Note that γ and λ are just different
parameterizations of the straight line joining (1, 1) to (3, 4).

The Fundamental Theorem of Calculus

A simple consequence of the Fundamental Theorem of Calculus in the context
of differential forms and paths is the following.

Theorem 11.1.10. Let γ be a path in Rd with parameter interval [a, b] and let
f be a differentiable function on a set containing γ(I). Then

∫

γ

df = f(γ(b))− f(γ(a)).

Proof. First assume the path γ is a smooth curve. If γ = (γ1, · · · , γd), then

∫

γ

df =

∫ b

a

df(γ(t))dγ(t) =

∫ b

a

d(f ◦ γ)(t)

=

∫ b

a

(f ◦ γ)′(t) dt = f(γ(b))− f(γ(a)),

by the chain rule and the Fundamental Theorem of Calculus.
The proof in the case where γ is not smooth is left to the exercises (Exercise

11.1.9).

Simple Paths and Smooth Simple Paths

A path γ with parameter interval I is said to be simple if it satisfies the following
two conditions:

1. if s and t are distinct points of I which are not both endpoints of I, then
γ(s) 6= γ(t);

2. γ′ not only exists, but is non-vanishing at all but finitely many points of
the interior of I.

The first condition says that γ is one-to-one, except that we allow the endpoints
of I to be sent to the same point in the case of a closed path. The second
condition says that γ : I → Rd has a well defined tangent line at all but finitely
many interior points of I. Intuitively, a simple path is one which does not cross
itself or retrace portions of itself and has a tangent line at all but finitely many
points. A simple closed path is a closed path which is simple – for example, a
circle traversed once.
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A smooth simple curve γ is a simple curve which is smooth and which has
γ′(t) 6= 0 at each interior point of I. This means that the tangent vector T (t) =
γ′(t)/||γ′(t)|| is defined at each such point. Note that, since a smooth curve
may not be simple (it may cross itself), there may be more than one tangent
vector at a given point of the trace γ(I) of I; however, these will correspond to
different parameter values. A smooth simple curve has a well defined tangent
vector at each point of γ(I) except possibly at γ(a) or γ(b).

Exercise Set 11.1

1. Find a smooth curve in R2 which traces the straight line from (1, 2) to
(3, 0).

2. Graph the spiral curve in R2 defined by γ(t) = (t cos t, t sin t), 0 ≤ t ≤ 4π,
and then find its length.

3. Find the length of the curve γ(t) = (t, t3/2), 0 ≤ t ≤ 1.

4. If φ is the 1-form φ(x, y) = x dx+ y dy and γ is the curve γ(t) = (t2, t3),
0 ≤ t ≤ 1, then find

∫

γ φ.

5. If φ is the 1-form φ(x, y) = xy dx − x2 dy and γ is the curve γ(t) =
(cos t, sin t), 0 ≤ t ≤ π/2, then find

∫

γ φ.

6. In R3 let φ be the 1-form φ(x, y, z) = x2 dx + y2 dy + dz. Find
∫

γ
φ if

γ(t) = (cos(2πt), sin(2πt), t− t2), 0 ≤ t ≤ 1.

7. In R3, let φ be the 1-form φ = sin z dx+ cos z dy + y2 dz and let γ be the
smooth curve γ(t) = (cos t, sin t, t), 0 ≤ t ≤ 2π. Describe γ(I) and find
∫

γ
φ.

8. If γ : [0, 1] → Rd is a path, set −γ(t) = γ(1− t) – that is, −γ is γ traversed
backwards. Show that

∫

−γ

φ = −
∫

γ

φ

for any 1-form φ defined on the trace of γ.

9. Theorem 11.1.10 was proved in the case where γ is smooth. Use this to
prove that the theorem also holds in the case where γ is not smooth – that
is, the case where it is made up of several smooth curves joined together.

10. Prove that if γ is a closed path and f is a smooth function defined on an
open set containing the trace of γ, then

∫

γ
df = 0.
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11.2 Change of Variables

There are some arbitrary choices made in our descriptions of paths and 1-forms
in the previous section. A path γ comes with a choice of parameterization.
Does the integral along this path depend on the choice of parameterization or
is it only the trace γ(I) that is important and we are free to parameterize it
any way we wish? Also, the descriptions of paths and 1-forms in Rd involve
a choice of a coordinate system for Rd. If this is changed, the expression for
a path will change in accordance with this change of coordinates, How should
the expression for a 1-form change in order that the integral remains the same?
These are crucial questions. Their resolution is the key ingredient in the proofs
of the main theorems of this chapter.

Parameter Independence

The equality of the integrals in the Example 11.1.9 is not an accident. The
integral of a 1-form over a path is essentially independent of how the path is
parameterized. The precise statement of this independence is the next theorem.
First a definition:

Definition 11.2.1. Suppose γ and λ are smooth curves in Rd with parameter
intervals [a, b] and [c, d], respectively. Let α be a continuous function from [c, d]
onto [a, b] which is smooth with non-vanishing derivative on (c, d). If λ = γ ◦α,
then we will say that α determines a smooth parameter change from γ to λ. If,
in addition, α′ > 0 on (c, d), then we will say that α is orientation preserving.
On the other hand, if α′ < 0 on (c, d) we will say that α is orientation reversing.

Note that since α′(t) 6= 0 for all t ∈ (c, d), then α′ is either everywhere
positive or everywhere negative on (c, d) by the Intermediate Value Theorem
(Theorem 3.2.3) applied to α′. This, in turn, implies that α is either increasing
on [c, d] or decreasing on [c, d] (recall that such a function is said to be strictly
monotone on [c, d]).

Intuitively, a smooth parameter change replaces γ with a new path λ which
traverses the same trace, moving consistently in either the same direction or the
reverse direction of the original path γ.

Theorem 11.2.2. Suppose γ and λ are smooth curves in Rd with parameter
intervals [a, b] and [c, d], respectively, and suppose α determines a smooth pa-
rameter change from γ to λ. Then

∫

λ

φ = ±
∫

γ

φ

for each 1-form φ = φ1dx1 + · · ·+φdxd defined on a set containing the common
trace of γ and λ. The factor of ±1 that appears on the right in this equaility
will be positive if α is orientation preserving and negative if it is orientation
reversing.
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Proof. This is a simple application of the chain rule and the change of variable
formula for integrals on the line. Suppose first that α is orientation preserving.
By the chain rule, we have dλ(t) = dγ(α(t))dα(t) = γ′(α(t))α′(t) dt, and so

∫

λ

φ =

∫ d

c

φ(λ(t))dλ(t) =

∫ d

c

φ(γ(α(t)))γ′(α(t))α′(t)dt

=

∫ b

a

φ(γ(s))γ′(s)ds =

∫

γ

φ,

where we have made the substitution s = α(t), ds = dα(t) = α′(t) dt.
If α is orientation reversing, then a and b will be reversed in the fourth

integral above and to undo this reversal introduces a factor of −1.

Definition 11.2.3. If γ and λ are two paths which have the same trace and if

∫

γ

φ =

∫

λ

φ

for every 1-form φ defined on the common trace of γ and λ, then we will say
that γ and λ are equivalent paths.

Theorem 11.2.2 says that if there is an orientation preserving smooth pa-
rameter change from γ to λ, then the paths γ and λ are equivalent.

Remark 11.2.4. If γ and λ are two path and if there is a smooth parameter
change α from γ to λ, then α has an inverse function α−1 : [a, b] → [c, d] and it
is a smooth parameter change from λ to γ (see Exercise 11.2.6).

Example 11.2.5. In Example 11.1.9 the two curves γ and λ are shown to be
equivalent. Is there a smooth orientation preserving parameter change from γ
to λ? Is there a smooth orientation preserving parameter change from λ to γ?

Solution: The function α(t) = t2 is increasing and has the property that
λ = γ◦α. Also, it has positive, continuous derivative on (0, 1) and so it is smooth
parameter change. Note that α′ is bounded on (0, 1) in this case. The smooth
parameter change going the other direction (from λ to γ) is α−1(s) =

√
s.

This function does not have a bounded derivative on (0, 1) but that is not a
requirement for a smooth parameter change.

Example 11.2.6. Consider the paths in R2 given by γ(t) = (cos t, sin t) and
λ(t) = (cos t,− sin t) for 0 ≤ t ≤ 2π. Is there a smooth parameter change from
γ to λ? Are γ and λ equivalent?

Solution: These paths each traverse the circle of radius 1 centered at (0, 0)
in R2 once, but in opposite directions. The function α(t) = 2π − t is a smooth
parameter change from γ to λ, since cos(2π−t) = cos t and sin(2π−t) = − sin t.
However, α is orientation reversing, and so Theorem 11.2.2 tells us that γ and
λ are not equivalent. We can confirm this by direct calculation if we choose the
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1-form φ(x, y) = −ydx+xdy. On γ we have x = cos t, dx = − sin t dt, y = sin t,
dy = cos t dt. Thus,

∫

γ

φ =

∫ 2π

0

(sin2 t + cos2 t) dt =

∫ 2π

0

1 dt = 2π,

On λ, x and dx are the same, but y = − sin t, dy = − cos t dt. Thus,

∫

λ

φ =

∫ 2π

0

(− sin2 t− cos2 t) dt =

∫ 2π

0

(−1) dt = −2π.

Theorem 11.2.2 leads to a strategy which, for many paths γ and λ with
the same trace, yields a proof that they are equivalent paths. Suppose that the
parameter intervals for the two paths can each be partitioned into n subintervals
in such a way that for j = 1, · · · , n, γ on its jth subinterval and λ on its jth
subinterval are related by a smooth orientation preserving parameter change αj ,
as in Theorem 11.2.2. If this can be done, then it clearly follows that

∫

γ φ =
∫

λ φ
for any 1-form φ which is defined on a set containing the common trace of γ
and λ. Hence, the two paths are equivalent in this situation.

The question of parameter independence is particularly simple for smooth,
simple curves.

Theorem 11.2.7. If γ and λ are two smooth, simple non-closed curves in Rd

which begin at the same point, end at the same point, and have the same trace,
then there is an orientation preserving smooth parameter change from γ to λ.
Hence, γ and λ are equivalent in this case.

Proof. Let the parameter intervals for γ and λ be [a, b] and [c, d]. For each
t ∈ [c, d] there is an s ∈ [a, b] such that λ(t) = γ(s). This is because both
γ and λ have the same trace. Furthermore, since γ is one-to-one, there is
only one such s for each t. We denote this s by α(t). This defines a function
α : [c, d] → [a, b] such that λ(t) = γ(α(t)). We will show that α has a continuous
positive derivative on (c, d). This follows from the Implicit Function Theorem,
as we shall show below.

We set F (s, t) = λ(t)−γ(s). Then F is a smooth function from [a, b]×[c, d] to
Rd. If t0 is a point of (c, d) we wish to show that α′(t) exists in a neighborhood
of t0 and is continuous at t0.

Let s0 = α(t0). Since γ′(s) 6= 0 for each s, it follows that
∂fj
∂s

(s0, t0) 6= 0

for at least one of the coordinate functions fj of F . By the Implicit Function
Theorem, there is a smooth function β defined in a neighborhood of t0 such that
β(t0) = s0 and fj(s, t) = 0 for (s, t) in a neighborhood of (s0, t0) if and only if
s = β(t). Since we have F (α(t), t) = 0 for all t ∈ [c, d] by the choice of α, we
also have fj(α(t), t) = 0. It follows that β(t) = α(t) in some neighborhood of
t0. Thus, α is smooth in a neighborhood of t0.

The fact that α′(t) is non-vanishing follows from the chain rule. Since λ(t) =
γ(α(t)), the chain rule implies that

λ′(t) = γ′(α(t))α′(t).
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Here, α′(t) is a scalar multiplying the vector γ′(α(dt)). If there were a point t
where α′(t) = 0, then we would have λ′(t) = 0 also, and this not possible, since
λ′ is non-vanishing. Thus, α is a smooth parameter change from γ to λ

Since α′ is non-vanishing on (a, b), it is either strictly positive or strictly
negative by the Intermediate Value Theorem. Hence, α is either increasing or
decreasing on [c, d]. It must be increasing, since it takes c to a and d to b. Thus,
α is orientation preserving.

What if we do not assume the two curves in the preceding theorem are non-
closed? What if they are closed? Does the theorem still hold? If not, is there
a way to modify the theorem so that it does hold in this case. These questions
are dealt with in the exercises.

Arc Length Parameterization

Suppose γ is a smooth curve with parameter interval [a, b]. We define a change
of variables from t to a new variable s by setting

s(t) =

∫ t

a

||γ′(u)||du

for each t ∈ [a, b]. That is, s(t) is the length of that part of the curve γ for which
the parameter u lies in the interval [a, t]. Furthermore, by the Fundamental
Theorem of Calculus,

ds = ||γ′(t)||dt.
Since ||γ′(t)|| is a positive continuous function of t and is the derivative of s,
it follows that s, as a function of t, is a continuous, increasing function from
[a, b] to [0, ℓ(γ)] which is smooth on (a, b). Hence, its inverse function defines
t as a continuous, increasing function of s for s ∈ [0, ℓ(γ)] with image [a, b].
Furthermore, it is smooth on (0, ℓ). This defines a smooth parameter change
from γ to the curve λ(s) = γ(t(s)).

The length of a curve remains the same after a smooth parameter change
(Exercise 11.2.7). Thus, given s ∈ [0, ℓ(γ)], the length of that part of λ for which
the parameter lies between 0 and s is the same as the length of that part of γ
for which the parameter lies between a and t. This is exactly

∫ t

0

||γ′u)||du = s. (11.2.1)

That is, s is the length of that part of λ for which the parameter lies in [0, s] .
A smooth curve or a path with this property is said to be parameterized by arc
length.

Since each path is made up of a number of smooth curves joined together,
we have proved:

Theorem 11.2.8. Each path in Rd may be reparameterized so as to be a path
parameterized by arc length.
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Equation 11.2.1, when applied to the curve λ parameterized by arc length,
yields

s =

∫ s

0

||λ′(t)||dt.

where λs denotes λ restricted to [0, s]. On differentiating and using the Fun-
damental Theorem of Calculus, we conclude that that ||λ′(s)|| = 1 for each s.
That is, λ′(s) is a unit vector. This unit vector is often denoted by T and is
called the unit tangent vector to γ. A simple calculation shows that, in terms
of γ, T = γ′/||γ′||.

Classical Form for Path Integrals

Let φ = f1 dx1+· · ·+fp dxp be a 1-form on a subset A of Rp and γ a simple path
in A with trace C. If F = (f1, · · · , fp) is the vector valued function determined
by the components of φ, then the path integral of φ over γ is classically written
as

∫

γ

φdγ =

∫

C

F · T ds, (11.2.2)

where T = γ′(t)/||γ′(t)|| is the unit tangent vector to γ and ds = ||γ′(t)||dt is
the differential of arc length along γ, as above. Here the integral on the right is
just another way of denoting

∫ b

a

F (γ(t)) · T (γ(t))||γ′(t)||dt =

∫ b

a

F (t) · γ′(t) dt.

Integrals of this type arise in may contexts in Physics. For example, If F
is a force field acting on an object, then the above path integral represents the
work done by the force field as the object moves along the path γ.

The classical notation represents the integral of a 1-form along a path as the
integral of an ordinary function F ·T with respect to arc length along the path.
Such an integral can be defined for any continuous function along the path.
This leads to the definition of an integral along a path for ordinary continuous
functions as opposed to 1-forms:

Definition 11.2.9. If f is a continuous real valued function, defined on the
trace C of a path γ with parameter interval [a, b], then we define

∫

C

f ds =

∫ b

a

f(γ(t))||γ′(t)||dt.

This is called the integral of f over C with respect to arc length.

Change of Variables for 1-Forms

A smooth parameter change is one kind of change of variables. It is a change in
the independent variable of a path. It is equally important to understand how
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to deal with a change of variables in the dependent variable space. By this, we
mean a smooth one-to-one function from one open set in Rd to another which
has a non-singular differential.

More generally, let U be an open subset of Rp and H : U → Rq any smooth
function. The function H could be a smooth change of variables or possibly
a function which parameterizes a piece of a p-surface in Rq . It is important
to understand how functions, paths, and differential forms are transformed by
H. Such an understanding will allow us to solve problems concerning functions,
paths, and forms on complicated sets by reducing the problem to an analogous
problem on a simpler set such as a square or a cube. We have already done this
type of thing. This is exactly what is involved when we parameterize a path
in order to express the integral of a 1-form over the path as an integral of a
function over an interval I on the line.

