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1. Introduction. The early discoveries of measure theory, at the start of this 
century, led to a very good understanding of how subsets of Euclidean n 
space 

R" 
behave with respect to n dimensional Lebesgue measure 

£". 
Much of the theory of functions was revolutionized by Lebesgue's method of 
integration. This paved the way for great advances in Fourier analysis. 
Furthermore Lebesgue's contributions to measure theory made possible the 
application of direct methods in the one dimensional calculus of variations, 
which soon developed to a highly satisfactory stage. 

Many two dimensional variational problems, including some versions of 
the problem of Plateau, have also been solved through ingenious extension of 
Lebesgue's methods, making use of conformai parametrizations and Dirichlet 
integrals. However, these classical methods have failed to give significant 
results for the part of the calculus of variations involving parametric integrals 
over m dimensional surfaces in case m exceeds two. Concrete examples show 
that sets representing solutions of high dimensional variational problems can 
have very complicated singularities. To account for geometric actuality, and 
in order to prove general existence theorems, one must abandon the idea of 
describing all the competing surfaces by continuous maps from a single 
predetermined parameter space. One should rather think of surfaces as m 
dimensional mass distributions, with tangent m vectors attached. Then the 
boundary conditions must be expressed in a manner quite different from 
functional restriction-for instance through a boundary operator as in 
algebraic topology. 

It took five decades, beginning with Carathéodory's fundamental paper on 
measure theory in 1914, to develop the intuitive conception of an m dimen
sional surface as a mass distribution into an efficient instrument of mathe
matical analysis, capable of significant applications in the calculus of 
variations. The first three decades were spent learning basic facts on how 
subsets of R" behave with respect to m dimensional Hausdorff measure 

3C". 
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During the next two decades this knowledge was fused with many techniques 
from analysis, geometry and algebraic topology, finally to produce new and 
sometimes surprising but classically acceptable solutions to old problems. 

Geometric measure theory developed in its formative period mainly 
through the research of mathematicians working on the following topics: 

Rectifiability, density and projection properties of sets with finite m 
dimensional Hausdorff measure (Gross, Besicovitch, Randolph, A. P. Morse, 
Fédérer, Freilich, E. F. Moore, Marstrand, Mickle), 

Lebesgue area and Plateau's problem (De Geöcze, Tonelli, Radó, Douglas, 
Morrey, McShane, Cesari, Fédérer, Besicovitch, Reifenberg, Tompson, 
Demers, Goffman), 

Gauss-Green theorem and sets with finite perimeter (Fédérer, De Giorgi), 
Functions whose distribution derivatives are representable by integration 

(Tonelli, Cesari, Fédérer, Krickeberg, Fleming), 
Generalized surfaces, alias varifolds (L. C. Young, Fleming), 
Differential forms and currents (De Rham), 
Flat chains with real coefficients (Whitney), 
Normal currents, integral currents and flat chains with discrete coefficients 

(Fleming, Fédérer), 
Partial regularity of measure theoretic solutions of Plateau's problem 

(Fleming, De Giorgi, Reifenberg). 
I believe that by 1964, fifty years after the publication of Carathéodory's 

paper, geometric measure theory had proved its worth beyond a reasonable 
doubt. In the ensuing period the subject has grown steadily, contributing 
significantly to other parts of mathematics, and has been enriched by the 
research of a new generation (W. K. Allard, F. J. Almgren, E. Bombieri, K. 
E. Brakke, J. E. Brothers, A. Chiffi, L. R. Ernst, A. T. Fomenko, R. Gariepy, 
E. Giusti, R. M. Hardt, R. Harvey, S. Kar, J. R. King, R. V. Kohn, J. Krai, 
H. B. Lawson, P. Mattila, J. H. Michael, M. Miranda, F. Morgan, H. R. 
Parks, S. Paur, J. T. Pitts, E. Santi, V. Scheffer, R. Schoen, B. Shiffman, L. 
Simon, J. Simons, J. E. Taylor, D. Triscari, A. I. Volpert, W. P. Ziemer). 

Much more remains to be done than has been done, and the important 
unsolved problems appear extremely difficult, but hopefully we now have an 
adequate basic structure to support and direct our future efforts. 

In these lectures I shall give an exposition, without proofs, of some of the 
principal concepts and results of geometric measure theory. More extensive 
and detailed information on the subject is available in my book published in 
1969, and in subsequent papers listed in the appended supplementary 
bibliography. 

2. Hausdorff measure and rectifiability. For every nonnegative real number 
m we define 

a(m) = T(l/2)m/T(m/2 + 1). 

Whenever S c R" and 5 > 0 we let 

3C"'Ô(S) 
be the infimum of the set of numbers 
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2 a(m)[diam(r)/2]m 

TBG 

corresponding to all countable coverings G of S with 

diam(r) < 8 for T EG; 

then we define the m dimensional Hausdorff measure 

3C%S)= lim 3C"'*(S)-

We also define the 

Hausdorff dimension of S = inf{m: 'Xr(S) = 0}. 

One finds that 

3(?(S) = the number of elements of S, W(S) = £"(S), 

and that every number between 0 and n occurs as Hausdorff dimension of 
some compact subset of R"; for example the classical Cantor set has 
Hausdorff dimension log(2)/log(3) [23, §2.10.28]. 

The (outer) measure 3C" over Rn is Borel regular. 
With each measure y over Rn and each subset W of Rn we associate the 

measure y \__W such that 

(y \_W)(S) = y(W n S) forScR". 

