Math 334 Sample Problems

One side of one notebook sized page of notes will be allowed on the test. You may work together on the sample problems - I encourage you to do that. The test will cover up to $\S 4.2$.

1. Let f be defined and bounded on $[a, b]$. Define a function g on $[a, b]$ by the formula $g(x)=\bar{I}\left(\chi_{[a, x]} f\right)$. In other words $g(x)$ is the upper integral of f on the interval $[a, x]$. Prove that g is continuous on $[a, b]$. Suppose f is continuous at x_{0}. Prove that $g^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$. The same is true for lower integrals.
2. Using the method of Lagrange multipliers, find the highest and lowest points of the circle

$$
x^{2}+y^{2}+z^{2}=16,(x+1)^{2}+(y+1)^{2}+(z+1)^{2}=27
$$

3. Show that the surface $z=3 x^{2}-2 x y+2 y^{2}$ lies entirely above every one of its tangent planes. Hint: Look at the Taylor expansion at every point.
4. Let $f(x, y)=\sec \left(x+y^{2}\right)$. Find the first two non-zero terms in the Taylor series of $\cos x$, centered at 0 . Use it to find the first two nonzero terms of the Taylor series of $\sec x$ centered at 0 . Then use that series to find the first two non-zero terms of f at $(0,0)$.
5. Let g be a polynomial of degree three. Prove that

$$
\int_{-1}^{1} g=\frac{g(-1)+4 g(0)+g(1)}{3}
$$

6. Consider the following function

$$
F(x, y)=\left(\frac{x}{1+x+y}, \frac{y}{1+x+y}\right)
$$

which has the set $\{(x, y): 1+x+y \neq 0\}$ as its domain. Compute $\frac{\partial(f, g)}{\partial(x, y)}$. Where is it different from 0? Show that F is $1-1$ and find an explicit formula for its inverse. Use these results to describe the exact image of F
7. Folland, $\S 2.9$, problem 16.
8. Let f be a positive continuous function on $I=[a, b]$. Let $M=$ $\max \{f(x): x \in I\}$. Prove that

$$
\lim _{n \rightarrow \infty}\left(\int_{I} f^{n}\right)^{1 / n}=M
$$

9. Suppose $F(x, y)$ is a C^{2} function that satisfies the equations $F(x, y)=$ $F(y, x), F(x, x)=x$. Prove that the quadratic term in the Taylor polynomial of F based at the point (a, a) is $\frac{1}{2} F_{x x}(a, a)(x-y)^{2}$.
10. There may be homework problems or example problems from the text or lectures on the midterm.