With U ⊂ Rp and H : U → Rq as above, if γ : I → U is a path in U , then
H ◦ γ : I → Rq is a path in Rq . On the other hand, if f is a function defined
on a set containing H(U), then f ◦H is a function defined on U . We will often
call this function H∗(f). Note that, while γ → H ◦ γ takes paths in Rp to
paths in Rq , the operation f → H∗(f) goes the other way – that is, it takes
functions on a subset of Rq to functions on a subset of Rp. Note that there is the
following relationship between the two operations: If we evaluate the function
H∗(f) along the curve γ, the result is the real valued function H∗(f) ◦ γ on I.
On the other hand

H∗(f) ◦ γ = (f ◦H) ◦ γ = f ◦ (H ◦ γ),

which is the result of evaluating f along the curve H ◦ γ.
How do 1-forms transform under a function H, as above? This is best

understood by seeing how a 1-form of the form df should transform.
Let f be a smooth function defined on U and let df be its differential (consid-

ered as a vector valued function on U . UnderH, f transforms to H∗(f) = f ◦H.
The differential of this function, by the chain rule, is the vector-matrix product
(df ◦H)dH. This suggests that we should regard (df ◦H)dH as the appropriate
transform of df under the function H. This, in turn, suggests that the function
H should transform every differential 1-form on U in the same manner. That
is H should take a differential 1-form φ to (φ ◦H)dH, where φ ◦H is a vector
valued function and dH a matrix valued function on V , and (φ ◦H)dH is the
vector-matrix product of φ ◦H with dH. This leads to the following definition.

Definition 11.2.10. If U is an open subset of Rp and H : U → Rq a smooth
function, then for each function (0-form) f onH(U) and each 1-form φ onH(U),
we define a function H∗(f) and 1-form H∗(φ) on U by

H∗(f) = f ◦H and H∗(φ) = (φ ◦H)dH

Example 11.2.11. Let H : U → R3 be a smooth function, as above, with U
an open subset of R2. If we regard the coordinates (x, y, z) of points in the
image of H to be functions on U of the variables (u, v) through the equation
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(x, y, z) = H(u, v) and if φ(x, y, z) = f(x, y, z) dx+ g(x, y, z) dy+h(x, y, z) dz is
a 1-form on H(U), then write out H∗(φ) in the (u, v) coordinates.

Solution: In vector notation, the new 1-form is

H∗(φ) = (φ ◦H)dH =
(

f ◦H, g ◦H, h ◦H
)













∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v
∂z

∂u

∂z

∂v













,

=

(

f ◦H ∂x

∂u
+ g ◦H ∂y

∂u
+ h ◦H ∂z

∂u
, f ◦H ∂x

∂v
+ g ◦H ∂y

∂v
+ h ◦H ∂z

∂v

)

,

where all functions are evaluated at (u, v). If we write this in terms of the basis
vectors du and dv, it becomes

(

f ◦H ∂x

∂u
+ g ◦H ∂y

∂u
+ h ◦H ∂z

∂u

)

du

+

(

f ◦H ∂x

∂v
+ g ◦H ∂y

∂v
+ h ◦H ∂z

∂v

)

dv.

Remark 11.2.12. An easy way to remember how a 1-form φ = fdx+gdy+hdz
in R3 transforms under a function H : U → R3 with U ⊂ R2 is to think of
making the replacements

(x, y, z) = H(u, v)

for (x, y, z) in f(x, y, z), g(x, y, z) and h(x, y, z) and the replacements

dx =
∂x

∂u
du+

∂x

∂v
dv

dy =
∂y

∂u
du+

∂y

∂v
dv

dz =
∂z

∂u
du+

∂z

∂v
dv

This leads to the same expression for the transformed 1-form as is obtained in
the preceding example. The same formalism works for transforming 1-forms
on Rq to 1-forms on Rp under any smooth function H from an open subset of
Rp to Rq. Note that, when p = q = 1, this formalism is just the procedure
for replacing f(x) dx by the appropriate expression when doing a substitution
x = H(u) in an integral on the line.

Example 11.2.13. Consider the function H(r, θ) = (r cos θ, r sin θ) for r > 0
and −π < θ < π. This is the change of variables x = r cos θ, y = r sin θ between
rectangular and polar coordinates. For the 1-form φ(x, y) = x dx + y dy, what
is H∗(φ)?

Solution: We make the replacements

x = r cos θ, y = r sin θ,

dx = cos θ dr − r sin θ dθ,

dy = sin θ dr + r cos θ dθ.
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Then φ(x, y) = x dx+ y dy is transformed to

H∗(φ) = r cos2 θ dr − r2 sin θ cos θ dθ + r sin2 θ dr + r2 sin θ cos θ dθ

= r(cos2 θ + sin2 θ) dr = r dr

Change of Variables in Path Integrals

The transformation law for 1-forms under a smooth transformation is the correct
one if we want path integrals to be preserved.

Theorem 11.2.14. If U is an open subset of Rp, H : U → Rq is a smooth
transformation, φ is a 1-form on H(U), and γ : I → U is a path in U , then

∫

γ

H∗(φ) =

∫

H◦γ
φ.

Proof. Ultimately, this reduces to the chain rule and the definition of the integral
of a 1-form over a path. That is, if I = [a, b],

∫

γ

H∗(φ) =

∫

γ

φ ◦H dH =

∫ b

a

φ(H(γ(t))dH(γ(t))γ′(t) dt

=

∫ b

a

φ(H ◦ γ(t))(H ◦ γ)′(t) dt =

∫

H◦γ
φ.

Example 11.2.15. Find
∫

λ
(xdx + ydy) for the path λ(t) = (cos t, sin t) with

−π ≤ t ≤ π, by first changing to polar coordinates (as in Example 11.2.13) and
then integrating the resulting 1-form over the path given by

(r, θ) = γ(t) = (1, t) for − π ≤ t ≤ π.

Solution: By Example 11.2.13, the form x dx+y dy transforms to r dr under
the transform H to polar coordinates. Also, λ = H ◦ γ. Hence, by the previous
theorem.

∫

λ

(x dx+ y dy) =

∫

γ

r dr = 0,

since r = 1 and dr = 0 on γ.

Exercise Set 11.2

1. Are the curves γ(t) = (t3, t2), 0 ≤ t ≤ 1 and λ(t) = (sin3 t, 1 − cos2 t),
0 ≤ t ≤ π/2, equivalent curves? Justify your answer.

2. Are the curves γ(t) = (cos t, sin t), 0 ≤ t ≤ 2π, and λ(t) = (cos t, sin t),
0 ≤ t ≤ 4π, equivalent curves? Justify your answer.
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3. Are the curves γ(s) = (s,
√

1 − s2), −1 ≤ s ≤ 1, and λ(t) = (cos t, sin t),
0 ≤ t ≤ π, equivalent curves? Does the answer change if the parameter
interval for λ is changed to −π ≤ t ≤ 0? Justify your answer.

4. If γ is a path with parameter interval [a, b], show how to define a smooth
parameter change from γ to an equivalent path λ which has [0, 1] as param-
eter interval. Hint: you simply need to find a smooth increasing function
α : [0, 1] → [a, b] and then set λ = γ ◦ α. There are many such functions,
but there is one which is particularly simple.

5. Give an example to show that the conclusion of Theorem 11.2.7 does not
hold if we do not assume the paths are non-closed. Tell how to restate the
theorem so that it does hold for closed curves as well as non-closed curves.

6. Prove that if γ and λ are smooth paths, α : [c, d] → [a, b] is a smooth
parameter change from γ to λ, then α has a smooth inverse function
α−1 : [a, b] → [c, d] which is a smooth parameter change from λ to γ.
Furthermore, α is orientation preserving if and only if α−1 is orientation
preserving.

7. Show that a smooth parameter change does not change the length of a
smooth curve.

8. If γ(t) = (cos 2πt, sin 2πt) for 0 ≤ t ≤ 1, describe a curve equivalent to γ
which is parameterized by arc length.

9. Express the differential form y dx−x dy in polar coordinates (see Example
11.2.13).

10. Calculate
∫

λ
(y dx − x dy), where λ(t) = (cos t, sin t) for −π ≤ t ≤ π, by

first expressing this integral in polar coordinates, as in Example 11.2.15.

11. Give a different solution to the problem in Example 11.2.13 by noticing
that x dx+ y dy is df for the function f(x, y) = (x2 + y2)/2. What does
f transform into under the change to polar coordinates? How does this
lead immediately to the solution in Example 11.2.15.

12. What does the differential form x dx+y dy+z dz on R3 transform to under
the change to spherical coordinates?

13. What does the differential form y dx − x dy + dz transform to under the
change of coordinates x = u+ 2v, y = 3u− v, z = u+ v + w.

14. If H : (−π, π)× (−π, π) → R3 is defined by

H(u, v) = (cosu cos v, sinu cos v, sin v),

what does the differential form x dx+ y dy + z dz transform to under H?
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11.3 Differential Forms of Higher Order

The statements and proofs of our main integration theorems (Green’s Theorem,
Gauss’s Theorem, and Stokes’ Theorem) all involve the algebra of differential
forms. We have already seen how differential 1-forms enter into the definition of
path integrals. Second order differential forms are involved in the definitions of
surface integrals and third order forms are related to integrals over solid regions
in R3. In this section we introduce higher order differential forms, the operations
we shall perform on them, and the transformation rules that govern them.

2-Forms

If coordinate functions x1, · · · xd are chosen for Rd, then we begin by construct-
ing a vector space over R that has certain symbols dxi ∧ dxj as basis elements.
Here, we declare that

dxj ∧ dxi = −dxi ∧ dxj , and dxi ∧ dxi = 0, (11.3.1)

for all i and j. Our basis vectors will then be the expressions dxi∧dxj for which
i < j. Whenever a symbol xj ∧ xi with j > i occurs in a calculation, we simply
replace it by −dxi ∧ dxj . Of course, if dxi ∧ dxi occurs, it is replaced by 0.

Given a subset E of Rd, a differential 2-form is a continuous function on
E with values in the vector space described above. Thus, a differential 2-form,
when written out in terms of the basis described above yields an expression of
the form

φ(x) =
d
∑

i<j

fij(x)dxi ∧ dxj ,

where each fij is a continuous function on E.
We may construct 2-forms from 1-forms in two ways.
First, there is a product operation, called exterior or wedge product, which

assigns to each pair φ, ψ of 1-forms a 2-form φ ∧ ψ. If φ =
∑d

i=1 fi dxi and

ψ =
∑d
i=1 gi dxi, then

φ ∧ ψ =
d
∑

i,j=1

figj dxi ∧ dxj =
∑

i<j

(figj − fjgi) dxi ∧ dxj .

Here, in going from the first to the second sum, we have used the relations
(11.3.1) to express the sum in terms of the basis vectors dxi ∧ dxj for i < j.

Second, we may take the differential of a 1-form: if φ =
∑d

j=1 fj dxj is a

1-form defined on an open set U ⊂ Rd, then we define a 2-form dφ, called the
differential of φ, by

dφ =
d
∑

j=1

dfj ∧ dxj =
d
∑

i,j=1

∂fj
∂xi

dxi ∧ dxj

=
∑

i<j

(

∂fj
∂xi

− ∂fi
∂xj

)

dxi ∧ dxj .
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Note that we previously defined the differential of a function f (a 0-form)
to be a certain 1-form df . Now we have defined the differential of a 1-form to
be a certain 2-form. In general, the differential of a p-form will be a p+1-form.

The following theorem follows directly from the definitions. The proof is left
to the exercises.

Theorem 11.3.1. Let φ, θ and ψ be differentiable 1-forms and f a differentiable
function defined on an open set U . Then

(a) φ ∧ ψ = −ψ ∧ φ;

(b) φ ∧ (θ + ψ) = φ ∧ θ + φ ∧ ψ;

(c) f(φ ∧ ψ) = (fφ) ∧ ψ = φ ∧ (fψ);

(d) d(φ+ ψ) = dφ+ dψ;

(e) d(fφ) = df ∧ φ+ fdφ.

On R2, 2-forms are particularly simple. If x and y are the coordinate func-
tions, then dx∧ dy is the only basis vector for 2-forms and so all 2-forms can be
expressed as f dx ∧ dy for some continuous function f .

Example 11.3.2. Given 1-forms φ = f dx+ g dy, and ψ = h dx+ k dy find

(a) φ ∧ ψ; and (b) dφ.

Solution:

(a) φ ∧ ψ = fh dx ∧ dx+ fk dx ∧ dy + gh dy ∧ dx+ gk dy ∧ dy
= (fk − gh)dx ∧ dy;

(b) dφ = df ∧ dx+ dg ∧ dy

=

(

∂f

∂x
dx+

∂f

∂y
dy

)

∧ dx+

(

∂g

∂x
dx+

∂g

∂y
dy

)

∧ dy

=

(

∂g

∂x
− ∂f

∂y

)

dx ∧ dy.

On R3, the basis vectors dx ∧ dy, dy ∧ dz, and dx ∧ dz are independent and
generate a 3-dimensional vector space. Thus, a typical differential 2-form on an
open subset U of R3 has the form

f1 dy ∧ dz + f2 dx ∧ dz + f3 dx ∧ dy

where f1, f2, and f3 are continuous functions on U .
In some contexts, a function F = (f1, f2, f3) from U ⊂ R3 to R3 is called a

vector field on U . Thus, a 2-form φ = f1 dy ∧ dz + f2 dx ∧ dz + f3 dx ∧ dy in
R3 determines a vector field F = (f1, f2, f3). We will call this the component
vector field of φ. Of course, a 1-form g1 dx+ g2 dy+ g3 dz in R3 also determines
a component vector field G = (g1, g2, g3).
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Example 11.3.3. If φ = f1dx+ f2dy + f3dz and ψ = g1dx+ g2dy + g3dz are
1-forms on U ⊂ R3, then find

(a) φ ∧ ψ; and (b) dφ.

Solution: Using (11.3.1) and collecting terms involving dx ∧ dy, dy ∧ dz,
and dx ∧ dz we obtain:

φ ∧ ψ = (f2g3 − f3g2) dy ∧ dz + (f3g1 − f1g3) dz ∧ dx+ (f1g2 − f2g1) dx ∧ dy,

and

dφ = df1 ∧ dx+ df2 ∧ dy + df3 ∧ dz

=

(

∂f3
∂y

− ∂f2
∂z

)

dy ∧ dz +

(

∂f1
∂z

− ∂f3
∂x

)

dz ∧ dx+

(

∂f2
∂x

− ∂f1
∂y

)

dx ∧ dy.

Remark 11.3.4. Note that, if F is the component vector field of the 1-form φ
and G is the component vector field of the 1-form ψ, then the formulas of the
preceding example say that

1. the component vector field of φ ∧ ψ is F ×G, and

2. the component vector field of dφ is curlF ,

in terms of the classical cross product “×” and “curl” operations.

3-Forms

A differential 3-form on an open subset U of Rd is a sum of expressions of the
form

f dxi ∧ dxj ∧ dxk,
where f is a continuous function on U . As in (11.3.1), interchanging any two
adjacent terms dxi, dxj, dxk in this expression changes the sign of the expres-
sion. If two of i, j, k are equal, then the expression is understood to be equal
to 0. It follows from this that every 3-form on U may be expressed as a sum of
forms as above with i < j < k.

In the obvious way, the wedge product of three 1-forms is a 3-form and the
wedge product of a 1-form with a 2-form is a 3-form. We define the exterior
differential dφ of a 2-form

φ =
∑

i<j

fijdxi ∧ dxj

to be the 3-form

dφ =
∑

i<j

dfij ∧ dxi ∧ dxj =
∑

i<j

∑

k

∂fij
∂xk

dxk ∧ dxi ∧ dxj
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Example 11.3.5. If φ = f1 dy ∧ dz + f2 dz ∧ dx+ f3 dx ∧ dy is a 2-form on an
open subset of R3, find dφ.

Solution: By definition,

dφ = df1 ∧ dy ∧ dz + df2 ∧ dz ∧ dx+ df3 ∧ dx ∧ dy.