If y is Borel regular, so is y L W; if also 
y( W n K) < oo for every compact K c R", 

then y |_ W is a Radon measure. 
Important local attributes of a measure are its densities and its approximate 

tangent cones. To describe these concepts we will use the closed balls 

B(tf, r) = [x: \x — a\ < r] 

with center a and radius r, as well as the open cones 

E(a, Ü, e) = {x: \t(x - a) - t>| < e for some t > 0} 

with vertex a and axis in the direction t>, whose generating rays from a come 
within distance e of a + v. We define the upper and lower m dimensional 
densities of the measure y at the point a as 

0*m(y, a) = lim supy[B(a, r)]/[a(m)rm] 

and 

0;(y, a) * lim inf y[B(a, r)]/[a{m)rm}. 

In case the upper and lower densities are equal, their common value is the m 
dimensional density 

0w(y, a). 

Densities have considerable intrinsic interest in measure theory and 
elsewhere, for example as multiphcities of holomorphic varieties. Right now 
we merely call attention to their role in comparing any Radon measure y to 



294 HERBERT FEDERER 

3C on a subset S of R" [23, §2.10.19]: 
If 0*m(y, a) < t for a E S, then 7(5) < 2mf 3C" (S). 
If 0*m(y, a) > * for a E S, then y (S) > f DC" (S). 

Moreover, in case S is y measurable, then 

0m(yL.S,Jt) = 0 for %m almost all x in Rn ~ S. 

Taking y = DC" L ^> where 3C" ( «0 < oo, we infer 

0*m(9Cw \_W,a)> 2~m for DC almost all a in W, 

0*m(3C" L ^ ^) < 1 for 3C almost all a. 

However, it can happen that ©"(DC1 \__W,a) = 0 for all a, even though 
3C" ( W) > 0. Accordingly upper densities are generally more useful than 
lower densities. 

For any measure y over Rn we define the (y, m) approximate tangent 
vectors at the point a as the elements of the closed cone (with vertex 0) 

Tan"(y, a) = f l {v: ®*m[y L E(a, Ü, e), a] > 0}. 
e>0 

This notion generalizes the classical tangent cone 

Tan^ , a) = f] [v: a E Clos[S n E(a, v, e)]) 
e>0 

of a subset S of Rn at a, because 

Tan(S, a) = Tan°(0(P |_ S, a). 

It was one of the basic tasks of geometric measure theory to develop 
applicable criteria characterizing those measures y for which the cones 
Tanm(y, a) associated with y almost all points a are m dimensional 
vectorspaces. We will soon describe such criteria in terms of rectifiability and 
projection properties. 

In case S c R " and y is a measure over Rn we say that: 
5 is m rectifiable if and only if either m = 0 and S is finite or m is a 

positive integer and there exists a Lipschitzian map of some bounded subset 
of Rm onto S. 

S is (y, m) rectifiable if and only if y(5) < oo and y almost all of S can be 
covered by some countable family of m rectifiable sets. 

S is purely (y, m) unrectifiable if and only if S contains no m rectifiable set 
r w i t h y ( r ) > 0. 

Rectifiability generalizes a classical approach to first order smoothness, 
because [23, §3.2.29] a subset S of Rn with 3C" (S) < oo is (3C, m) rectifiable 
if and only if OC" almost all of S can be covered by some countable family of 
m dimensional submanifolds of (differentiability) class 1 of Rn. 

The first nontrivial purely (%\ 1) unrectifiable subset of R2 was discovered 
by Gross. It was a Cartesian product 

K X K with 0 < %\K X K) < oo, 

where K was a compact subset of R obtained through a modified Cantor 
construction, removing from each compact interval the central open subin-
terval half as long. 
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We let 

0(n, m) 

be the space of all orthogonal injections (inner product preserving linear 
maps) of Rm into R\ Their adjoints form the space 

0*(/z, m) = {/**: h E 0(/i, m)} 

of all orthogonal projections of R" onto Rm. The orthogonal group O(ri) = 
0(n, n) acts transitively on 0*(n, m) through right multiplication. This action 
induces a unique invariant measure 0*m over 0*(n, m) with 

e*m[o*(n,m)] = i. 
We define the m dimensional integralgeometric measure [23, §2.10.15] 

ST 
over Rn as the Borel regular measure such that 

9?(B)-[ [ ^(Bnp-'iy^dtyde^/p^m) 
J0'(n,m)JVLm 

for every Borel subset B of R", where 

r[(m + l ) /2] • r [ (« -m + l ) /2] 
0, («, «) = r[(« + i)/2]-r[i/2] 

In this formula for 5^ (B) we integrate the varying number of points of 
intersection of B with arbitrary n - m dimensional affine subspaces/?""1!^} 
of R", generalizing Crofton's classical method for finding the length of a 
plane curve, and also Cauchy's method for finding the area of the boundary 
of a convex solid. 

All the concepts which we have introduced are joined in the following 
structure theorem [23, §3.3]. 

If y is a Radon measure over R", 

y(R") < oo, m is a positive integer, 

0 < 0*m(y, a) < oo for y almost all a, 

E = {a: Tanm(y, a) n Y C {0} for some 

n — m dimensional vectorsubspace Y of Rw}, 

then: 
(1) E is a Borel set and (y, m) rectifiable. 
(2) For y almost all a in E, Tanm(y, a) is an m 

dimensional vectorsubspace ofRn and 0*m(y, a) = ®£(y, a). 
(3) Whenever S C E, y(5) > 0 implies 

£m [P(S)] > Ofor 0*m almost allp, hence $T(S) > 0. 
(4) Rn ~ E is purely (y, m) unrectifiable. 
(5) tm [p(Rn ~ E)] = 0 for 0*m almost allp, hence 

$T(Rn~ E) = 0. 



296 HERBERT FEDERER 

This result was proved first f or m = 1 and n = 2 by Besicovitch, A. P. 
Morse and Randolph, then for arbitrary dimensions by Fédérer. It has the 
corollary that the following three conditions are equivalent: 

(I) For y almost all a, 

Tanm(y, a) is an m dimensional vectorspace. 

