Math 334 Sample Problems

One notebook-sized page (one side) of notes will be allowed on the test. You may work together on the sample problems - I encourage you to do that. Neither Chad nor I will tell you how to work these problems. You may ask for help if you bring your work in and show it to us, and tell us where you are stuck. The test (on Monday, October 26) will cover up to and including section 2.4 in the text. There may be homework problems or example problems from the text on the midterm.

1. Let $A \subset \mathbf{R}^{n}$ and $B \subset \mathbf{R}^{m}$ be compact. Prove that $A \times B \subset \mathbf{R}^{n+m}$ is compact.
2. Let \mathbb{Q} be the set of rational numbers. Prove that there does NOT exist a pair of non-empty sets A, B such that $\mathbb{Q}=A \cup B$ with $\bar{A} \cap \bar{B}=\emptyset$.
3. Prove that the temperature of a tetrahedron must have at least three distinct points on the edges or vertices of the tetrahedron with the same value. Assume the temperature is a continuous function.
4. Find a function $f(x, y)$, continuous on a neighborhood of $(0,0)=\mathbf{0}$ but not differentiable at $\mathbf{0}$, with the property that the directional derivative $\partial_{\mathbf{u}} f(\mathbf{0})=0$ for all directions \mathbf{u}. For this function $\partial_{\mathbf{u}} f(\mathbf{0}=\nabla f(\mathbf{0}) \cdot \mathbf{u}$, but f is not differentiable at at $\mathbf{0}$.
5. Let f be defined as follows

$$
f(x, y)= \begin{cases}\frac{x y}{|x|+|y|}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{cases}
$$

a. Is f continuous at $(0,0)$?
b. Is f differentiable at $(0,0)$?
6. Let a sequence be defined recursively by the rules: $x_{0}=1, x_{n+1}=$ $x_{n}+\frac{1}{x_{n}}$. Prove that the sequence does not converge.
7. Suppose $a_{n}>0$ and b_{n} is defined by $b_{n}=a_{n}+\frac{1}{a_{n}}$.
(a) Assume that $\left\{a_{n}\right\} \geq 1$ and that $\left\{b_{n}\right\}$ converges. Prove that $\left\{a_{n}\right\}$ converges.
(b) If it is assumed that $\left\{b_{n}\right\}$ converges but only that $a_{n}>0$, it does not necessarily follow that $\left\{a_{n}\right\}$ converges. Find such an example.
8. Prove that $\lim _{n \rightarrow \infty} \sin n$ does not exist.
9. Prove that the set $\left\{(x, y, z): \frac{x^{2}}{2}+\frac{y^{2}}{3}+\frac{z^{2}}{4}=1\right\}$ is connected.
10. Suppose A is a connected set and that $A \subset B \subset \bar{A}$. Prove that B is connected.
11. Let f be continuous on $(0,1)$ and suppose $0<f(x)<x$ for all $x \in$ $(0,1)$. Define $f_{n}(x)$ inductively by $f_{1}(x)=f(x), f_{n+1}(x)=f\left(f_{n}(x)\right)$. Prove that $\lim _{n \rightarrow \infty} f_{n}(x)$ exists and compute it.
12. Let $|a|<1$, where a is a real number. Prove that $\lim _{n \rightarrow \infty} n a^{n}=0$. Notice that a is allowed to be negative.
13. Let f be a continuous real valued function defined on $[0,1]$ such that $f(0)=f(1)$. Show that there is a pair of points $a, b \in[0,1]$ such that $b-a=1 / 2$ and $f(b)=f(a)$.
14. Let $\left\{x_{n}\right\}_{1}^{\infty}$ be a sequence of real numbers. Prove that there exists a sequence of intervals $I_{n}=\left[a_{n}, b_{n}\right], I_{n+1} \subset I_{n}$ with $x_{n} \notin I_{n}$. Use this to prove that there is a real number that is not in the sequence $\left\{x_{n}\right\}_{1}^{\infty}$. Thus prove that the reals are not countable.
15. You will need to know the the following items
(a) Cauchy's inequality
(b) Triangle inequality
(c) Open set
(d) Closed set
(e) Boundary of a set
(f) Compact set
(g) Bolzano-Weierstrass theorem
(h) Connected set
(i) Convergent sequence
(j) Completeness
(k) Cauchy's criterion
(l) Continuity at a point
(m) Continuity on a set
(n) Uniform continuity
(o) Partial derivatives
(p) Differentiability
(q) Mean value theorem
(r) Chain rule