Since df1 =
∂f1
∂x

dx+
∂f1
∂y

dy+
∂f1
∂z

dz and since dy∧dy∧dz = 0 and dz∧dy∧dz =

0, the only non-zero term in df1∧dy∧dz will be the term involving dx∧dy∧dz.
Similar statements hold for df2 ∧ dx ∧ dz and df3 ∧ dx ∧ dy. It follows that

dφ =
∂f1
∂x

dx ∧ dy ∧ dz +
∂f2
∂y

dy ∧ dz ∧ dx+
∂f3
∂z

dz ∧ dx ∧ dy

=

(

∂f1
∂x

+
∂f2
∂y

+
∂f3
∂z

)

dx ∧ dy ∧ dz = divF dx ∧ dy ∧ dz,

if F is the component vector field of φ. Here, div is the classical divergence
operation on vector fields in R3.

Theorem 11.3.6. Let f be a function which is C2 on an open set U ⊂ Rp and
φ a 1-form with coefficients which are C2 on U . Then

(a) d(df) = 0; and

(b) d(dφ) = 0.

Proof. We will prove part (a) and leave part (b) for the exercises.
We have

df =

p
∑

j=1

∂f

∂xj
dxj

and

d(df) =

p
∑

j=1

p
∑

k=1

∂2f

∂xk∂xj
dxk ∧ dxj. (11.3.2)

Now for each pair of indices (j, k) that occurs in this sum, the opposite pair
(k, j) also occurs. Furthermore

∂2f

∂xj∂xk
=

∂2f

∂xk∂xj
, and dxj ∧ dxk = −dxk ∧ dxj

by Theorem 9.1.6 (since f is C2) and by Theorem 11.3.1 (a). It follows that
the jkth term and the kjth term in (11.3.2) cancel each other and the sum is 0.
This proves part (a) of the theorem.

Although we won’t do it here, one can, of course, define differential forms of
any non-negative degree p and define the differential of such a form. What the
above theorem says for 1-forms and 2-forms is true for any C2 p-form φ – that is
d2φ = d(dφ) = 0. A differential form φ is said to be closed if dφ = 0 and exact
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if φ = dψ for some form ψ. Thus, exact C
2 forms are always closed. How about

the converse? It turns out the converse is not true in general, but it is true if
the domain U of the form satisfies certain topological conditions. In particular,
it is true if U is convex. We explicitly state this here for 1-forms. The proof is
left to the exercises.

Theorem 11.3.7. If U is a convex set and φ is a closed 1-form on U (dφ = 0),
then φ is exact (φ = df for some C2 f on U).

Remark 11.3.8. We may summarize the relationship between the exterior
differential operation d and its classical counterparts for vector functions on R3

as follows: If f is a function, φ a 1-form with component vector field F and ω
a 2-form with component vector field G, all defined on an open subset of R3,
then

1. the component vector field of df is grad f

2. the component vector field of dφ is curlF , and

3. the coefficient function of dω is divG.

Transformation Laws for 2-Forms and 3-Forms

If H : U → Rm is a function defined on an open subset U of Rd, then we would
like 2-forms and 3-forms to transform under H in a way which is consistent
with our earlier rules for transforming functions and 1-forms, and in a way that
preserves wedge products. This leads to,

Definition 11.3.9. With H as above, if φ =
∑

i<j fijdxi ∧ dxj is a 2-form and
ω =

∑

i<j<k fijkdxi ∧ dxj ∧ dk is a 3-form defined on a set containing H(U),
then we define H∗(φ) and H∗(ω) as follows:

H∗(φ) =
∑

i<j

H∗(fij)H
∗(dxi) ∧H∗(dxj),

H∗(ω) =
∑

i<j<k

H∗(fijk)H
∗(dxi) ∧H∗(dxj) ∧H∗(dxk).

Of course, we may define p-forms on U for any non-negative integer p, not
just for p = 0, 1, 2, 3. The appropriate transformation law for such a p-form
under H : U → Rm is the obvious extension of the laws already described, as
above, for p ≤ 3. Note that if p is greater than the dimension of the underlying
space, then 0 is the only p-form.

In the following theorem, parts (a) and (b) follows immediately from the
definitions and part (c) has a simple proof which is left to the exercises.

Theorem 11.3.10. Let φ and ψ be two differential forms on an open set V in
Rq and let f be a function on V . If U is an open subset of Rp and H : U → B
a smooth function, then
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(a) H∗(fφ) = H∗(f)H∗(φ);

(b) H∗(φ ∧ ψ) = H∗(φ) ∧H∗(ψ); and

(c) H∗(dφ) = dH∗(φ).

Example 11.3.11. If U is an open subset of R2, H : U → R2 is a smooth
transformation, and φ(x, y) = f(x, y) dx∧ dy is a 2-form defined on H(U), then
find an explicit expression for H∗(φ).

Solution: As in Remark 11.2.12, we may think of H as a change of variables

x = h1(u, v), y = h2(u, v)

and simply replace x and y by h1(u, v) and h2(u, v) in f(x, y) and in dx and dy.
This leads to

dx =
∂h1

∂u
du+

∂h1

∂v
dv, dy =

∂h2

∂u
du+

∂h2

∂v
dv, and

dx ∧ dy =

(

∂h1

∂u

∂h2

∂v
− ∂h1

∂v

∂h2

∂u

)

du ∧ dv

= det(dH) du ∧ dv.
More precisely , dx ∧ dy, when expressed in the u, v coordinates, becomes

H∗(dx ∧ dy) = det(dH) du ∧ dv.

Since H ∗ (f) = f ◦H, we conclude that

H∗(φ) = H∗(f)H∗(dx ∧ dy) = f ◦H det(dH)du ∧ dv.

Example 11.3.12. If U is an open subset of R2, H : U → R3 is a smooth
transformation, and

φ(x, y, z) = f1(x, y, z) dy ∧ dz + f2(x, y, z) dz ∧ dx+ f3(x, y, z) dx ∧ dy

is a 2-form defined on H(U), then find an explicit expression for H∗(φ).
Solution: If H(u, v) = (h1(u, v), h2(u, v), h3(u, v), then we may think of H

as defining a change of variables

x = h1(u, v), y = h2(u, v), z = h3(u, v).

Then

dx =
∂h1

∂u
du+

∂h1

∂v
dv, dy =

∂h2

∂u
du+

∂h2

∂v
dv, dz =

∂h3

∂u
du+

∂h3

∂v
dv.

If we set

∂(hi, hj)

∂(u, v)
= det







∂hi
∂u

∂hj
∂u

∂hi
∂v

∂hj
∂v






,
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we conclude that

H∗(φ) =

[

(f1 ◦H)
∂(h2, h3)

∂(u, v)
+ (f2 ◦H)

∂(h3, h1)

∂(u, v)
+ (f3 ◦H)

∂(h1, h2)

∂(u, v)

]

du ∧ dv.

This can also be written as

H∗(φ) = (F ◦H) ·
[

∂H

∂u
× ∂H

∂v

]

du ∧ dv, (11.3.3)

if F denotes the vector function F = (f1, f2, f3), and
∂H

∂u
and

∂H

∂v
denote the

vector functions obtained by taking the partial derivatives of the component
functions of H.

Example 11.3.13. If φ = x dy ∧ dz + y dz ∧ dx + z dx ∧ dy and H : R2 → R3

is the transformation H(u, v) = (u, v, u2 + v2), then find H∗(φ).
Solution: We express the transformation H as a change of variables

x = u, y = v, z = u2 + v2.

Then dx = du, dy = dv, and dz = 2udu+ 2vdv. Thus

dy ∧ dz = −2u du ∧ dv, dz ∧ dx = −2v du ∧ dv, dx ∧ dy = du ∧ dv.

Thus, H∗(φ) = (u, v, u2 + v2) · (−2u,−2v, 1)du∧ dv = −(u2 + v2) du ∧ dv.

Finally, there is a composition law for transformations of forms:

Theorem 11.3.14. if H1 : U → V and H2 : V → W are smooth functions
between open sets, and if φ is any differential form defined on W , then

(H2 ◦H1)
∗(φ) = H∗

1 ◦H∗
2 (φ).

Proof. It follows from the previous theorem that it is enough to check this in
the case when φ is a function f or the differential of a function (such as the
differential dxj of one of the coordinate functions xj). In the case of a function
f , we have

(H2 ◦H1)
∗(f) = f ◦ (H2 ◦H1) = (f ◦H2) ◦H1 = H∗

1 (f ◦H2)

= H∗
1 (H∗

2 (f)) = H∗
1 ◦H∗

2 (f).

In the case when φ is the differential df of a function, we have

(H2 ◦H1)
∗(df) = d(f ◦ (H2 ◦H1)) = d((f ◦H2) ◦H1))

= H∗
1 (d(f ◦H2)) = H∗

1 (H∗
2 (df)) = (H∗

1 ◦H∗
2 )(df).

This completes the proof.
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Exercise Set 11.3

1. If φ = x2 dx+ xy dy and ψ = y dx+ x3 dy, then find dφ and φ ∧ ψ.

2. φ = cos z dx + sin z dy + xy dz and ψ = z dx + x dy + y dz, then find dφ
and φ ∧ ψ.

3. If φ = yz dx+ xz dy+ xy dz and ω = z dx∧ dy+ x dy ∧ dz + dx∧ dz, then
find dφ and φ ∧ ω.

4. Prove Theorem 11.3.1 parts (a), (b), and (c).

5. Prove Theorem 11.3.1 parts (d) and (e).

6. Prove Part (b) of Theorem 11.3.6.

7. Prove Theorem 11.3.7. Hint: fix a point a ∈ U and then define f(x) to be
the integral of φ along the line [a, x]; show φ = df by using the condition
dφ = 0 and integration by parts.

8. Show that 11.3.7 does not hold if we don’t put some restriction on the
domain U . In fact show that if

φ =
−y

x2 + y2
dx+

x

x2 + y2
dy on U = {(x, y) ∈ R2 : 1/2 < ||(x, y)|| < 2},

then φ is closed but not exact on U . Hint: Use the result of Exercise
11.1.10.

9. Prove Theorem 11.3.10. Part (a) in the case where φ is a 2-form or a
3-form in R3.

10. Prove Theorem 11.3.10. Part (b) in the case where φ is a 1-form and ψ is
a 2-form in R3.

11. Prove Theorem 11.3.10. Part (c) in the case where φ is a 2-form in R3.

12. Prove that the vector
∂H

∂u
× ∂H

∂v
that appears in (11.3.3) is perpendicular

to the surface H(U) at each point H(u, v) of this surface.

11.4 Green’s Theorem

Green’s Theorem relates certain double integrals over a region in the plane
to path integrals over the boundary of the region. It has a wide variety of
applications and it generalizes nicely to higher dimensions. In this section, we
prove Green’s Theorem for fairly general regions. We begin with the case where
the region is a rectangle.
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Green’s Theorem on a Rectangle

In its simplest form, Green’s Theorem follows from two applications of the
Fundamental Theorem of Calculus – one in the x-direction and one in the y-
direction.

Theorem 11.4.1. Let φ = f dx + g dy be a 1-form on the rectangle R =
[a, b]× [c, d] and suppose dφ exists and is continuous and bounded on the interior
of R. Then

∫

R

(

∂g

∂x
(x, y) − ∂f

∂y
(x, y)

)

dV (x, y) =

∫

∂R

φ,

where ∂R is a path which traces the boundary of R once in the counter-clockwise
direction.

Proof. We begin by breaking up the double integral on the left and expressing
each of the resulting terms as an iterated integral using Fubini’s Theorem:

∫

R

(

∂g

∂x
(x, y)− ∂f

∂y
(x, y)

)

dV (x, y)

=

∫ d

c

∫ b

a

∂g

∂x
(x, y) dxdy−

∫ b

a

∫ d

c

∂f

∂y
(x, y) dydx.

The hypotheses on φ ensure that the Fundamental Theorem of Calculus applies
to the inner integral in each of the latter iterated integrals. This yields

∫ d

c

(g(b, y) − g(a, y)) dy −
∫ b

a

(f(x, d)− f(x, c)) dx

=

∫ d

c

g(b, y) dy +

∫ a

b

f(x, d) dx+

∫ c

d

g(a, y) dy +

∫ b

a

f(x, c) dx.

=

∫

∂R

φ,

where ∂R is the path obtained by joining together the four straight line paths
along the edges of R in such a way that the resulting path traverses the boundary
of R once in the counter-clockwise direction.

In the following example, we use Green’s Theorem to avoid parameterizing
four different sides of a rectangle R in order to compute a line integral around
∂R.

Example 11.4.2. Find
∫

∂R
(y2 dx+ y lnx dy) if R = [1, 2] × [0, 1]

Solution: By Theorem 11.4.1
∫

∂R

(y2 dx+ y ln x dy) =

∫

R

(y/x− 2y) dV (x, y).

By Fubini’s Theorem, the latter integral is equal to the iterated integral
∫ 1

0

∫ 2

1

(y/x− 2y) dxdy =

∫ 1

0

(y ln 2 − 2y) dy =
ln 2

2
− 1.
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Integration of 2-Forms in the Plane

It will be helpful to interpret the integral of a function over a region in the plane
as an integral of a certain 2-form.

If A is a compact Jordan region in the plane, every 2-form on A is of the
form f dx∧ dy where f is a continuous function on A. We define the integral of
such a 2-form over A to be

∫

A

f(x, y) dx ∧ dy =

∫

A

f(x, y)dV (x, y). (11.4.1)

That is, it is the ordinary Riemann integral in two variables of the function f
over the set A. The advantages of using the 2-form notation in the integral will
become apparent below.

In Example 11.3.2 we showed that if φ = f dx+g dy is a differentiable 1-form,
then

dφ =

(

∂g

∂x
− ∂f

∂y

)

dx ∧ dy.

This, together with the above 2-form notation for integrals in R2 allows us
to rewrite the left side of the equality in Theorem 11.4.1 as

∫

R dφ. Then Green’s
Theorem on a rectangle becomes

Theorem 11.4.3. If φ is a 1-form defined on a bounded rectangle R and if dφ
is continuous and bounded on the interior of A, then

∫

R

dφ =

∫

∂R

φ.

Proof. By (11.4.1) and the previous theorem, we have
∫

R

dφ =

∫
(

∂g

∂x
− ∂f

∂y

)

dx ∧ dy =

∫

R

(

∂g

∂x
− ∂f

∂y

)

dV =

∫

∂R

φ

Change of Variables for Integrals of 2-forms

Using the 2-form notation for integrals in R2 also turns the change of variables
formula for such integrals into a natural formula involving the transformation
law for 2-forms, as discussed in the previous section.

Theorem 11.4.4. Let H = (h1, h2) be a continuous transformation from the
open Jordan region U in R2 to another Jordan region in R2 and suppose H is
one-to-one and smooth with non-singular differential on U . If φ is a 2-form on
H(U) with φ bounded on H(U) and H∗(φ) bounded on U , then

∫

H(U)

φ =

∫

U

H∗(φ)

provided det(dH) > 0 everywhere on U . If det(dH) < 0 on U , equality holds if
the right side of the equation is replaced by its negative.
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Proof. Let φ(x, y) = f(x, y)dx ∧ dy. By Example 11.3.11,

H∗(φ) = f ◦H det(dH) du ∧ dv. (11.4.2)

Recall that the differential dH of the transformation H is the linear transfor-
mation with matrix







∂h1

∂u

∂h1

∂v
∂h2

∂u

∂h2

∂v






.

The hypotheses of the theorem ensure that the change of variables formula (The-
orem 10.5.14 )applies. If the determinant det(dH) is everywhere non-negative
on U , then it implies

∫

H(U)

f(x, y) dx ∧ dy =

∫

U

f ◦H(u, v)|det(dH)(u, v)|du ∧ dv,

=

∫

U

f ◦H(u, v) det(dH)(u, v) du ∧ dv,=
∫

U

H∗(φ).

(11.4.3)

That is,
∫

H(U)

φ =

∫

U

H∗(φ).

If det(dH) is everywhere non-positive, then |det(dH)| = −det(dH) and the
right side of the above equation is replaced by its negative.

2-Cells

In order to extend Green’s Theorem to a much larger class of integrals, we need
to change our point of view regarding integrals of 2-forms. We have discussed
in previous sections the integration of 1-forms over paths. A path is not a set,
but rather a function from an interval into Rd, although we sometimes ignore
the distinction between the path and the set which is its trace in Rd. There is a
similar and highly useful formulation for integration of 2-forms. We define the
integral of a 2-form over an object which is not a set, but rather a 2-dimensional
analogue of a smooth path. A 2-cell, as defined below, is such an object.