(II) R" is (y, m) rectifiable. 
(III) Whenever S C R", ST(S) = 0 implies y(S) = 0. 

When y = 3C" |__ W with ^(W) < oo, the structure theorem implies 

W n Eis (OC", m) rectifiable, 

W ~ E is purely (3C, m) unrectifiable. 

It is also known [23, §§3.2.19, 3.2.26] that 

0m(3C L W, a) = 1 for 3C" almost all a in W n E, 

W(S) = 9?(S) whenever S c W n E. 

Combining the last assertion with (5) we infer 

Tn(W) = 9»{W n £ ) + W"(W~E) = $?(W) + ^{W-E), 

3C"( W) = 3f( JT) (f anrf ÖAZ/V (f W û (3C, m) rectifiable. 

More recently it has been shown by Marstrand and Mattila [56] that 

e™(W"l_W,a)<l for W" almost all a in W ~ E. 

The stronger conjecture that ©"(3C* \_W,a)< 0*m(9CM L W, a) for 3C* 
almost all a in W ~ E is still unsettled in case m > 1 ; it was verified in case 
m = 1 by Besicovitch, A. P. Morse, Randolph and E. F. Moore. 

To illustrate quite simply why the theory really needs approximate 
tangents, rather than ordinary tangents, we consider a countable family Q of 
circles contained in R2 such that 

2 %\C) < oo and U ^ is dense in R2. 

Then U S is (%\ 1) rectifiable and 

Tan( U ^ Û ) = R2 for a G R2, 

but, for each C G fi, 

Tan^X1 |__ ( J Î2, a) = Tan(C, a) for 3C1 almost all a in C. 

During his pioneering and penetrating study of purely (X1, 1) unrectifiable 
subsets of the plane, Besicovitch constructed many beautiful examples, of 
which the following is particularly illuminating: Let (?3, <74, G 5 , . . . be finite 
disjointed families of closed circular disks such that G3 consists of a single 
disc with diameter 2 and Gk is obtained from Gk_} through replacement of 
each disc D in Gk_x by k disjoint subdiscs of D with diameters equal to 
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diam(Z))//c and meeting the boundary of D at k equally spaced points. Then 
the compact set 

00 

II = pi U Gk is purely (%\ 1) unrectifiable, 

%\U) = 2, e}[p(JJ)] = 0 whenever/? e 0*(2, 1), 

Tan^OC1 L n , a ) = R2 and e*\Xl L n , a) = 1/2 

for %x almost all a in II. 
It is not known whether every set with finite 9? measure is (¥?, m) 

rectifiable. This problem is equivalent to the question: Does there exist a set 
W such that 

S?( W) > 0, but 0 m ( ^ L W9 a) = 0 for a G R"? 

3. Mapping formulas. We now turn to the discussion of integral formulas 
relating the Hausdorff measures of the domains, images and level sets of 
Lipschitzian maps. For this purpose, and for later use with differential forms 
and currents, we first briefly review some Grassmann algebra. 

Each vectorspace V (over R) is naturally embedded in its exterior algebra 

A*r= 0 Akv, 
k = 0 

the free graded anticommutative algebra with identity generated by V9 which 
is characterized (up to isomorphism) by the requirements that A o ^ = R> 1 is 
the identity of /\*V, /\XV= V and, for every graded anticommutative 
algebra 

A = © Ak 

with identity, every linear map of V into Ax extends to a unique identity 
preserving graded algebra homomorphism of A * ^ i n t 0 A. In particular, 
every linear map L: V -> V' extends to the induced homomorphism 

A*£: A,r->A*r' 
whose direct summands are the linear maps 

/\kL: /\kv-+/\kv>. 

Multiplication in A * V is denoted by the wedge symbol A-
One makes A * V a Hopf algebra by means of the diagonal homomorphism 

into A * y ® A * V which maps v G V onto v ® 1 + 1 ® t>. 
The dual algebra is isomorphic to the alternating algebra of V9 

A*^= ê AV, 
k = 0 

whose summand /\kV » Hom( A* V9 R) consists of all real valued alterna
ting k linear functions on Vk. The product 

<t>A*p€ Ap+qVof<t><E A p ^ a n d ^ G /\qV 
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can be computed by the shuffle formula 

( * A * ) [ o i , - - - , V f ] 

= 2 index(<j) • +[voil> . . . , va{p)] • ^[v^^y,..., va{p+q)] 
oSSh(pyq) 

for D , , , . . , ^ ^ F, where Sh(/?, #) consists of those permutations of 
{1, . . . , /? + #} which are increasing on { 1 , . . . ,/>} and on {p + 1,...,/? 
+ «}. 

Every linear map L: F -» F ' induces a homomorphism 

whose summand /\kL: /\kV' -» A**'» dual to /\kL, is defined by the 
formula 

[/\kL(<t>)][vv . . . , ! > * ] - <J>[L(t>,),..., L(tfc)] 

for <f> G A**" and t>„ . . . , vk G F. 
The bilinear pairing < , > of A* V and A* ̂  is such that 

<*>i A • • • A t%, <f>> - <Kt>„ • • • > *>*) 
whenever t?i, . . . , vk G F and <J> G A**'-

With £ G A p ^ and <f> G A**' o n e associates the interior products 

£ —I <> £ fs?~pVm case/? < <? so that 

< * * _ J * > - < i l A f c * > f a r i j e A ^ ^ ; 

£ L.<f> e A p - ^ i 1 1 case/? > q so that 

<€ L f c *> - <& * A *> for * G A ' ~ * ^ 

One often refers to elements of A* V as k vectors of F, and to elements of 
/\kV as k covectors of F. 

A k vector £ representable as an exterior product 

I - t;, A • • • A vk with vl9...9vkE V 

is call simple; the associated vectorspace 

{x:x G F a n d x A £ = 0} 

has Ü„ . . . , Ü* as base vectors provided £ 7e 0. 
To each norm | | on F correspond dual norms on A* P an(* A**' defined 

as follows: 
The mass ||£|| of a fc vector | is the infimum of the set of numbers 

AT 

i - i 

corresponding to all finite sum representations 
N 

É " 2°i , iAt? aA ••• At?a 
i = i 

with Vgj G F for i = 1 , . . . , N andy = 1 , . . . , k. 
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The comass ||</>|| of a A' covector <j> is 

sup{<f>(t>„ . . . , vk): Vj G F and \vj\ < 1 for y = 1 , . . . , &}. 

Whenever L: V ~* V' is a linear map of normed vector spaces the dual 
maps /\kL

 a n d /\kL have norms || A*^il Œ II A*^llî *n c a s e ^ a n d *" a r e 

inner product spaces, 

« A d i m ^ « = |det(L* o L ) | ' /
2 if dim V < oo, 

|| A d i m r^ | | - |det(L ° L*)j , / 2 if dim V' < oo. 

For any function ƒ which maps a neighborhood of the point a in Rm into R" 
and which is differentiable at a, we define the k dimensional Jacobian 

J J {a) = || /\kDf(a)\\ whenever 0 < J t e Z . 

The classical Jacobian is J „J {a), and ||2)/(a)|| = Jxf(à). We shall see that the 
Jacobians of all dimensions between 0 and m occur in integral formulas of 
geometric interest. 

Early work in geometric measure theory confirmed the validity of the area 
formula 

f JJ(x) dtmx = f W(W n r x {y}) dW»y 

for every Lipschitzian map ƒ of Rm into R" and every £m measurable set W. 
In case ƒ | W is injective the right integral equals ^[/(W)]. Accordingly the 
m dimensional Hausdorff measure of an m rectifiable set equals its m 
dimensional volume in the sense of classical differential geometry. 

It is useful to extend the area formula from subsets of Rm to (3C, m) 
rectifiable subsets of R\ For this purpose one employs the following notion 
of approximate differentiability: 

A function ƒ, which maps a subset of Rn into R", is (y, m) approximately 
differentiate at the point a if and only if there exists a function g, which 
maps a neighborhood of a in Rn into R", such that 

&"[7L.{x:f(x) + g(x)}9a]-0 

and g is differentiable at a; under these conditions 

Z>g(a)|Tanm(y, a) 

is uniquely determined by y, m, ƒ, a and is called the (y, m) approximate 
differential of ƒ at a, denoted 

(y, m)zipDf(a). 

In case Tanm(y, a) is a vectorspace we also define the (y, m) approximate 
Jacobian 

(y, m)&pJJ(a) « | A * ( * m)^Df{a)\\ for 0 < k E Z. 

We will omit the prefix (y, m) when it is clear from context. 
Applying this definition with y = 3C" |_ JF, one can prove [23, §§3.2.19, 

3.2.20] the general transformation theorem: 

If W is an (DC", m) rectifiable 3C" measurable subset of Rn and f is a 
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Lipschitzian map of W into R", then ƒ is (DC" L w> m) approximately 
differentiable at DC" almost all points of W and 

f *[ƒ(*)] • zpJJ(x) dW»x - f *oo- W{w n r 1 {>>}) rf3C> 

for every real valued function \f/ onW; moreover 

{y:W(Wnrl{y})>0)=f(W) 

is an (DC", m) rectifiable subset ofW, and W n f~\y) is finite for DC" almost 
ally in W. 

In case f(W) has Hausdorff dimension less than m, the area formula gives 
very little information. It is rather surprising that quite basic facts about the 
measure theoretic behavior of dimension lowering maps were not discovered 
before 1957, when I proved the coarea formula 

f jf(x) dtmx = f cxr-Hw n ƒ-' {y}) dty 

for every Lipschitzian map ƒ of Rm into R*, with m > /x, and every £m 

measurable set W. Area and coarea may be considered dual because they 
usefully apply to maps of an m dimensional space into spaces with 
dimensions at least m or at most m, respectively. Also, at a crucial point in 
my initial work on coarea I treated the null set of J J by consciously dualizing 
Kolmogoroff s treatment of the null set of J „J in his work on area. 

Further studies [23, §§3.2.22, 3.2.31, 3.2.32] of coarea in more general 
situations produced the following result: 

If W is an (DC", m) rectifiable DC" measurable subset of R", f is a 
Lipschitzian map of W into R", /i E Z, 0 < /jt < m, and S is any Borel subset 
ofWwith%*(S)< oo,then 

^[W Df-l(S)n {x:dim[imap/)ƒ(*)] > /i}] = 0 

and 

f <Kx) • ap JMx) </DC"JC = f f <tfx) dW"-^ d%y 

for every real valued DC" L f integrable function </> on W\ moreover 

[y: DC"-"(^ n f~x {y}) > X) is (D0\ /i) rectifiable 

for every positive number A, and W n f~l{y} is (DC"""*, m — /A) rectifiable 
and^-* measurable for DO* almost ally in R\ 

We observe that since %ll(S) < oo there exists an (DC4, ft) rectifiable Borel 
subset Z of S such that S ~ Z is purely (DC*, /A) unrectifiable, and that S ~ Z 
contributes to neither integral because 

W[(S~ Z) n {y: DC"-*(^ n f'x {y}) > 0}] - 0 

while [23, §3.2.21] implies 
<Xn[Wnrl(S~Z)n { x : a p / / / ( x ) > 0 } ] = 0 . 
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Of course, the integral formula remains valid for any countable union S of 
Borel subsets of R" with finite 90* measures. In case ft = m the formula holds 
for every Borel subset S of R". However, in case /x < m it can happen that 

f JJdW >0= Ç^-Hw nf"l{y})d%y 
Jwnrl(S) Js v ' 

even when ƒ is infinitely differentiable and S is a compact set with Hausdorff 
dimension JU. (For example take S = f(T~ V) in [23, §3.2.33].) When W and 
ƒ arc analytic the integral formula holds for every Borel subset S of R'. 