In what follows, I2 will denote the square [0, 1] × [0, 1] in R2. The bound-
ary path ∂I2 is the path consisting of the straight line paths along the edges
of I2 joined together so as to traverse the topological boundary of I2 in the
counterclockwise direction.

We will say the function E : I2 → Rd is smooth on I2 if each of its first
order partial derivatives exists and is continuous on I2. It is clear what this
means on the interior of I2. On each edge and corner of I2 one or both of the
partial derivatives must be interpreted as a one-sided derivative. Thus, at each
point of I2 we require that the appropriate one or two sided derivative exists
and we require that the resulting functions on I2 are continuous. With this
understanding, we make the following definition.
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Figure 11.3: Simple, Positively Oriented Cells in R2

Definition 11.4.5. A 2-cell in Rd is a smooth function E from I2 into Rd.

We will say that a 2-cell E is simple if, on the interior of I2, E is one to
one and det(dE) is non-vanishing. If, in addition, det(dE) > 0 on the interior
of I2, we will say that E is positively oriented. We will say that E is negatively
oriented if det(dE) < 0 on the interior of I2.

In this section we will only be concerned with 2-cells in R2. In the next
section, 2-cells in higher dimensional spaces will become important.

Note also that the conditions on a cell E ensure that the restriction of E to
each of the four edges of ∂I2 is a smooth curve and, hence, that ∂E = E ◦ ∂I2

is piecewise smooth – that is, it is a path.

The image E(I2) of a 2-cell E is called the trace of E. As was the case
with curves and paths, a 2-cell consists of not only the set E(I2), but also a
parameterization E of that set, with the parameters being the coordinates of
points in I2.

In general, a path may cross itself, retrace portions of itself, or even be
constant over portions of its parameter interval. However, a simple path can
do none of these things. A simple path is one-to-one and has non-vanishing
derivative on the interior of its parameter interval. Similarly, a simple 2-cell is
one-to-one with non-singular differential on the interior of I2.

Note that if E is a 2-cell, then ∂E is a path, not a set, and so it is not
the same thing as the topological boundary of E(I2) even though we use the
same notation to denote it. Which is meant should be obvious from the context.
Sometimes the trace of ∂E is the same as the topological boundary of the trace
of E, but not always (see Figure 11.3).
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Orientation for Paths

A path which traverses the boundary of a set such as a square or circle in the
counterclockwise direction has a property which can be generalized in a useful
way.

An ordered basis in R2 is a linearly independent ordered pair {u, v} of vectors
in R2. An ordered basis is said to be positively oriented if the angle θ between
the two vectors, measured from u to v satisfies 0 < θ < π – that is, if sin θ > 0.
Think of this as meaning that v points to the left of u. This happens if and only
if the determinant of the matrix with u as first column and v as second column
is positive (Exercise 11.4.8).

At each smooth point of ∂I2 (at points which are not corners), the tangent
vector T to the path is defined. Furthermore, if v is any vector for which (T, v)
is a positively oriented ordered basis, then tv belongs to I2 for all sufficiently
small positive t. In other words, the set I2 lies on the left as we traverse ∂I2.
It turns out that this property is preserved by a positively oriented 2-cell, due
to the fact that dE takes a positively oriented basis to a positively oriented
basis. That is, at each smooth point a of the path ∂E, if the tangent vector T
to the path at a and a vector v form a positively oriented pair (T, v), then each
sufficiently small positive multiple of v lies in E(I2) (we won’t prove this here).
Intuitively, this means that as we traverse ∂E, the set E(I2) lies on the left (see
Figure 11.3). If the cell is negatively oriented, the set E(I2) lies on the right
as we traverse the path ∂E – that is, the orientation of the boundary path is
reversed by E.

Example 11.4.6. Give an example of a simple, positively oriented 2-cell which
has as its trace the unit disc D = {(x, y) : x2 + y2 ≤ 1}.

Solution: There are many ways to do this. One way is to use the polar
coordinate parameterization:

E(r, t) = (r cos(2πt), r sin(2πt)) for (r, t) ∈ I2.

This is illustrated in Figure 11.3 B. We have

dE =

(

cos(2πt) −2πr sin(2πt)
sin(2πt) 2πr cos(2πt)

)

and this has determinant 2πr, which is positive on the interior of I2. This
parameterization is clearly one-to-one on the interior of I2. Hence, E is a
simple, positively oriented 2-cell.

Note that part of the trace of the boundary ∂E of this cell does not actually
lie on the boundary of the trace of E, but in its interior, and this part of the
trace of ∂E is traversed twice – once in each direction. Also, over part of its
parameter interval, ∂E is constant (the part corresponding to the side r = 0 of
∂I2). Our definition of a simple cell does not rule out this kind of behavior.
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Integration Over a Cell

Just as we defined the integral of a 1-form over a path in Section 11.1, we may
now define the integral of a 2-form over a 2-cell.

Definition 11.4.7. If E is a 2-cell in R2 and ω = f dx∧ dy is a 2-form defined
on the trace of E, then we define the integral of ω over E to be

∫

E

ω =

∫

I2
E∗(ω).

Note that the integral on the right in this definition exists. To see this, let
ω = f dx ∧ dy and E(u, v) = (e1(u, v), e2(u, v)), then

E∗(ω) = f ◦ E
(

∂e1
∂u

∂e2
∂v

− ∂e1
∂v

∂e2
∂u

)

du ∧ dv.

By the definition of a 2-cell, the function multiplying du∧ dv in this expression
is continuous on I2.

Integration Over a Simple Cell

The image of the interior of I2 under a simple cell E is an open subset of the
trace of E by Exercise 9.6.8. It follows that the boundary of the trace of E
is contained in the trace of ∂E. A path has zero area (Exercise 11.4.7). This
implies that the trace of ∂E has zero area and, hence, that the trace of E and
the image under E of the interior of I2 are Jordan regions which differ by a set
of area 0. Furthermore, a simple cell, restricted to the interior of I2, satisfies
the conditions of the change of variables formula given in Theorem 11.4.4. This
leads to:

Theorem 11.4.8. If E is a simple, positively oriented 2-cell with trace A =
E(I2), and if ω = f dx ∧ dy is a 2-form defined on A, then

∫

E

ω =

∫

A

ω =

∫

A

f dV (x, y).

Proof. This follows immediately from Theorem 11.4.4.

Thus, in this case – the case of greatest interest– the integral of the form ω
over the cell E is just the integral of a function f over a Jordan region A.

Change of Parameter

Just as with integrals of 1-forms, there is a sense in which the integral of a
2-form over a 2-cell is independent of the parameterization of the 2-cell. If E
and F are 2-cells, then we will say that F is related to E by a smooth change
of parameter if if there is a smooth one-to-one function H from the interior of
I2 to itself, with non-singular differential, such thatF = E ◦ H on the interior
of I2. The smooth change of parameter H is said to be positively oriented if
det(dH) > 0 on the interior of I2 and negatively oriented if det(dH) < 0.
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Theorem 11.4.9. If E : and F are 2-cells which are related by a smooth change
of parameter H in the above sense, then

∫

F

ω =

∫

E

ω.

if H is positively oriented and ω is any 2-form defined on E(I2). This equation
holds with the right side replaced by its negative if H is negatively oriented.

Proof. We have
∫

F

ω =

∫

I2
(E ◦H)∗(ω) =

∫

I2
H∗(E∗(ω)) =

∫

I2
E∗(ω) =

∫

E

ω,

by Theorem 11.3.14 and Theorem 11.4.4.

Green’s Theorem on a Cell

We can now extend Green’s Theorem to integrals over a two cell.

Theorem 11.4.10. Green’s Theorem If E is a 2-cell in R2 and φ is a smooth
1-form on a neighborhood of the trace of E, then

∫

∂E

φ =

∫

E

dφ.

Proof. We have
∫

∂E

φ =

∫

∂I2
E∗(φ) =

∫

I2
dE∗(φ) =

∫

I2
E∗(dφ) =

∫

E

dφ,

by Green’s Theorem on a rectangle and Theorem 11.3.10(c).

Remark 11.4.11. The cell E in the above version of Green’s Theorem is not
required to be positively oriented or even simple. Thus, the path ∂E may not
be positively oriented and the integral of φ = f dx ∧ dy over E may not be the
usual 2-dimensional integral of f over the trace of E (it will be its negative if
E is negatively oriented). On the other hand, if E is simple, then the integral
on the right is the usual 2-dimensional Riemann integral of f over the trace of
E by Theorem 11.4.8.

Remark 11.4.12. In actually computing one side or the other of the equality in
Green’s Theorem, it may be convenient to switch to a different parameterization.
For example, if E is simple and orientation preserving, then the integral over E
may be replaced by the integral over an equivalent cell F , or by the Riemann
integral over the trace A of E, or by an integral over another set which is related
to the trace of E through a smooth change of variables as in Theorem 11.4.4.
Similarly, we may replace ∂E by an equivalent path γ. The new path γ and the
new way of parameterizing A may not be related to each other in the same way
that E and ∂E are related.



374 CHAPTER 11. VECTOR CALCULUS

Figure 11.4: The Annulus as a Cell

Example 11.4.13. Let A be the compact set bounded by the ellipse described
parametrically by γ(t) = (a cos t, b sin t), 0 ≤ t ≤ 2π. Use Green’s Theorem to
find the area of A.

Solution: The 2-form dx ∧ dy is dφ, where φ = xdy. Along γ, x = a cos t,
and dy = b cos t dt. Thus, by Green’s Theorem, the area we seek is

∫

A

dx ∧ dy =

∫

γ

xdy =

∫ 2π

0

ab cos2 t dt = πab.

Note that the set A is the trace of a 2-cell (Exercise 11.4.3), but we do not need
to explicitly find the cell E : I2 → A that expresses it as such. If we did find such
an E, it is unlikely that the path γ that we used here would be exactly equal
to ∂E. However, γ and ∂E will necessarily be equivalent paths, provided E is
chosen so that ∂E is a path which traverses ∂A once in the positive direction.

Often the topological boundary of the trace of a cell E is not ∂E and, in
fact, it may not even be the trace of a single path. It could be the union of the
traces of several paths. Properly interpreted, Green’s Theorem still applies, but
the integral over the boundary is the sum of integrals over these several paths.
The annulus in the following example illustrates this fact, among other things.

Example 11.4.14. For the annulus

A = {(x, y) : 1 ≤ x2 + y2 ≤ 4},

show that the integral over ∂A of the 1-form

φ = − y

x2 + y2
dx+

x

x2 + y2
dy

is 0 by using Green’s Theorem. Then directly calculate the integral of φ over the
circle x2 + y2 = 4. Why doesn’t Green’s Theorem also imply that this integral
is 0?
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Solution: Figure 11.4A illustrates how to express the annulus as the trace
of a cell (finding an explicit parameterization that does this is Exercise 11.4.5).
The boundary path of this cell has two overlapping horizontal sections that are
oriented in opposite directions. The integrals along these sections will cancel
each other, leaving only the integrals around the two circles which comprise the
topological boundary of A. One of these is traversed counterclockwise and the
other clockwise (Figure 11.4B). To calculate the resulting integral of φ along
∂A, we note that

dφ =
y2 − x2

(x2 + y2)2
dy ∧ dx+

y2 − x2

(x2 + y2)2
dx ∧ dy = 0.

Thus, by Green’s Theorem,
∫

∂A

φ =

∫

A

dφ = 0.

On the other hand, a direct calculation of the integral of φ over the outer circle
x2 + y2 = 4 can be done using the parameterization γ(t) = (2 cos t, 2 sin t) of
this curve on [0, 2π]. The result is

∫

γ

(

− y

x2 + y2
dx+

x

x2 + y2
dy

)

=

∫ 2π

0

(

sin2 t+ cos2 t
)

dt = 2π.

If Green’s Theorem applied, the integral would be 0, since dφ = 0. The reason
Green’s Theorem does not apply in this case is that the circle x2 + y2 = 4 is
not the boundary of a set on which φ is a smooth 1-form. The form φ has a
singularity at (0, 0). On the other hand, the point (0, 0) is not in the annulus A
and so it does not cause a problem in applying Green’s Theorem to A and ∂A.

Classical Version of Green’s Theorem

If φ = P dx +Qdy is a differential 2-form and γ = (γ1, γ2) : I → R2 a path in
the domain of φ, then

∫

γ

φ =

∫

I

φ ◦ γ(t) · γ′(t) dt =

∫

I

[P (γ(t))γ′1(t) +Q(γ(t))γ′2(t)]dt.

Classical notation for this integral is as follows: The differential form φ has
component vector field F = (P,Q). The tangent vector to the curve γ is T =
γ′/||γ′||. We write

∫

γ

φ =

∫

γ

F · Tds,

where ds = ||γ′(t)||dt is the differential of length along the path γ.
By Remark 11.3.8, if φ is a 1-form in R3 with component vector field F ,

then dφ = curlF . The same statement holds in R2 if the curl of a vector field
(P,Q) is understood to be ∂Q/∂x− ∂P/∂y.

With this notation, the classical version of Green’s Theorem is.
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Theorem 11.4.15. Let A be a closed Jordan region in R2 with topological
boundary which is the image of a path ∂A, positively oriented with respect to A.
If F is a smooth vector field on A, T is the vector function which is the tangent
vector to ∂A at each point of ∂A, and ds is the differential of arc length along
∂A, then

∫

∂A

F · Tds =

∫∫

A

curlF dV.

In this section, we have essentially proved this version of the theorem in
the case where A is the trace of a simple, positively oriented cell. Our proof
also yields a proof of the above theorem in the case where A can be cut up
into finitely many pieces which are traces of simple oriented cells (see Exercise
11.4.13).

Example 11.4.16. If F (x, y) = (cos(ln |x|) + y, xy2), find
∫

C
F · Tds if C =

{(x, y) ∈ R2 : x2 + y2 = 1}.
Solution: Green’s Theorem tells us that the above integral is the same as

∫

B1(0,0)

(

∂

∂x
xy2 − ∂

∂y
(cos(lnx) + y)

)

dV (x, y) =

∫

B1(0,0)

(y2 − 1) dV (x, y).

We calculate the latter integral using polar coordinates. The result is

∫ 2π

0

∫ 1

0

(r3 sin2 θ − r) drdθ = −3π/4.

Exercise Set 11.4

1. If R is a rectangle of width a and height b, then use Green’s Theorem to
find

∫

∂R x dy.

2. Use Green’s Theorem to find
∫

∂I2(y
2x dx+ x2y dy).

3. Show that x = a cos(πt), y = b((2s−1) sin(πt), (s, t) ∈ I2 gives an explicit
parameterization as a simple, orientation preserving 2-cell E for the ellipse
A of Example 11.4.13. Show that ∂E traverses ∂A once in the positive
direction. Explain why this path yields the same integral for a 1-form on
A as does the path γ of the example.

4. Using the parameterizationE given in the preceding exercise, calculate the
area of the ellipse of Example 11.4.13 by directly calculating

∫

E
dx ∧ dy.

5. Find an explicit parameterization for the 2-cell in Figure 11.4A that has
the annulus of Example 11.4.14 as its trace.

6. Use Green’s Theorem to find
∫

∂A
(y3 dx− x3 dy) if A is the annulus of the

previous exercise.

7. Prove that the image of a path in R2 is a set of area zero (see Exercises
10.2.6 and 10.2.8).
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8. Verify the claim, made in the discussion of orientation for paths, that an
ordered pair {v,w} of vectors in R2 forms a positively oriented basis if
and only if the matrix with v as first column and w as second column has
positive determinant.

9. Prove that a 2× 2 matrix takes a positively oriented basis to a positively
oriented basis if and only if it has positive determinant.

10. Use Green’s Theorem to calculate
∫

∂D
(xy dx+ (x+ ln(2 + y)) dy), where

D is the unit disc.

11. If E is a simple positively oriented cell in R2, with trace A, find a formula
which expresses the area of A as an integral around ∂E. Is there more
than one way to do this?

12. Use the result of the previous exercise to find the area of the region in R2

enclosed by the path x = cos t, y = sin 2t, −π/2 ≤ t ≤ π/2.