We now understand that the essential hypotheses for the transformation of 
integrals under a differentiable map ƒ include some finiteness condition on 
the measure of the subset S of the target space, which in turn implies a bound 
on the rank of the differential of/on the inverse image ƒ ~\S). 

The opposite problem is to estimate the measure of the direct image of a set 
on which the rank of the differential of ƒ has a given bound. Whitney, A. P. 
Morse, Sard and Fédérer [23, §§3.4.3, 3.4.4] found the following solution: 

Iff > 1 and m > /A > 0 are integers, f is a function of {differentiability) class 
j mapping an open subset of Rm into any normed vectorspace, and 

B = {JC: dim[im Df(x)] < /*}, 

then 

30*+<*-*>/;[/(fl)] = o , 

but for 0 < s < fi + (m - \f)/j it can happen that %s[f(B)] = oo. 

4. Gauss-Green formula. Certain subsets A of R" have the property that, for 
every smooth vectorfield £ on R" with compact support, 

f div {(JC) dtnx 

can be computed by integration of £ over the boundary of A. This idea has 
several precise and useful formulations. Analysts think of a linear operator. 
Geometers think of exterior normals, or of approximating A by elementary 
solids. Thirty years ago the various approaches seemed disparate, but now we 
know that they are all equivalent. 

Much of the theory hinges on the following concept: An exterior normal of 
A at the point b is defined as a vector 

« E S " " 1 =R" n {w: |w|= 1} 

which satisfies the two equations 

0w[en L {*: (x - b) • u> 0} n A, b] = 0, 

e ^ e * ! _ { * : ( * - b) • u<0}~A,b] = 0 ; 

in case A is tn measurable these equations hold if and only if 

Tan"(£" \_A, b) - R* n {v: v • u < 0}. 

There exists at most one exterior normal of A at b. We denote 
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n(A, b) = u if A has the exterior normal u at b, 

n(A, b) = 0 if A has no exterior normal at b. 

It is significant that my notion of exterior normal involves only the 
measuretheoretic behavior of A with respect to £", and imposes no a priori 
topological restrictions on A. The boundary of A is not even mentioned. This 
flexible notion permits the Gauss-Green formula to find its own optimal 
conditions, consistent with geometric intuition and fulfilling natural 
requirements of functional analysis. The following general theorem [23, 
§§4.5.6, 4.5.11] summarizes results obtained by De Giorgi and Fédérer: 

If A is an £" measurable subset ofRn and 

Z = {jc:0*n(£n \_A,x) > 0 and ®*n(£n l_W~A,x) > 0}, 

then the the following five conditions are equivalent'. 
(1) For every compact ^ c R " there exists M E R such that 

L div £(JC) d&x < M sup{|£(JC)| : x E K] 

for every Lipschitzian vectorfield £ on Rn with spt £ c K. 
(2) There exist a Radon measure y over Rn and a bounded y measurable 

covectorfield K such that 

ƒ div £(JC) d£"x = ƒ <$(*), IC(JC)> dyx 

for every Lipschitzian vectorfield £ on Rn with compact support. 

(3) ƒ div {(jc) d&x =f£(x) • n(A, x) dWlx 

for every Lipschitzian vectorfield £ on Rn with compact support. 
(4) ^-\K n Z) < oo/or etttry compact K c R". 
(5) 77tere ex/sto # sequence of subsets Aj of Rn with polyhedral (or smooth) 

boundaries such that, for every compact K c R", 

lim £n(Kn[(AJ~A)u(A~AJ)])=0 

and 

lim sup W-\K n BdryAj) < oo. 

Moreover, in case these conditions hold, then 

K n Zis (W1-1, n-l) rectifiable 

for every compact K c R", and 

n(A, x) G S""1 with Tànn-l(W-1 l_Z,x) = {v: v • n(A, x) = 0} 

for 3C1"1 almost all x in Z. 

One should think of Z as the measuretheoretic boundary of A, with respect 
to £ \ Since Z is contained in the topological boundary of A, which we 
denote Bdry A, our condition (4) is implied by the hypothesis 
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%n~\K n Bdry A) < oo for every compact K c R". 

However, this hypothesis demands much more than our condition (4). For 
example, (4) holds in case A is the complement of an arbitrary set with tn 

measure zero. One can even construct [23, §4.2.25] a subset J2 of R3 such that 
Bdry B is homeomorphic to S2 and 

£3(Bdry Q) > 0, 

but (4) holds with A replaced by ÏÏ. 

5. Weakly differentiable functions. The differential of a smooth real valued 
function ƒ on R" is characterized by the fact that, for every Lipschitzian 
vectorfield £ on R" with compact support, 

ƒ<£(*), />ƒ(*)> d&x = ƒ - div i{x) • ƒ(*) d&x. 

Since the right integral remains meaningful even when ƒ is not smooth but 
only locally £" summable, this linear function of £ may be regarded as a 
measuretheoretic weak differential of ƒ, provided it satisfies the boundedness 
hypothesis of the Riesz representation theorem. 

Weakly differentiable functions have appeared in various guises for fifty 
years, first in the theory of Lebesgue area and later in partial differential 
equations. They have been characterized alternately by their total variation 
along families of parallel lines, by their area bounded smooth approxima-
bility, by the n - 1 dimensional measures of their (extended) level sets, and 
by the n dimensional measure of their (extended) graph. Despite this long 
history, some of the most interesting global geometric characterizations and, 
more remarkably, the precise local analytic properties of such functions were 
discovered only during the last decade. 

The following theorem [23, §4.5] describes weakly differentiable functions 
in various ways and lists some consequent properties. 

If ƒ is a real valued tn measurable function such that 

f \f(x)\ dtnx < oo for every compact K c R", 

with the lower and upper tn approximate limits 

X(x) = sup{>>: en[& L {z:f(z) < y}, x] = 0}, 

/i(x) = inf{>>: 0"[£" L {z'- ƒ(*) >>>}> x] = °} 

at each point x in Rrt, and if 

, 4 = ( R " x R ) n {(x,y):f(x)>y}9 

C = ( R " x R ) n {(x,y): X(x) < y < /i(x)}, 

then the following seven conditions are equivalent: 
(1) For every compact K C Rn there exists M E R such that 

ƒ - div £(;c) • ƒ(JC) dtnx < M sup{ |£(JC)| : x E K } 
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for every Lipschitzian vectorfield £ on R" with spt £ c K. 
(2) There exist a Radon measure y over Rn and a bounded y measurable 

covectorfield K such that 

ƒ - div i{x) • ƒ(*) dtnx = ƒ<£(*), K{X)) dyx 

for every Lipschitzian vectorfield £ on Rn with compact support. 

(3) ƒ - div £(*) • ƒ(*) dfx = ƒ (£(*), 0) • n [^ , (x, ƒ)] </3C(JC, ƒ) 

/or euery Lipschitzian vectorfield £ on R" w/7A compact support. 
(4) #7 {(A:, y): (x, y) E C #/*</ x E Â"} < oo ƒ<?/* et>e/y compact K c Rn. 
(5) For £t>ery compact K c R", 

/ ^ " ' { J C : (*,>>) G Candx E # } rfE^ < 00. 

(6) 77*ere ex/sta 0 sequence of locally Lipschitzian real valued functions fj on 
R" such that, for every compact K c R", 

lim f \f(x)-f(x)\d£nx = 0 

lim sup f \\Dfj(x)\\ d&x < 00. 

(7) There exists a real valued function g on R" such that 

g(x) = f(x) for fcn almost all x 

and, for i E (1, . . . , n], — 00 < a < b < 00 and every compact H c Rn_1, 

f V;:£g(w„ . . . , W|._„ t, wi9..., wn_x) dtn~xw < 00 

in case n > 1, wMe V^g < 00 in case n = 1. 

Here V means total variation. 

Moreover, in case these seven equivalent conditions hold, the following 
consequences may be drawn: 

(I) For 3C almost all (x,y) in Rn X R, 

(x,y) E C if and only if n[A, (x,y)] E S". 

Thus the extended graph C of ƒ is %n almost equal to the measuretheoretic 
boundary of A with respect to £" x Ê1, for the purpose of the Gauss-Green 
formula. 

(II) For every open U c Rn, 

3e{(jc,>>): (x,y) E Candx E U) 

equals the least of the numbers 
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corresponding to all sequences of functions fj as in (6). 

Accordingly the n dimensional measure of the extended graph of f\ U equals 
the Lebesgue area of the nonparametric surface corresponding to f\U. 

(Ill) For every Borel subset S ofRn, 

f$n
x-

l{x: (x,y) E Candjc e S) d&y = ƒ \\K(X)\\ dyx 

whenever y and K are as in (2). 

In this way the n — 1 dimensional measures of the extended level sets of ƒ 
determine the variation of the weak differential of/. 

(IV) f-tor%x)-f(x)d&x 

=ƒƒ*(*) • n[( z : / ( z) <y)>x] d^~lxd&y 
for every Lipschitzian vectorfield £ on Rn with compact support. 

(IV) holds also for some functions which are not weakly differentiable, for 
example f(x) = x sin(l/x). In fact (IV) holds whenever ƒ is locally £" 
summable and the Gauss-Green formula is applicable to {x: f(x) < y) for E1 

almost all y, because 

ƒ div £(JC) • ƒ + (JC) d&x = ƒ ƒ / + W div {(*) rf£!y rffifjc 

- f div£(jc)</(£" X E 1 ) ^ ) 
y (R"XR)n {(x,y):f(x)>y>0} 

= [°° f àiv i{x) dtnx dtxy 
JQ J{x:f{x)>y) 

= f°°fm • n[{x:f(x)>y},b]dW-lbd£ly9 

and similarly 

ƒ div£(x) • / ~ (JC) </£"* 

= f° ƒ {(ft) •n[{x:f(x)<y}9b]dW-lbd£}y. 

The next four properties generalize the classical proposition that a function 
with locally bounded variation has everywhere finite left and right limits, 
which differ only on a countable set. 

(V) - oo < \{x) < /I(JC) < oo for 3C1""1 almost all x in Rn. 
(VI) The set E = {x: X(x) < ii(x)} is the union of a countable family of 

(3C1"1, n - 1) rectifiable sets. 
(VII) För 9C~l almost all x in Rn ~ E, in case n > 1, 
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lim r~n f \f(z) - \(x)\n/in~l) dtnz = 0. 

(VIII) For DC1""1 almost all x in E there exists M G S " " 1 such that, in case 
n > 1, 

limr~" f \f(z) - A(jc)f/(n-,) </£nz = 0, 

limr— f | /(z) - / i W f ^ " 0 </£"z = 0, 
n0 •/B(jc,r)n/> 

w/œre N = {z: (z - x) • u < 0}, P = (z: (z ~ x) • w > 0}. 