13. Suppose A and ∂A satisfy the hypotheses of Theorem 11.4.15. Suppose
that A may be written as the union of finitely many sets, of the form
Bj = Im(Ej) where each Ej is a simple positively oriented cell and any
two of the sets Bj intersect only at common boundary points. Explain
why it is reasonable to think that the sum of the integrals of a 1-form φ
along the paths ∂Ej is equal to the integral of φ along ∂A.

14. Let U be an open set in R2 and let a and b be points of U . We say that
two paths γ0 and γ1 both of which begin at a and end at b, are homotopic
in U if there is a cell E : I2 → U such that E(s, 0) = a, E(s, 1) = b,
E(0, t) = γ0(t), and E(1, t) = γ1(t) for all s, t ∈ [0, 1]. Show that if φ is a
1-form with dφ = 0 on U , then

∫

γ0

φ =

∫

γ1

φ,

whenever γ0 and γ1 are homotopic paths joining a to b. Conclude that if
any two paths joining the same two points of U are homotopic and dφ = 0,
then

∫

γ φ depends only on the endpoints of γ and not on the path joining
these endpoints.

15. Show that if U is a convex open subset of R2 and a and b are points of
U , then any two smooth paths joining a to b are homotopic in U (see the
previous exercise).

11.5 Surface Integrals and Stokes’s Theorem

This section is devoted to to the study of integration on 2-dimensional surfaces
in Rd and to generalizations of Green’s Theorem to this context.
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We begin with a discussion of integration over parameterized surfaces. We
discuss the concepts of surface area and orientation for parameterized surfaces
and prove that these notions are essentially independent of the choice of param-
eterization. We then specialize to the case where the parameterized surface is
a 2-cell in Rd and prove Stokes’s Theorem. This is a generalization of Green’s
Theorem to the case where the 2-cell has its trace in Rd for d ≥ 3.

In the next section we will generalize Green’s Theorem to the case of a 3-cell
in R3 (Gauss’s Theorem) or, more generally, a 3-cell in Rd for d ≥ 3.

These results do not require many new ideas. Most of what we need has
already been encountered in our study of Green’s Theorem in the previous
section.

Not every geometric object that we might wish to integrate over can be
expressed as the trace of a cell. To exploit the full power of these theorems, we
will need to consider objects which are constructed by piecing together cells –
much as we dealt with piecewise smooth paths in previous sections. This will
be done in the final section of this chapter.

Integration Over a Parameterized Surface

A smoothly parameterized surface is the 2-dimensional analogue of a smooth
path.

Definition 11.5.1. A parameterized 2-surface in Rd is a continuous function
H : U → Rd from an open set U ⊂ R2 into Rd. It is a smoothly parameterized
surface if H is one-to-one and smooth, with a differential dH which has rank 2
at each point of U . The image of a smoothly parameterized 2-surface is called
its trace.

The definition given here differs slightly from Definition 9.4.7 in that, here,
a specific parameter function H is part of the definition.

The integral of a 2-form over a smoothly parameterized surface follows the
pattern of the definitions of integration of 1-forms over paths and of 2-forms
over 2-cells in R2.

Definition 11.5.2. If U is a Jordan region in R2, H : U → Rd (d ≥ 2) is a
smoothly parameterized surface, in Rd, and ω is a 2-form defined on A = H(U)
with H∗(ω) bounded on U , then we define the integral of ω over H to be

∫

H

ω =

∫

U

H∗(ω).

The condition that H∗(ω) be bounded in the above definition is needed to
ensure that the integral on the right exists (the continuity of ω and smoothness
of H ensure that H∗(ω) is continuous). Note that, if F is the component vector
field of ω, then H∗(ω) is a 2-form on U which is the inner product of F ◦H with
a vector consisting of determinants of 2 × 2 submatrices of dH (see Example
11.3.12). It follows that the condition that H∗(ω) be bounded in the above
definition will be satisfied if dH and ω are both bounded.
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Remark 11.5.3. Often the parameter function H will actually be defined and
continuous on a compact Jordan region A with U as its interior and the 2-form
ω will be continuous on H(A). This guarantees that ω is bounded on H(U). If
dH extends to be continuous on the compact set A then we are also guaranteed
that dH will be bounded. Note that, in this case, it does not matter whether
or not the integral on the right above is taken over U = A◦ or over A, since ∂A
has area 0 (A is a Jordan region).

Example 11.5.4. If ∆ = {(x, y) : x > 0, y > 0, x+ y < 1} and the parameter-
ized surface H : ∆ → R3 is defined by H(x, y) = (x, y, x − 2y + 5), then find
∫

H ω if ω = −y dy ∧ dz + x dz ∧ dx,
Solution: In this example, the parameterization H actually expresses the

surface as the graph of a function defined on the triangle ∆. That is, H expresses
the variables (x, y, z) in terms of (x, y) by x = x, y = y, z = x− 2y + 5. Under
H∗, the differentials dx and dy remain unchanged, while H∗(dz) = dx − 2dy.
Thus,

H∗(ω) = −y dy ∧ (dx− 2dy) + x (dx− 2dy) ∧ dx = (2x+ y) dx ∧ dy.

Thus,

∫

H

ω =

∫

U

(2x+ y) dx ∧ dy =

∫ 1

0

∫ 1−y

0

(2x+ y)dxdy = 1/2

Parameter Independence

Definition 11.5.5. Let H : U → Rd and J : V → Rd be smoothly parame-
terized surfaces. If P : V → U is a smooth one-to-one function with det(dP )
either strictly positive or strictly negative on V , then we will say that P is a
smooth parameter change from H to J provided H = J ◦P . If det(dP ) > 0 we
will say that P is positively oriented, while if detdP < 0 we will say that P is
negatively oriented.

Note that if there is a smooth parameter change from H to J , then H(U) =
J(V ). That is, H and J have the same trace.

The theorem on independence of parameterization (Theorem 11.4.9) holds
in this more general context. The proof is the same.

Theorem 11.5.6. Let H : U → Rd and J : V → Rd be smoothly parameterized
surfaces. If there is a smooth parameter change from H to J , then

∫

H

ω = ±
∫

J

ω.

if ω is any bounded 2-form on H(U) = J(V ). The sign in this identity is positive
if P is positively oriented and it is negative if P is negatively oriented.

This theorem often allows us to simplify an integration problem by choosing
a more convenient parameterization than the one given.
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Example 11.5.7. Find a smooth parameter change which expresses the integral
in Example 11.5.4 as an integral over a square rather than a triangle. Then do
the integration.

Solution: We set P (u, v) = (u, (1 − u)v). Then P is a one-to-one function
from the interior of the square I2 onto the open triangle ∆ and its differential
is

dP =

(

1 0
−v 1 − u

)

which has determinant 1 − u. This is positive on the interior of I2 and so it
determines a positively oriented smooth parameter change. Since H(x, y) =
(x, y, x− 2y + 5), the new parameterized surface J = H ◦ P is

J(u, v) = (u, (1− u)v, u− 2(1 − u)v + 5) = (u, v − uv, u− 2v + 2uv + 3).

That is, the surface obtained by setting x = u, y = v−uv, z = u−2v+2uv+3.
Then dx = du, dy = −vdu+(1−u)dv, and dz = (1 +2v)du+2(u− 1)dv. Since
ω = −y dy ∧ dz + x dx ∧ dz, this implies

J∗(ω) = −(v − uv)(−v du+ (1− u) dv)∧ ((1 + 2v) du+ 2(u− 1) dv)

− u du ∧ ((1 + 2v) du+ 2(u− 1) dv

= ((v − 2)u2 + 2(1− v)u+ v) du ∧ dv

The integral of ω over J is then

∫

J

ω =

∫

I2
J∗(ω) =

∫ 1

0

∫ 1

0

((v − 2)u2 + 2(1− v)u+ v) du dv = 1/2

This is not a case where changing the parameterization simplifies the integration.

Orientation

A smoothly parameterized surface E comes equipped with a natural orientation.
What do we mean by this? It will turn out to be important.

We begin by discussing the concept of orientation for R2. The ordered pair
of vectors (1, 0), (0, 1) is an ordered basis for this vector space. If we choose
another ordered pair of basis vectors (a, b), (c, d), then

(

a
b

)

=

(

a c
b d

)(

1
0

)

and
(

c
d

)

=

(

a c
b d

)(

0
1

)

.

Thus, the matrix

A =

(

a c
b d

)

transforms the ordered basis (1, 0), (0, 1) to a new ordered basis (a, b), (c, d).
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Now the matrix A must be non-singular since (a, b) and (c, d) are linearly
independent. This means that detA 6= 0. However, detA may be positive or it
may be negative. This means that the possible ordered bases for R2 fall into two
classes – those for which detA is positive and those for which detA is negative.
A pair of ordered bases that fall into the same class are said to have the same
orientation while a pair which fall into different classes are said to have opposite
orientation. If we fix an ordered basis, then any other ordered basis is said to
have positive orientation or negative orientation (relative to the fixed ordered
basis) depending on whether or not it has the same or the opposite orientation
of that of the original basis.

Example 11.5.8. For the following ordered pairs of basis vectors, tell which
have the positive orientation and which have negative orientation with respect
to the standard ordered basis (1, 0), (0, 1):

1. (0, 1), (1, 0);

2. (0,−1), (1, 0);

3. (1, 1), (−1, 1).

Solution: We have

det

(

0 1
1 0

)

= −1, det

(

0 −1
1 0

)

= 1, det

(

1 1
−1 1

)

= 2.

Thus, the first pair has negative orientation while the second and third pairs
have the positive orientation with respect to the standard pair.

Of course specifying a coordinate system for the plane as well as a choice of
ordering of the coordinate axes is the same as specifying an ordered basis. Thus,
an orientation of the plane is determined by a choice of an ordered coordinate
system.

Specifying an orientation on the plane is also equivalent to specifying a
positive direction of rotation about a point. A non-zero rotation of magnitude
less than π/2 is positive if it moves the positive x-axis toward the positive y-axis.

Surfaces and Orientation

A smooth p-surface S in Rq is a subset of Rq which is locally a smoothly param-
eterized p-surface. This means that at each point s ∈ S there is a neighborhood
U of s in Rq such that S ∩ U has a smooth parameterization.

Our main concern in this section is with 2-surfaces. They will be referred to
simply as surfaces.

A smoothly parameterized 2-surface has a natural orientation. That is, if
H : U → Rp is the map which parameterizes the surface S and a ∈ U, b = H(a),
then the linear transformation dH : R2 → Rp maps R2 onto a 2-dimensional
linear subspace L of Rp and it maps the standard basis (1, 0), (0, 1) onto an
ordered basis for L. Note that b + L is the tangent space of S at the point b.
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Figure 11.5: A Möbius Band

This ordered basis defines an orientation on L. This is what we mean by the
orientation of the surface S at the point b = H(a). Because H is smooth, the
space L and the ordered pair of basis vectors vary in a continuous fashion as
the point b moves about the surface S.

Suppose H1 : Rp → Rq is another smoothly parameterized surface, with
image S1 which is equal to S in some neighborhoodU of b. Then U ∩S = U ∩S1

are surfaces with two different parameterizations. These parameterizations may
determine the same orientation for the surface at b or opposite orientations.
That is, the notion of orientation of a surface at a point depends on the choice of
parameterization for the surface in a neighborhood of this point. This discussion
leads to the following definition.

Definition 11.5.9. An orientation of a smooth surface S at at point b ∈ S
is the orientation class of a pair of basis vectors for the vector space L, where
b + L is the tangent space of S at b. An orientation for S itself is a choice of
orientation for S at each of its points b in such a way that ordered basis vectors
defining this orientation may be chosen in a continuously varying fashion as b
moves over S. An orientable surface is one which may be given an orientation.

Surfaces in 3-Space

If H is a smoothly parameterized 2-surface S in R3 with parameter set U and
trace S, then the images under dH of the basis vectors (1, 0) and (0, 1) are the
first and second rows of the matrix dH. They may also be described as the vec-
tors ∂H/∂u and ∂H/∂v. They constitute an ordered pair of basis vectors for the
vector space L such that H(u, v) +L is tangent space of S at H(u, v). As (u, v)
range over U , they determine an orientation of S. The cross product of these
vectors ∂H/∂u× ∂H/∂v is often called the normal vector to the parameterized
surface and denoted NH . This is a vector orthogonal to the vectors ∂H/∂u and
∂H/∂v and it varies continuously with the point (u, v) ∈ U . The cross product
of any ordered basis of vectors in L will have the same or opposite direction as
NH depending on whether or not the ordered basis determines the same ori-
entation as (∂H/∂u, ∂H/∂v) . In other words, the direction of NH at a point
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on the surface determines the orientation of the ordered pair (∂H/∂u, ∂H/∂v)
and, hence, the orientation of S at that point. The following theorem follows
from this observation.

Theorem 11.5.10. An orientation on a surface S in R3 is determined by a
continuous function which assigns to each point of S a vector orthogonal to the
tangent space of S at that point. There exists such a function if and only if the
surface is orientable.

Most of the common surfaces we deal with in R3 are orientable. This includes
spheres, cylinders, tori, and any smoothly parameterized surface. However, not
all surfaces in R3 are orientable, as the next example shows.

Example 11.5.11. Find a surface in R3 which is not orientable.
Solution: Such a surface is the Möbius band, illustrated in Figure 11.5. Note

that an attempt to continuously assign a normal vector to the points of this
surface, beginning at the left and proceeding in the counterclockwise direction,
results in the vectors pointing in the opposite of the original direction once we
return to the starting point.

A physical example of a Möbius band may be constructed by taking a long,
thin rectangular strip of paper, twisting one end through 180 degrees and then
glueing it to the opposite end.

Surface Integrals in 3-Space

Let H be a smoothly parameterized 2-surface in R3 with trace S. The unit
normal to the surface A is defined to be N = NH/||NH ||. This appears to
depend on the parameterization H and not just one its trace S and, in fact, by
definition, it is a function on the parameter set U of H. However, at a given
point of S, there are only two unit vectors which are orthogonal to the tangent
plane of S and they point in opposite directions. Thus, if two parameterizations
of S give it the same orientation, then they must determine the same normal
vector at each point (this also follows from Exercise 11.5.7). In other words, for
a smooth oriented surface, there is a a uniquely defined unit normal vector at
each point of the surface. For this reason, we consider the unit normal vector
to be a function of points (x, y, z) on the surface S, rather than a function of
points (u, v) in the parameter set U . Given a parameterizationH of the surface,
we recover NH as

NH (u, v) = ||NH (x, y)||N(H(u, v)) or NH = ||NH ||N ◦H.

Surface Area

Just as we defined the arc length s of a path and the integral over a path with
respect to the differential ds of arc length, we may define the area of a param-
eterized surface and the integral of a function with respect to the differential of
surface area.
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Definition 11.5.12. If H : U → R3 is a smoothly parameterized surface, then
we define the surface area of the trace S of H to be

σ(S) =

∫

U

||NH (u, v)||du ∧ dv.

If f is a continuous function defined on S, then we define its integral with
respect to surface area on S to be

∫

S

f dσ =

∫

H

f dσ =

∫

U

(f ◦H)(u, v)||NH(u, v)||du ∧ dv,

This is independent of the parameterization in the sense that if G is another
smoothly parameterized surface which is related to H by a smooth parameter
change P , then the integrals in the above definition are unchanged if we replace
H by G = H ◦ P . This is due to the change of variables theorem (Theorem
11.4.4) and the fact that NH◦P = det(dP )NH ◦P (Exercise 11.5.7). This shows,
in particular, that the surface area of the trace S of H is independent of the
parameterization.

Let (x, y, z) = H(u, v), (u, v) ∈ U be a smooth parameterization of a 2-
surface S in R3, as above, and let φ = f1dy ∧ dz + f2dz ∧ dx+ f3dx ∧ dy be a
2-form defined on a neighborhood of the trace of H. By Example 11.3.12, if we
let F = (f1, f2, f3) be the component vector field of φ, then

H∗(φ) = (F ◦H) ·
[

∂H

∂u
× ∂H

∂v

]

du ∧ dv = (F ◦H) ·NH du ∧ dv, (11.5.1)

If we use the notation, dσ = ||NH ||du ∧ dv, this allows us to express the
integral of the 2-form φ over a smoothly parameterized surface H in its classical
form as an integral with respect to surface area over the trace S of H.