Thus we recognize X(x) and /i(x) as approximate limits on opposite sides of 
the plane through x with normal u. 

Next we discuss an application to Fourier analysis. Whenever ƒ is tn 

summable one defines its Fourier transform ƒ by the formula 

ƒ (a) = ƒ ƒ (x)exp( - ix • a) t/Cx for a E Rn. 

The Bochner process of spherical summation seeks to represent ƒ in terms off 
as follows: 

Given 8 > — 1 one uses the factor 

JTa(/)-[sup{l - t\0}]* forfER 

to construct the partial integrals 

S% (x) - (27rynff (x)exp(ixma)Kd(\a\/R) dtna 

for x E R" and /? > 0. One tries to prove that, as R approaches oo, S%(x) 
converges to ƒ (x), or more generally to a number determined by the Umiting 
behavior of ƒ at x. 

Bochner generalized Fejér's summability theorem concerning E1 summable 
functions by proving: 

Iff is tn summable and if 8 > (n - l)/2, then 

lim S% (x) « ƒ (x) for tn almost all x in R". 

Much more recently Fédérer [24] generalized the Dirichlet-Jordan theorem 
concerning functions with bounded variation on R by proving: 

Iff is £" summable and weakly differentiable with finite total variation on R", 
which means that ƒ ||/c|| dy < oo i/i (2), and if 8 > (n — 3)/2, fAe/i 

lim S* (x) * \ forW"* almost allx in R\ 

Research on weakly differentiable functions has produced far more infor
mation than we have time to review here completely. For instance the 
measure y |_ IMI> a s in (2), is absolutely continuous with respect to <Xt"x or 
£", respectively, if and only if a function g, as in (7), can be chosen 
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continuous or absolutely continuous, respectively, along almost all straight 
lines in R". However, the extent of our discussion of weakly differentiable 
functions should suffice to indicate why work on this special topic provided 
significant motivation and experience for the development of the general 
theory to which we now turn our attention. 

6. Currents. It is a common procedure of contemporary mathematics to 
probe for the geometric shape and analytic nicety of very general objects by 
studying their interaction with infinitely smooth test functions. For the theory 
of m dimensional currents in R" the test functions are differential forms of 
degree m, which means functions whose values are m covectors of Rw. We 
define 

Sm(C/) 

as the vectorspace of all differential forms of degree m and (differentiability) 
class oo on the open subset U of R", topologized by the seminomas 

"*(<*>) = sup{||Z>fy(jt)||: 0 < j < i and x E K) 

corresponding to all nonnegative integers i and all compact subsets K of U. 
Each of the closed subspaces 

^K{U) = &m(U) n {$: spt<J> C K) 

is relatively topologized by the seminorms vi
K\(S0j^{U)9 but their union 

W(U) = &m(U) n {</>: spt <J> is a compact subset of U] 

is endowed with the largest topology making the inclusion maps from all the 
spaces ^(U) continuous. An m dimensional current in U is, by definition, a 
continuous real valued linear function on ^(U). These currents are the 
elements of the vectorspace 

endowed with the weak topology generated by the sets 

q)m(U)n{S:p<S(<t>)<o} 

corresponding to all <f> E W^U) and p, a E R. 
The support of a current S E ^)m(U) is the smallest relatively closed 

subset C of U such that S (</>) « 0 for all <j> E ^ ( U) with spt <J> c U ~ C. 
An m dimensional geometric surface can be represented analytically by a 

current, because the surface is determined by the operation of integrating 
arbitrary smooth differential forms of degree m over the surface. Later we 
will give a precise definition of the class of rectifiable currents, those currents 
which represent in our view the surfaces most useful for the calculus of 
variations. First we must discuss parts of the general theory of currents in 
order to provide an appropriate logical frame for our geometric constructions 
[23, §4.1]. 

The interior and alternating multiplications in the Grassman algebra of R" 
yield dual operations on currents: 

If S E ^m(U) and £: £/-_» / \ ^ R « is 0f class oo, then 
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If 5 E <$„(£/) and ^ G S* (£/) with m > A:, then 

S L ^ ^ n ( S L ^ ) = 5 ( M ^ ) for* G <$"-*(£/). 

One uses the first order partial differentiations Dl9..., Dn inducing 
continuous endomorphisms of 6Dm(f/) to define 

DSS E ^m(U) whenever S E *Dm(t/), 

DêS (<?>) = S ( - A4>) for 4> E ^Dw( U). 

Among the simplest currents are the following: 
To each a E U corresponds the point mass 

ôa (also denotedfa]) E %(U)9 ôa(</>) = <t>(a) for<J> E <*D°( t/). 

Whenever {(\ - i)a + tb: 0 < / < 1} c U we define the oriented line 
segment 

[a,b] e%(U), 

[a,b](<}>) = Ç (b-a,$[{\ - t)a + tó]WeV for<|> E ^ ( t / ) . 

To every Radon measure y over f/ corresponds a 0 dimensional current 
denoted by the same symbol, so that 

y (0) = ƒ <J> rfy for <ƒ> E <*D°( U). 

Using the standard base vectors ex,. . . , en of R" to define the « vectorfield 
| orienting R", 

i(x) = e, A • ' • A en E A„R" for x E R", 

we construct the Euclidean current En = £" A I G ^„(R"), 

£"(<*>) = ƒ <*, A • • • A *„, *(*)> </£"* for ^ E ^ (R") . 

Next we review four constructions basic for geometry, namely the 
boundary operator, homomorphisms induced by smooth proper maps, 
Cartesian products and joins of currents. 