∫

H

φ =

∫

S

F ·N dσ. (11.5.2)

This has physical interpretations in certain situations. For example, if F is
the velocity field of a fluid moving in R3, then the integral represents the flux
or rate of flow of the fluid across the surface S.

Integration over a 2-Cell in Rd

In the previous section, we defined 2-cells in Rd (Definition 11.4.5).
We may think of a simple 2-cell in Rd as smoothly parameterized 2-surface

in Rd along with a path ∂E which runs around the edge of this surface. The
boundary, ∂E, of a 2-cell E is, as before, the path which is the composition of E
with the path ∂I2 in R2. In general, this will not be the same as the topological
boundary of E(I2). In particular, in dimensions higher than 2, the trace E(I2)
has no interior and is, therefore, its own topological boundary, whereas ∂E is
just a path in Rd which runs around the edge of E(I2).
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Considered as a smoothly parameterized 2-surface defined on the interior of
I2, a 2-cell E satisfies the conditions of Definition 11.5.2. Similarly, a 2-form
φ defined on a set containing the trace E(I2) is continuous, hence bounded,
on E(I2) and so it also satisfies the conditions of Definition 11.5.2. Hence, the
integral

∫

E

ω =

∫

I2
E∗(ω).

exists. It is this surface integral over a 2-cell E that we use in formulating
Stokes’s Theorem.

Stokes’ Theorem

Stokes’ Theorem for two dimensional surfaces is much like Green’s Theorem.
The difference is that two dimensional surfaces lying in Rd for d ≥ 3 replace
regions in R2. The result is still stated in terms of 2-cells, but now they are
2-cells in dimension higher than 2. We will be primarily concerned with 2-cells
in R3.

Theorem 11.5.13. Stokes’ Theorem Let E : I2 → Rd be a 2-cell and φ a
smooth 1-form defined on an open set in R3 containing E(I2). Then

∫

∂E

φ =

∫

E

dφ.

The proof is identical to the proof of Green’s Theorem (Theorem 11.4.10).

Remark 11.5.14. As with Green’s Theorem, although Stoke’s Theorem is
stated in terms of a cell E and its boundary ∂E, in practice the integrals over E
and ∂E may be computed using convenient parameterizations which may have
little to do with each other.

Example 11.5.15. Use Stokes’ Theorem to calculate the integral of the 2-form
(x+ y) dz around the boundary of the surface

z = x2 − y2 − 2x+ 2y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

where the boundary path is traversed in the counterclockwise direction when
seen from above the surface (positive z axis points up).

Solution: We parameterize the surface by setting x = u, y = v, z = u2 −
v2−2u+2v. That is, we represent the surface as the trace of the 2-cell E(u, v) =
(u, v, u2 − v2 − 2u + 2v), (u, v) ∈ I2. Traversing ∂I2 in the counterclockwise
direction causes E(u, v) to traverse the boundary of our surface in the required
direction. Since d((x+ y) dz) = dy∧ dz− dz∧ dx, Stokes’ Theorem implies that

∫

∂E

(x+ y) dz =

∫

E

(dy ∧ dz − dz ∧ dx).
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We have dx = du, dy = dv and dz = (2u− 2) du− (2v − 2) dv for the parame-
terization determined by E. Thus,

∫

∂E

(x+ y) dz =

∫

I2
(4 − 2u− 2v) du ∧ dv

=

∫ 1

0

∫ 1

0

(4 − 2u− 2v)dudv = 2

Example 11.5.16. Let ω = x dy∧dz−y dz∧dx−2ydx∧dy. Find the integral of
the 2-form ω over the torus T described as follows: For each point on the circle
A = {(x, y, 0) ∈ R3 : x2 + y2 = 4}, let Cx,y be a circle in R3, of radius 1, which
is centered at (x, y, 0) and lies in the plane through the origin perpendicular to
the circle A. Then T is the union of all the circles Cx,y (see Figure 11.6). Note
that T is a smooth 2-dimensional surface.

Solution: We may parameterize T as follows:

x = (2 + cos 2πt) cos 2πs;

y = (2 + cos 2πt) sin 2πs;

z = sin 2πt,

with 0 ≤ s ≤ 1 and 0 ≤ t ≤ 1. In other words, T is the trace of the 2-cell
E : I2 → R3 given by

E(s, t) = ((2 + cos 2πt) cos 2πs, (2 + cos 2πt) sin 2πs, sin 2πt).

Now the 2-form ω is dφ where φ is the 1-form φ = y2 dx + xy dz. Thus, by
Stokes’ Theorem

∫

E

ω =

∫

E

dφ =

∫

∂E

φ. (11.5.3)

However, ∂E is made up of four parameterized circles. Two of them are

γ1(t) = ((2 + cos 2πt), 0, sin 2πt), and γ2(s) = (3 cos2πs, 3 sin 2πs, 0).

and the other two are γ3(t) = γ1(1 − t) and γ4(s) = γ2(1 − s) – that is, γ3

and γ4 are just γ1 and γ2 traversed in the reverse direction. It follows that
the contributions of the integrals over these paths cancel and, hence, that the
integrals in (11.5.3) are all 0.

Classical Form of Stokes’s Theorem

If φ = f1 dx + f2 dy + f3 dz is a 1-form and F is the component vector field
F = (f1, f2, f3), then by Remark 11.3.4, dφ has curl(F ) as its component vector
field. Using this and (11.5.2) yields the classical form of Stokes’s Theorem.

Theorem 11.5.17. Let E be a simple 2-cell in R3 with trace S and let φ =
f1 dx + f2 dy + f3 dz a 1-form defined on the trace of E. With N the normal
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Figure 11.6: The Torus of Example 11.6

vector for E as defined above, T the tangent vector to the path ∂E, and F the
vector field F = (f1, f2, f3), we have

∫

∂E

F · T ds =

∫

S

curl(F ) ·Ndσ

Proof. The integral on the left is just the path integral
∫

∂E
φ interpreted as

in Theorem 11.4.15. By Stokes’s Theorem, Remark 11.3.4, and (11.5.2) this is
equal to

∫

E

dφ =

∫

S

curl(F ) ·N dσ.

Exercise Set 11.5

1. For the part of the surface x+ y + z = 1 that lies in the first octant, find
a smooth parameterization H for which the normal vector points up, and
then compute the integral of the 2-form ω = x2 dy ∧ dz over H.

2. For the surface z = 1 − x2 − y2, z > 0, find a smooth parameterization
H, with normal vector pointing up, and then compute the integral of the
2-form ω = x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy over this surface.

3. For the smoothly parameterized surface in R3 defined by

H(u, v) = (5u, cos 2πv, sin 2πv), (u, v) ∈ I2,

describe the trace of H and then compute the integral over H of the 2-form
ω = y dy ∧ dz − x dz ∧ dx+ 2 dx ∧ dy.

4. Find the integral over the sphere x2 + y2 + z2 = 1 of the 2-form dy ∧ dz−
2dz ∧ dx.
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5. If H is a parameterized 2-surface in R3, with (x, y, z) = H(u, v), and
if NH = (g1, g2, g3) is its normal vector field, show that H∗(dy ∧ dz) =
g1 du ∧ dv, H∗(dz ∧ dx) = g2 du ∧ dv, and H∗(dx ∧ dy) = g3 du ∧ dv.

6. Find the normal NH and unit normal N for the parameterized torus of
Example 11.5.16.

7. Show that if H : U → R3 is a smoothly parameterized 2-surface and
P : V → U is a smooth parameter change, then the normal vectors of H
and H ◦ P are related by NH◦P = det(dP )NH ◦ P .

8. Let H be a parameterized surface in R3 with trace S and let N =
(η1, η2, η3) be the unit normal vector field on S. Show that the area of S
is
∫

H η, where η = η1dy ∧ dz + η2dz ∧ dx+ η3dx ∧ dy. Hint: use (11.5.2).

9. Use Stokes’s Theorem to compute the integral of the 2-form

ω = y dy ∧ dz + z dz ∧ dx+ dx ∧ dy

over the hemisphere x2 + y2 + z2 = 1, z > 0, oriented so that the normal
vector points up. Hint: ω = dφ for a certain 1-form φ.

10. If F (x, y, z) = (xy, yz, xz) and S is that part of the plane x + y + z = 1
which lies in the first octant, oriented such that the normal vectorN points
up, use the classical form of Stokes’s Theorem to compute

∫

A
curl(F ) ·

N dσ.

11. If φ = z dx+ 3x dy − y dz, use Stokes’s Theorem to compute the integral
of the 1-form φ over the ellipse which is the intersection of the cylinder
x2 + y2 = 9 with the plane z = x. Hint: the ellipse is the boundary of
the surface consisting of that part of the plane z = x which lies inside the
cylinder.

12. Show why the integral of dφ over the sphere

S = {(x, y, z) : x2 + y2 + z2 = 1}

is 0 for every smooth 1-form φ on S.

11.6 Gauss’s Theorem

In this section, we generalize Green’s Theorem to the case of a 3-cell in R3. The
result is Gauss’s Theorem. It relates the integral of a 3-form φ over a 3-cell
with the integral of dφ over the boundary of the 3-cell. We begin with a brief
discussion of integrals of 3-forms in R3.
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The Integral of a 3-Form

A 3-form in R3 has the form φ = f dx ∧ dy ∧ dz for some continuous function
f . As with 2-forms in R2, we define the integral of such a thing over a Jordan
region U to be

∫

U

φ =

∫

U

fdV. (11.6.1)

Just as it did with integrals of 2-forms, the change of variables theorem leads
to change of variables theorem for integration of 3-forms. The proof is the same
as the proof of the 2-dimensional version in Theorem 11.4.4.

Theorem 11.6.1. Let H be a smooth transformation from the open Jordan
region U in R3 to another Jordan region in R3 and suppose H is one-to-one
with non-singular differential on U . If φ is a bounded 3-form on H(U) and
H∗(φ) is bounded on U , then

∫

H(U)

φ =

∫

U

H∗(φ)

provided det(dH) > 0 everywhere on U . If det(dH) < 0 on U , equality holds if
the right side of the equation is replaced by its negative.

A transformation H which satisfies the above conditions will be called a
smooth parameter change.

Example 11.6.2. Find the integral of the 3-form z(x2 + y2) dx ∧ dy ∧ dz over
the truncated cone C = {(x, y, z) : x2 + y2 < z2, 1 < z < 2.

Solution: We could do this problem as an ordinary triple integral in rect-
angular coordinates. However, we choose to parameterize C using something
like cylindrical coordinates (conical coordinates, actually). That is, we let R be
the rectangle defined by 0 < r < 1, 0 < θ < 2π, and 1 < z < 2 and define
H : R → C by

H(r, θ, z) = (rz cos θ, rz sin θ, z).

That is, we make the change of variables

x = rz cos θ, y = rz sin θ, z = z.

Then

dx = z cos θ dr − rz sin θdθ + r cos θ dz

dy = z sin θ dr + rz cos θdθ + r sin θ dz

dz = dz,

so that dx ∧ dy ∧ dz = rz2 dr ∧ dθ ∧ dz, while z(x2 + y2) = r2z. Thus,

H∗(φ) = r3z3 dr ∧ dθ ∧ dz.

and
∫

H

φ =

∫

R

H∗(φ) =

∫ 2

1

∫ 2π

0

∫ 1

0

r3z3 dr dθ dz =
15π

8
.
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The Boundary of a Cube

Our next task is to prove Gauss’s Theorem on the standard cube I3 in R3. In
order to formulate the theorem we need to fix an orientation on the boundary
of the cube.

The boundary of a cube is not a smooth surface. It consists of six squares,
which are smooth surfaces, joined together along their sides. We choose to
orient each of these in such a way that a corresponding normal vector points
away from the cube. That is, an ordered pair of vectors in one of the sides has
the correct orientation if the cross product of these vectors points to the exterior
of the cube.

One way to parameterize the six faces is as follows: We let (s, t) be the
coordinates of a point on the standard square I2. Then

F 10(s, t) = (0, s, t) and F 11(s, t) = (1, s, t)

parameterize the two faces perpendicular to the x-axis, while

F 20(s, t) = (s, 0, t) and F 21(s, t) = (s, 1, t)

F 30(s, t) = (s, t, 0) and F 31(s, t) = (s, t, 1)

parameterize the faces perpendicular to the y and z axes, respectively. Unfor-
tunately, three of these have the wrong orientation. For example, F 10 and F 11

each send the standard basis in R2 to a pair of vectors in R3 with cross product
pointing in the positive x direction. Hence, they don’t both point to the exterior
of the cube. In fact, for F 10 this cross product vector points to the interior of
the cube. In general, the orientation of F iσ is correct if i + σ is even and is
incorrect if i+ σ is odd. Thus, an integral over a face with i+ σ odd will have
the wrong sign. We can fix this by multiplying the integral by −1. This idea
leads to an interpretation of the boundary of the cube I3 as a formal sum

∂I3 =
∑

iσ

(−1)i+σF iσ (11.6.2)

where i runs from 1 to 3 and σ from 0 to 1. We then define the integral of a
2-form φ over ∂I3 to be

∫

∂I3
φ =

∑

iσ

(−1)i+σ
∫

F iσ

φ (11.6.3)

We would get the same result if we just reversed the orientation of each face
F iσ with i + σ odd and then took the sum of the integrals over the resulting
parameterized surfaces. There is an advantage to writing the integral as in
(11.6.3) which will become apparent in the next section.

With these conventions established, we may state and prove Gauss’s Theo-
rem for the standard cube in R3.
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Gauss’s Theorem on a Cube

The proof of Gauss’s Theorem on a cube is not materially different from the
proof of Green’s Theorem on a square.

Theorem 11.6.3. Suppose φ is a smooth 2-form defined on I3. Then

∫

∂I3
φ =

∫

I3
dφ

Proof. We first show that the theorem holds for φ of the form φ = f dy ∧ dz.
With ∂I3 represented as in (11.6.2), we have

∫

∂I3
φ =

∑

iσ

(−1)i+σ
∫

Fiσ

φ =
∑

iσ

(−1)i+σ
∫

Fiσ

f dy ∧ dz.

The integral on the right in this equation will vanish if either y or z is constant
on the face Fiσ. Thus, only the integrals of f dy∧ dz over the faces F10 and F11

may be non-zero. This implies

∫

∂I3
φ =

∫ 1

0

∫ 1

0

f(1, s, t)dsdt−
∫ 1

0

∫ 1

0

f(0, s, t)dsdt

=

∫ 1

0

∫ 1

0

∫ 1

0

∂f

∂x
(x, s, t)dxdsdt =

∫

I3
dφ,

by the Fundamental Theorem of Calculus applied to the integral in the x direc-
tion.

If φ has the form g dy ∧ dz or h dx ∧ dz, the proof is the same with the
variables and the value of i interchanged. Since every smooth 2-form is a sum
of forms for which the theorem is true and since the integrals involved are linear
functions of the forms in the integrand, the theorem is true in general.

Gauss’s Theorem for a 3-Cell

Definition 11.6.4. A 3-cell in R3 is a smooth function E : I3 → R3. A 3-cell
is simple if it is one-to-one with non-singular differential on the interior of I3.
A simple cell E is positively oriented if det(dE) > 0 on the interior of E.

As in the definition of 2-cell, the meaning of smooth requires some comment,
since I2 is not an open set. Along each face or edge of I2 some of the partial
derivatives of the coordinate functions of E must be interpreted as one-sided
derivatives, while at interior points of I2 these are the usual 2-sided derivatives.
The resulting functions on I2 are then required to be continuous.

The faces of E are the functions Eiσ = E ◦ F iσ, where F iσ is the iσ face
of I3 as defined at the beginning of this section. Thus, E10(s, t) = E(0, s, t),
E11(s, t) = E(1, s, t), E20(s, t) = E(s, 0, t), etc. It follows from the above
definition that each face is a 2-cell.
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The boundary of a 3-cell E is defined to be

∂E =
∑

iσ

(−1)i+σEiσ,

where, as in (11.6.3), this means that the integral of a 2-form φ over ∂E is
defined to be

∫

∂E

φ =
∑

iσ

(−1)i+σ
∫

Eiσ

φ.

The following is Gauss’s Theorem for a 3-cell.

Theorem 11.6.5. If E is a smooth 3-cell in R3 and φ a smooth 2-form on the
trace of E, then

∫

∂E

φ =

∫

E

dφ.

Proof. This is just like the proof of Green’s Theorem for a 2-cell. We have

∫

∂E

φ =

∫

∂I3
E∗(φ) =

∫

I3
dE∗(φ)

=

∫

I3
E∗(dφ) =

∫

E

dφ,

by Theorem 11.6.3 and Theorem 11.3.10(c).

Example 11.6.6. Find the integral of the 2-form

φ = (x2 + y) dy ∧ dz + (2xz − y) dx ∧ dz + (xy2 + z) dx ∧ dy

over the boundary of the solid A defined by the inequalities 0 ≤ z ≤ 1−x2−y2.
Solution: We use Gauss’s Theorem, which tells us that the integral we seek

is equal to
∫

A
dφ. We will parameterize A using cylindrical coordinates

x = r cos t, y = r sin t, z = z with 0 ≤ z ≤ 1−r2, 0 ≤ r ≤ 1, 0 ≤ t ≤ 2π.

Since dφ = (2x+ 2) dx ∧ dy ∧ dz = 2r(r cos t+ 1)dr ∧ dt ∧ dz, we have

∫

A

dφ =

∫ 1

0

∫ 1−r2

0

∫ 2π

0

2(r2 cos t+ r)dt dz dr =

∫ 1

0

∫ 1−r2

0

4πr dz dr = π.

Example 11.6.7. For 0 ≤ b ≤ 1, let B be that part of the solid sphere of
radius one, centered at the origin, that lies between the planes z = −b and
z = b. Compute the volume of B in two ways – first, as an integral over B and,
second, as a surface integral over ∂B.

Solution: The volume we seek is
∫

B
dx∧ dy∧ dz. We parameterize B using

cylindrical coordinates. Then x = r cos θ, y = r sin θ and z = z with 0 ≤ r ≤ 1,
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Figure 11.7: Horizontal Slice of a Sphere

0 ≤ θ ≤ 2π, and −b ≤ z ≤ b. We know dx ∧ dy ∧ dz = r dr ∧ dθ ∧ dz and
r =

√
1 − z2 at points on the surface of the sphere. Thus,

∫

B

dx ∧ dy ∧ dz =

∫ b

−b

∫ 2π

0

∫

√
1−z2

0

r dr dθ dz

=

∫ b

−b
π(1− z2) dz = 2π(b− b3/3).

This is the result of the calculation of the volume integral.

To compute the volume of B as a surface integral we use Gauss’s Theorem.
Since d(z dx∧ dy) = dz ∧ dx∧ dx = dx∧ dy ∧ dz, Gauss’s Theorem tells us that

∫

B

dx ∧ dy ∧ dz =

∫

∂B

z dx ∧ dy =

∫

∂B

zr dr ∧ dθ

where the latter integral results from switching to cylindrical coordinates.

The surface ∂B is made up of three parts: a section S of of the sphere defined
by the conditions r =

√
1 − z2, −b ≤ z ≤ b, and top and bottom horizontal discs

D+ and D− defined by z = ±b, 0 ≤ r ≤
√

1 − b2.

The horizontal discs each have radius
√

1 − b2 and so the contribution of the
top disc D+ to the integral

∫

∂B
zr dr ∧ dθ is b(1 − b2)π. The bottom disc D−

appears, at first glance, to yield the negative of this since everything appears to
be the same except that z = b on D+ and z = −b on D−. However, this is not
correct. As part of ∂B, the bottom disc D− has negative orientation relative
to the standard x, y coordinates in the plane while D+ has positive orientation.
The negative orientation of D− reverses the direction of integration with respect
to θ and, hence, reverses the sign of the integral. This leads to a result which
is identical to that computed for D+. Thus, the combined contribution of D−

and D+ to
∫

∂B
zr dr ∧ dθ is 2πb(1− b2).

To compute the contribution of the spherical section S, we use the z and θ
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coordinates to parameterize S. Then r =
√

1 − z2 on S

∫

∂S

zr dr ∧ dθ =

∫ 2π

0

∫ b

−b
z
√

1 − z2 dz dθ = 4b3π/3.

Adding the various contributions gives us

∫

B

dx ∧ dy ∧ dz =

∫

∂B

zr dr ∧ dθ = 4/3 b3π + 2b(1− b2)π = 2π(b− b3/3).

Fortunately, this is the same answer as before.

Classical Form of Gauss’s Theorem

If φ = f1 dy ∧ dz + f2 dz ∧ dx + f3 dx ∧ dy is a 2-form in R3 and we let F =
(f1, f2, f3) be its component vector field, then

dφ = div F dx ∧ dy ∧ dz,

where divF = ∂f1/∂x+∂f2/∂y+∂f3/∂z. If we combine this with (11.5.2) and
Theorem 11.6.5, the result is the classical form of Gauss’s Theorem:

Theorem 11.6.8. If E is a 3-cell in R3 with trace A. Suppose ∂E has trace
equal to the topological boundary ∂A of A, and F is a smooth vector function
defined on the trace A of E, then

∫

∂A

F ·N dσ =

∫

A

div F dV.

In a fluid flow problem, where F is the velocity field of the flow, this has
the following interpretation. The left side represents the flux or rate of flow of
fluid out of the region A, while the right side is the integral over A of a function
divF which represents, at each point of A, the tendency of the fluid to move
away from (diverge from) the point.

The Integral over a 3-Surface in Rd

A smoothly parameterized 3-surface in Rd is a smooth function H : U → Rd

such that U is an open subset of R3 and dH is non-singular on U . The trace of
H is its image in Rd.

Just as an ordered basis for a 2-dimensional vector space determines an
orientation for the vector space, an ordered basis for a vector space of dimension
3 or higher also determines an orientation for the vector space. Two ordered
bases determine the same orientation if and only if the determinant of the matrix
which transforms the first basis to the second is positive.

As before, H determines an orientation on its trace S = H(I3). That is,
dH(a) sends the standard basis in R3 to an ordered basis for the linear subspace
of Rd whose translate by b = H(a) is the tangent space to S at b. A 3-surface
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in Rd is a subset which, in a neighborhood of each of its points, may be given
a smooth parameterization – that is, its intersection with this neighborhood is
the trace of a smoothly parameterized 3 surface. A 3-surface is orientable if
there is a smooth function which assigns an ordered basis, above, to each point
of the surface.

We define the integral of a 3-form over a smoothly parameterized 3-surface
in Rd in the same way we defined the integral of a 2-form over a smoothly
parameterized 2-surface.

Definition 11.6.9. If U is an open Jordan region, H : U → Rd is a smoothly
parameterized 3-surface, and φ is a 3-form on H(U) such thatH∗(φ) is bounded
on U , we set

∫

H

φ =

∫

U

H∗(φ).

This defines the integral on the left.

As before, this integral, though defined through the parameterization H
is actually independent of parameterization in the sense that the integral is
unchanged if H is replaced by J = H ◦ P , where P : V → U is any positively
oriented smooth parameter change, provided V and J also satisfy the conditions
of the above definition. The integral does depend on the orientation of H and
if this is reversed, then the integral changes sign. Here, a smooth parameter
change P : V → U between open Jordan regions in R3 is a smooth one-to-one
map with non-singular differential dP > 0. It is positively oriented if detdP > 0.

Stokes’s Theorem for 3-Cells in Rd

The definition of a 3-cell in Rd is the same as that of a 3-cell in R3 except that
the trace of the cell lies in Rd rather than R3. Since, on the interior of I3, a
3-cell is a smoothly parameterized surface, we may integrate a 3-form over it.
With no extra work, we have Stokes’s Theorem for a 3-cell in Rd, for any d ≥ 3.
Its proof is the same as the proof of Gauss’s Theorem.

Theorem 11.6.10. If E : I3 → Rd is a 3-cell in Rd, and φ is a 3-form defined
on the trace of E, then

∫

∂E

φ =

∫

E

dφ.

In the next section, we will state the general form of Stokes’s Theorem, which
involves integrals over p-cells in Rq for any q ≥ p.

Exercise Set 11.6

1. Suppose E is a positively oriented simple 3-cell in R3 with trace A. Show
that the volume of A is

V (A) =

∫

∂E

1

3
(x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy).
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2. Let C be the solid defined by

C = {(x, y, z) ∈ R3 : x2 + y2 ≤ z ≤ 1}.

Use Gauss’s Theorem to find the integral over the boundary of C of the
2-form

φ = (x+y sin5 z) dy∧dz+(y− cos zx) dz∧dx+(3z2 +ln(1+xy)) dx∧dy.

3. Show how to construct a 3-cell with trace equal to

A = {(x, y, z) ∈ R3 : a2 ≤ x2 + y2 + z2 ≤ b2}.

4. For a 3-cell E as in the previous exercise, and a 2-form φ on A, show that
∫

E

dφ =

∫

Cb

φ −
∫

Ca

φ

where Ca and Cb are the spheres of radius a and b, respectively, oriented
so that the normal vectors point to the exterior of the sphere. If dφ = 0,
what do you conclude.

5. Show how to extend the result of the previous exercise to more general
situations where one surface is the boundary of a solid A and the second
surface is the boundary of a second solid B which is contained in the
interior of A.

6. Let F be a C1 vector field on an open set U ⊂ R3. If a ∈ U , use Gausses
Theorem to prove that

divF (a) = lim
r→0

1

V (Br(a))

∫

∂Br(a)

F ·N dσ.

7. Let U be an open set in R3 such that U is the trace of a 3-cell E and let
F = (f1, f2, f3) a vector field on the trace U . There is a 1-form φ with F
as component vector field and a 2-form φ∗ with F as component vector
field. That is,

φ = f1 dx+ f2 dy+ f3 dz and φ∗ = f1 dy ∧ dz+ f2 dz ∧ dx+ f3 dx∧ dy.

Show that

(a) φ ∧ φ∗ = F · F dx ∧ dy ∧ dz = ||F ||2 dx ∧ dy ∧ dz;
(b) if φ = dg for some continuous function g on U which is C2 on U , then

dφ∗ = ∆g, where ∆ = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplacian;

(c) If g is harmonic (i. e. if ∆g = 0 on U), then
∫

U
||F ||2dV =

∫

∂E
gφ∗.

(d) if g is harmonic and g = 0 on the trace of ∂E, then g is identically 0
on U .
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8. Let r : R3\{0} → R be the function r(x, y, z) =
√

x2 + y2 + z2. Using the
notation of the previous exercise, compute dr, show that d(1/r) = −dr/r2
and (d(1/r))∗ = dr∗/r2. Show that d(dr∗/r2) = 0 and, hence, that 1/r is
harmonic on R3\{0}.

9. The gravitational force field due to a mass at the origin is a constant
k times the component vector field of the 2-form dr∗/r2 of the previous
exercise. Show that if S is a solid sphere in R3, centered at the origin,
then the flux across ∂S due to this field is

∫

∂S

k
dr∗

r2
= −4kπ.

Hint: for the surface ∂S, show that N is the component vector field of dr∗

restricted to ∂S. Then use the classical expression for a surface integral
(11.5.2).

10. Use Gauss’s Theorem to show that the integral in the previous exercise
does not change if the sphere S is replaced by any reasonable solid A with
0 in its interior. What reasonable assumptions on A will make this true?

11.7 Chains and Cycles

Much of what we have done with Green’s, Stokes’s and Gauss’s Theorems in
the previous section involves involves integration over cells. However, in some
cases, we have worked with integrals over objects which are sums of cells in a
certain sense. In particular, an integral over the boundary of a cell is not an
integral over a cell, but a sum of integrals over the several cells which form the
boundary. In the previous section we came to think of the boundary of a 3-cell
as a formal linear combination (11.6.2) of 2-cells corresponding to the faces of
I3. This suggests that, for any natural number k, we think of the boundary of a
k-cell as a formal linear combination of the cells which consist of restrictions of
the cell to the various faces of Ik. This will require a theory of integration, not
just over cells, but over formal linear combinations of cells. Expanding on this
idea leads to some very powerful and far reaching concepts in mathematics. In
this section, we will give a brief introduction to this formalism and then use it
to restate Green’s, Stokes’s and Gauss’s Theorem in their modern form.

We begin with an introduction to this idea in the context of paths. Here the
objects we wish to introduce are 1-chains and 1-cycles.

1-Chains

A path γ in Rd is piecewise smooth, which means that it may be thought of
as several smooth paths γ1, · · · , γn joined together end to end to form a single
path. The integral of a function over γ is then the sum of the integrals over the
paths γj . we may reparameterize each of these paths so as to have parameter
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interval I = [0, 1] without effecting the integral (Exercise 11.1.4). The formal
sum of the paths γj is then a 1-chain in the sense of the following definition.

Definition 11.7.1. A 1-chain in Rd is a formal finite linear combination, with
integral coefficients,

Γ =

p
∑

j=1

mjγj , (11.7.1)

of smooth paths in Rd.

Note that (11.7.1) is not a linear combination of the γj as functions on [0, 1]
– that is, the multiplication by integers and the sums are not pointwise sums of
Rd valued functions. It is purely a formal expression and cannot be simplified
or manipulated until we impose some rules for manipulating such expressions.
We do this below.

We agree that if the individual terms mjγj in a chain are rearranged, so
that they appear in a different order, then the chain does not change. We agree
that the chain does not change if we drop summands mjγj with mj = 0, and
we agree that two summands mjγj and mkγk with γj = γk may be combined
to yield (mj +mk)γj . The empty chain – that is the chain with no summands
is denoted by 0. We add two chains in the obvious way: the sum of two formal
linear combinations of paths is another formal linear combination of paths. The
operation of addition, so defined, is clearly associative and commutative.

The set of 1-chains, as defined above, forms a commutative group – that is,
it has an operation (+) which is associative and commutative, there is a zero
element (the linear combination with no summands) and each element has an
additive inverse (just replace each coefficient mj by −mj).

Definition 11.7.2. The expression (11.7.1) for a chain Γ is said to be in reduced
form if the γj are distinct paths and all the mj are non-zero. Note that each
chain may be expressed in reduced form. We define the trace of a chain Γ to be

Γ(I) =

p
⋃

j=1

γj(I),

where (11.7.1) is an expression of the chain in reduced form.

1-Cycles

A 0-chain in Rd is a formal linear combination, with integral coefficients, of
singleton subsets of Rd – that is, a formal sum of the form

p
∑

j=1

mj{xj}.

with each xj in Rd.
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Here, the sum is not a sum of vectors in Rd. It is a purely formal sum
and can only be manipulated using the rules we set down: Again, terms may be
rearranged in the sum without changing the 0-chain. Terms with 0 as coefficient
are dropped, and terms with the same {xj} may be combined by adding their
coefficients. The empty chain is denoted by 0. Addition is defined as before and
the result is another commutative group. We must be careful here: the addition
operation, defined this way, has nothing to do with the operation of addition in
the vector space Rd. The following example illustrates this fact.

Example 11.7.3. For the 0-chains C1 and C2 in R1 defined by C1 = 1{2} +
3{3.5}− 2{0} and C2 = 1{4.9}+ 4{0}− 3{3.5}, find C1 +C2 and simplify it as
much as possible.

Solution: We have

C1 + C2 = 1{2}+ 2{3.5} − 2{0}+ 1{4.9}+ 4{0} − 2{3.5}
= 1{2}+ (2{3.5} − 2{3.5}) + (−2{0}+ 4{0}) + 1{4.9}
= 1{2}+ (2 − 2){3.5}+ (−2 + 4){0}+ {4.9}
= {2}+ 0{3.5}+ 2{0}+ 1{4.9} = 1{2}+ 2{0}+ 1{4.9}.

Note this does not further simplify to {2 + 2 · 0 + 4.9} = {6.9}. In the group of
0-chains in R1 it is not true that 2{0} = 0 or that 1{2} + 1{4.9} = 1{6.9}. We
will however, commonly drop the coefficient 1 in front of a path or a singleton
point. Then the result of the above computation becomes {2}+ 2{0}+ {4.9}.

Note that if 1-chains are replaced by 0-chains in Definition 11.7.2 we have a
notion of reduced form for 0-chains. Each 0-chain can be put in reduced form.
Once it is expressed in reduced form, the trace of a 0-chain is just the union
of the points of Rd that appear in this expression. Note that in the previous
example, the last expression in the series of equalities is an expression for C1+C2

in reduced form.

Definition 11.7.4. We define a map ∂ from 1-chains in Rd to 0–chains in Rd

by

∂





p
∑

j=1

mjγj



 =

p
∑

j=1

(mj{γj(1)} −mj{γj(0)}).

A 1-chain Γ in U is called a 1-cycle if ∂Γ = 0.

The map ∂ from 1-chains to 0–chains is a group homomorphism. This means
that, for any two 1-chains Γ and Λ. ∂(Γ + Λ) = ∂Γ + ∂Λ.

A smooth path with parameter interval [0, 1] is, itself, a 1-chain (a 1-chain
where there is only one summand and its coefficient is 1). Also, as mentioned
earlier, a path γ which is not smooth can also be used to produce a 1-chain Γ
by breaking the path up into smooth pieces and reparameterizing the pieces so
that they have [0, 1] as parameter interval. If this is done, then it turns out that
γ is a closed path if and only if ∂Γ = 0 (Exercise 11.7.13).
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Figure 11.8: Boundary of a Rectangle as a Cycle

Example 11.7.5. Consider the rectangleR in R2 with vertices the points (0, 0),
(2, 0), (2, 1), and (0, 1) (Figure 11.8). Represent its boundary as a cycle.

Solution: We set γ1(t) = (2t, 0), γ2(t) = (2, t), γ3(t) = (2 − 2t, 1), and
γ4(t) = (0, 1 − t). Then Γ = γ1 + γ2 + γ3 + γ4. Note that Γ(I) = ∂R and

∂Γ = γ1(1)− γ1(0) + γ2(1)− γ2(0) + γ3(1)− γ3(0) + γ3(1)− γ3(0)

= {(2, 0)} − {(0, 0)}+ {(2, 1)} − {(2, 0)}+ {(0, 1)} − {(2, 1)}
+ {(0, 0)} − {(0, 1)} = 0.

and so Γ is a cycle.
Note, we could also represent the boundary of R as a single path which joins

together the smooth paths γ1, γ2, γ3, and γ4. As we shall see below, for the
purposes of integration, the two ways of representing the boundary of R are
equivalent.

The boundary of a reasonably nice bounded subset of the plane may be
represented as the union of a number of smooth curves. The rectangle in Figure
11.8 is one such set. When this is true, we would like to represent the boundary
by a certain cycle. In Figure 11.8 this was the cycle of the previous example.
The next example describes another such situation.

Example 11.7.6. In Figure 11.9 , the region S in the plane consists of points
inside the large circle but outside the union of the two smaller circles. Represent
∂S by a cycle.

Solution: Smooth curves which trace each of the three circles are:

γ1(t) = (4 cos(2πt), 4 sin(2πt)),

γ2(t) = (2 + cos(2πt), sin(2πt)),

γ3(t) = (−2 + cos(2πt), sin(2πt)).

Each circle is traced once in the counterclockwise direction by the corresponding
curve. We represent the boundary ∂S of S by the cycle Γ = γ1 − γ2 − γ3.
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Figure 11.9: Boundary of S as the cycle γ1 − γ2 − γ3

Why do we choose to multiply γ1 and γ2 by −1 in the sum defining Γ? It is
due to the following: while the circle γ1 has positive orientation relative to S,
the circles γ2 and γ3 have negative orientation relative to S and multiplying by
−1 compensates for this. For the meaning of this statement see the discussion
on orientation of paths in Section 11.4.

p-Chains and p-Cycles

For any non-negative integer p, we will define a p-chain in Rd to be a formal
linear combination of p-cells in Rd. First we need to define what we mean by a
p-cell in Rd. We have defined 2-cells and 3-cells in previous sections. A 1-cell
in Rd will be a smooth path in Rd parameterized on I = [0, 1]. A 0-cell is just
a singleton set {x} in Rd.

Definition 11.7.7. We define d-cells just as we defined 2-cells and 3-cells. A d-
cell in Rp is a smooth function E : Id → Rp. A d-cell is simple if it is one-to-one
with non-singular differential on the interior of Id.

As before, in defining for such a function to be smooth on the compact set
Id, on the boundary some partial derivatives must be interpreted as one-sided
derivatives .

Definition 11.7.8. A p-chain C in Rd is a formal linear combination

C =
n
∑

J=1

mjEj (11.7.2)

of p-cells with integer coefficients.
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As we did with 1-chains, we agree that if the individual terms mjEj in a
chain are rearranged, so that they appear in a different order, then the chain
does not change. We agree that the chain does not change if we drop summands
mjEj with mj = 0, and we agree that two summands mjEj and mkEk with
Ej = Ek may be combined to yield (mj + mk)Ej. The empty chain – that is
the chain with no summands is denoted by 0. We add two chains in the obvious
way: the sum of two formal linear combinations of p-cells is another formal
linear combination of p-cells. The operation of addition, so defined, is clearly
associative and commutative.

As before, the set of p-chains in Rd, as defined above, forms a commutative
group.

The expression (11.7.2) for a chain C is said to be in reduced form if the Ej
are distinct paths and all the mj are non-zero. Note that each chain may be
expressed in reduced form. We define the trace of a chain C to be the union of
the traces of the Ej in an expression of the chain in reduced form.

Boundaries

If E : Ip → Rd is a continuous function, then for j = 1, · · · , p we consider the
2p functions of p− 1 variables defined by

Ej0 = E(x1, · · · , xj−1, 0, xj , · · · , xp) and

Ej1 = E(x1, · · · , xj−1, 1, xj , · · · , xp)

Each of these is a continuous function from Ip−1 to Rd. We will call these the
p− 1 dimensional faces of E.

Definition 11.7.9. If E is a p-cell, then its boundary, ∂E, is the p − 1-chain
defined by

∂E =
∑

i,σ

(−1)i+σEiσ

Where i ranges over 1, · · · , p and σ ranges over 0, 1.
If C =

∑

j Ej is a p-chain, then we define its boundary ∂C to be the p − 1
chain

∑

j ∂Ej . We say that C is a p-cycle if ∂C = 0.

Recall that the above definition of ∂E, is the way we defined the boundary
of a 3-cell in the previous section. It is, not quite the same, but is equivalent to
the way we defined the boundary of a 2-cell in section 11.4.

Theorem 11.7.10. If C is a p-chain, then ∂2C = 0.

Proof. It is enough to prove this in the case where C is a single cell E. Then

∂2E = ∂(∂E) =
∑

iσ

∑

jτ

(−1)i+j+σ+τ (Eiσ)jτ .

Note that, if i ≤ j, then (Eiσ)jτ = (Ej+1σ)iτ . Since these two terms appear
with opposite signs in the above sum, they cancel each other out. But every
term in the above sum is of one of these two types. Hence, the sum is 0.
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The previous theorem tells us that the boundary of a chain is always a cycle.
In particular, the boundary of a p-cell is a p− 1-cycle.

Example 11.7.11. Express the solid square of Example 11.7.5 and Figure 11.8
as the trace of a 2-cell E and calculate ∂E.

Solution: We set E(s, t) = (2s, t) for (s, t) ∈ I2. This has the rectangle of
Figure 11.8 as trace. By Definition 11.7.9,

∂E = E20 +E11 −E21 −E10

where, in terms of the paths γj of Example 11.7.5,

E20(s) = E(s, 0) = (2s, 0) = γ1(s)

E11(s) = E(1, s) = (1, s) = γ2(s)

E21(s) = E(s, 1) = (2s, 1) = γ3(1− s)

E10(s) = E(0, s) = (0, s) = γ4(1 − s).

Note that E21 and E10(s) are γ3 and γ4 with orientation reversed. This is why
they each occur with a factor of (−1) in the cycle ∂E. This compensates for
the orientation reversal when we do integration over ∂E and ensures that, for
the purposes of integration, the cycle ∂E and the cycle Γ = γ1 + γ2 + γ3 + γ4

are equivalent.

Integration Over Chains and Cycles

Chains exist so that we may integrate over them. We define the integral of a p-
form over a p-chain below. First we define the integral of a p-form over a p-cell.
This is no different than the definitions for integrals of forms in dimensions 1, 2
or 3. We use the transformation law for how a p form φ in Rq transforms to
a p-form E∗(φ) on Ip under a cell E : Ip → Rq. This is defined exactly as in
Definition 11.3.9.

Definition 11.7.12. If E : Ip → Rq is a p-cell and φ a p-form defined on a set
containing E(Ip), then we define the integral of φ over E by

∫

E

φ =

∫

Ip

E∗(φ).

We define the integral of a p- form over a p-chain as follows:

Definition 11.7.13. Let

C =

p
∑

j=1

mjEj

be a p-chain in Rd, expressed in reduced form. If φ is a p-form defined on the
trace of C, then we set

∫

C

φ =

p
∑

j=1

mj

∫

Ej

φ. (11.7.3)
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It is a consequence of this definition that if C1 and C2 are two p-chains and
φ is a p-form defined and continuous on a set containing both the trace of C1

and the trace of C2, then
∫

C1+C2

φ =

∫

C1

φ+

∫

C2

φ (11.7.4)

The proof of this fact is left to the exercises (Exercise 11.7 .12).

Definition 11.7.14. Suppose C1 and C2 are cycles in Rd. We will say that C1

and C2 are equivalent if they have the same trace and
∫

C1

φ =

∫

C2

φ

for every p-form φ on the trace of C1.

In general, a p-cell E is equivalent to any p-cell F for which there is a is a
positively oriented smooth parameter change P such that F = E ◦ P . If P is
negatively oriented, then the chain (−1)E is equivalent to F . In the case of a
1-cell γ (a smooth path) this is illustrated by the fact that (−1)γ is equivalent
to −γ, the path γ traversed in the reverse direction (see Exercise 11.1.8).

Example 11.7.15. Show that if γ1 and γ2 are two paths with parameter in-
terval I = [0, 1], and if γ1(1) = γ2(0) (so that γ2 starts where γ1 ends), then
the chain Γ = γ1 + γ2 is equivalent to the chain consisting of the single path γ
which is γ1 and γ2 spliced together, that is

γ(t) =

{

γ1(2t) if 0 ≤ t ≤ 1/2

γ2(2t− 1) if 1/2 ≤ t ≤ 1
.

Solution: Note that γ(I) = γ1(I) ∪ γ2(I) = Γ(I). On [0, 1/2] γ is obtained
from γ1 by a smooth parameter change t → 2t, while on [1/2, 1] γ is obtained
from γ2 by the smooth parameter change t → 2t − 1. Thus, for any 1-form on
the trace of γ,

∫

γ

φ =

∫ 1

0

φ(γ(t))γ′(t) dt =

∫ 1/2

0

φ(γ(t))γ′(t) dt+

∫ 1

1/2

φ(γ(t))γ′(t) dt

=

∫

γ1

φ+

∫

γ2

φ =

∫

Γ

φ

and, hence, γ and Γ are equivalent chains.

The General Stokes Theorem

Theorem 11.7.16. If φ is a smooth p− 1-form defined on Ip, then
∫

∂Ip

φ =

∫

Ip

dφ.
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We won’t go through the proof here. It is very much like the proof of the
p = 3 version of the theorem, which was proved earlier (Theorem 11.6.3). It is
a simple application of the Fundamental Theorem of Calculus.

This leads us to the general version of Stokes’s Theorem.

Theorem 11.7.17. Let C be a p-chain in Rq and φ a smooth p−1-form defined
on the trace of C. Then

∫

∂C

φ =

∫

C

dφ (11.7.5)

Proof. If C is a single cell E, then this follows, as with earlier versions, from
the previous theorem and the identities

∫

∂E

φ =

∫

∂Ip

E∗(φ) and

∫

E

dφ =

∫

Ip

dE∗(φ).

The proof for general chains now follows from the fact that both sides of (11.7.5)
are linear in C. That is, if C is a certain linear combination of cells Ej , then
the integrals in the formula are the corresponding linear combinations of the
integrals with C replaced by Ej .

If C is a single cell, then the above theorem is Green’s Theorem when p = 2
and q = 2, the dimension 2 Stokes’s Theorem when p = 2 and q > 2, Gauss’s
Theorem when p = 3 and q = 3, and the dimension 3 Stokes’s Theorem when
p = 3 and q > 3. In the case where p = 1, q = 1 it is the Fundamental Theorem
of Calculus, and when p = 1, q > 1 it is the Fundamental Theorem of Calculus
for path integrals.

The following are simple corollaries of the general Stokes Theorem. The
proofs are left to the exercises.

Corollary 11.7.18. If C is a p-cycle and φ is a smooth p−1 form on the trace
of C, then

∫

C

dφ = 0.

Corollary 11.7.19. If C is a p-chain and φ is a smooth closed p-form on the
trace of C, then

∫

∂C

φ = 0.

Exercise Set 11.7

1. If E1, E2, and E3 are three distinct p-cells in Rd, express the sum of the
chains 2E1 +E2 − 3E3 and −5E1 − E2 +E3 in reduced form.

2. Express the sum of the 0-chains C1 = 2{−3} − 4{1} + {2} and C2 =
3{1} − {2} in reduced form.

3. For t ∈ [0, 1] let γ1(t) = (2t − 1, 0), γ2(t) = (1 − t, t), γ3(t) = (t − 1, t).
Which of the following 1-chains in R2 is a cycle?
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(a) γ1 + γ2 + γ3;

(b) γ1 + γ2 − γ3;

(c) γ1 + 2γ2 − 3γ3.

4. Let E(r, θ) = (r cos 2πθ, r sin 2πθ) for (r, θ) ∈ I2. Show that E is a simple
cell and explicitly describe the cycle ∂E.

5. Let ∆ be the triangle in R2 with vertices at (0, 0), (1, 0), and (0, 2). Ex-
press this triangle as the trace of a 2-cell E and find the cycle ∂E.

6. Find the integral of the 1-form 2xy3 dx+ 3x2y2 dy over the 1-cycle of the
previous exercise.

7. For t ∈ [0, 1], let γ1(t) = (2t − 1, 0), γ2(t) = (cos(πt), sin(πt)), and define
a 1-chain Γ in R2 by Γ = γ1 +γ2. For the 1-form φ(x, y) = 3x2 dx+2y dy,
find

∫

Γ φ.

8. Find
∫

Γ ψ if Γ is the 1-chain of the previous exercise and ψ = x dy.

9. Define 2-cells in R2 as follows. For (s, t) ∈ I2,

E(s, t) = ((1 + s) cosπt, (1 + s) sinπt)

F (s, t) = ((1 + s) cosπt,−(1 + s) sinπt).

If C is the 2-chain E − F , then find ∂C and
∫

∂C
(ex

2

dx+ sin(y2)) dy.

10. In R2 define a smooth path γr(t) = (r cos(2πt), r sin(2πt)) for each r > 0.
If φ is a 1-form on R2 \ {0} such that dφ = 0, then show that

∫

γr
φ is

independent of r. Hint: for 0 < s < r, consider the cycle Γ = γr − γs. Is
this ∂E for some 2-cell E?

11. Let φ be a smooth 2-form on R3 \ {0} which satisfies dφ = 0. Show that
∫

∂E φ is the same number for all simple 3-cells E such that 0 is in the
image of the interior of I3 under E, but not in the image of ∂I2 under E.
On the other hand, if 0 is not in the trace of E at all, then this integral
is 0. Hint: for the first part, show that for any such E, the integral over
the boundary of E is the same as the integral over any sufficiently small
hollow sphere centered at 0.

12. Prove (11.7.4).

13. Suppose γ is a path and Γ = γ1 + · · ·+γn is the 1-chain made by breaking
γ up into smooth paths and reparameterizing each of them so that it has
parameter interval [0, 1]. Show that Γ is a cycle if and only if γ is a closed
path.

14. Prove that if Γ is a 1-cycle, then Γ is equivalent to a 1-cycle with all of its
summands closed paths. Hint: use repeated application of the following
idea: if one path begins where another one ends, then the two can be
joined together to form a single path which is equivalent to the sum of the
two individual paths.
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15. Let φ be a smooth 2-form on R3 \ Z, where Z is the set of integers on
the x-axis. Let γ be a positively oriented parameterization of the sphere
of radius n+ 1/2 centered at the origin, and for j = −n, · · · n let γj be a
positively oriented parameterization of the sphere of radius 1/3 centered
at j. Then let Γ be the cycle Γ =

∑n
j=−n γj . If dφ = 0 show that

∫

γ

φ =

∫

Γ

φ.