For <t> E &m(U) the exterior derivative d<j> Œ &m+l(U) is given by the 
formula 

m+\ 
<f. A • • • A cm+I, d^x)) = 2 <t>w, <c„ /></>(*)» 

1 - 1 

with 

„w = ( - \ y - \ A • • • A «v-, A o/+, A • • • A «u+i 
whenever Ï Ê ( / and t>, , . . . , vm+x G R". Dually the boundary operator maps 
T G 6S)m+l(U) onto 3 r G <5m(l/) so that 

a r ^ ) = T(d<i>) îoT<t> G <?r(£/). 

Using the standard coordinate functions Xx,..., X„ on R" one computes 

^ = i ^ A A * and 3 7 - - 2 (Z)̂ ) L^G-
j « l i - 1 
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Every map/ : £/-» U' of class oo, where U and U' are open subsets of 
Euclidean spaces, induces a homomorphism 

f*:Sm(U')->Sm(U) 

such that [f*<t>](x) = {/\mDf(x)}<$>lf(x)] for <}> E Sw(£/') and x E (/. In case 
5 E ^)m(U) and/|spt 5 is proper one defines 

US E 3)w(£/') 

so that [/#S](</>) = S (a A/*</>) whenever <ƒ> E ^ ( t / ' ) and a E ty°(U) with 
spt 5 n /_1(spt <t>) c Int{.x: a(x) = 1}. The linear maps / # and/ # commute 
with d and 3, respectively. 

In case/: U<^> U' is an inclusion map of open subsets of R", then/# maps 

dmn/ # = ^ ( t / ) n {S: spt 5 is relatively closed in U') 

homeomorphically onto 

im/# = ^m(f/')n{r:sptrcf/}, 
and one often fails to distinguish notationally between S and f#S; this 
applies in particular to currents with compact support in U. 

The Cartesian product 

S X T E %+j(U XV) of S E 6D/(
f/) a n d ^ E %{V) 

is characterized by the following condition: 
If <t> E ty ((/) and i// E 3)''^-* ( F), then 

(S X T)(p*<t> A tf^V) = S(<p)T(xp) in case * = /, 

(5 X T)(p*<j> A 4 ^ ) = 0 in case A: =£ /, 

where /?(*>.y) = x and #(*,>>) = >> for (x,y) E [/ X V. One finds that, in 
case i + j > 0, 

9 (5 X T) = (dS) X r + ( - l ) ' S X 3 r 

with the first summand omitted if i = 0, the second if / = 0. An important 
consequence is the homotopy formula 

* I # r - A0#r = aA#([o, i ] x r ) + A#([O, I] xar) 
which holds for each infinitely differentiable homotopy 

h:RX V-* V' with ht(v) = h(t, v) for (t, v) E R X V, 

provided h\({t: 0 < / < 1} X spt T) is proper; if/ = 0 the second summand 
must be omitted. 

The join of two currents S E %(Rn) and T E ^(R") with compact 
supports is 

5 ^ r = F # ( x x [ o , i ] x r ) G ^^ /R") 
where F(x9 t,y) = (1 - t)x + £> for (JC, / j ) E R " X R X R". Then 

3 ( S * T) = (dS)X T-(-\yS ndT 
with (95) H T replaced by S(l)T if / = 0, S KdT replaced by 7X1)5 if 
/ * 0 . 
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For OQ, a„ . . . , am E R" we inductively define the m dimensional oriented 
simplex 

and compute 
m 

If t/ contains the convex hull of {«o , . . . , am), then [a^ . . . , am] corres
ponds to an element of fym(U)9 denoted by the same symbol. All such 
oriented simplexes generate in 6Dm((/) the additive subgroup 

of m dimensional integral polyhedral chains in U, and the vectorsubspace 

of m dimensional (real) polyhedral chains in U. 
A current S E Gim(U) is said to be representable by integration if and only 

if 

||S||(*) = sup{S(*): <t> E <%m(U) and ||4>|| < *} < oo 

for every nonnegative real valued continuous function k with compact 
support in U. Then ||S|| corresponds to a Radon measure over U, by the 
Riesz representation theorem, and there exists an [[S'il measurable function S 
such that 

S (x) E AmR" with \\S (x)\\ - 1 for ||S|| almost all JC, 

S(<f>) - ƒ < £ ( * ) , <t>(x)) d\\S\\x for* E #»({/). 

Using the last equation we extend the definitions of S(<p), $ /\£, S [_$ to 
|| S || summable functions <f>, £, ty and obtain the formula 

S~\\S\\AS. 

Accordingly we picture S as composed of a mass distribution and an attached 
m vectorf ield. We write S [_A ** S [_a when a is the characteristic function 
of à set A. From the theory of derivation of measures it follows for | |5 | | 
almost all x that 

[SLB(*,r)lfa) 
lim , i ^ - = IS (x\ <(>(x)) whenever <f> E tym(U). 

For instance the current E" is representable by integration, 

\\E"\\-er and En(x) » ex A • • * A em forxER". 

To each locally tn summable differential form \p of degree k < n corresponds 
E* L ^ E %_k(R

n); if $ is Lipschitzian, then 

A ( P L * ) - P L A * and 8 ( E n L * ) - ( - l ) " ~ * ~ l E , , L # -
Therefore many analysts think of currents as generalized differential forms. 
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This point of view is very convenient for the theory of partial differential 
equations. However, for work in geometry it appears preferable to follow the 
lead of the topologists, who distinguish intuitively as well as logically between 
cochains and chains. I consciously regard differential forms and currents as 
dual objects, which are transformed in opposite directions by differentiable 
maps. 

We define the mass of any S E tf)m ( U) as 

M(S) =||5J|(1) - sup{S(<|>): <t> E ^T(U) and ||</>|| < 1}, 

and infer that the set 

Mm(U) * <3)m(t/) fi {S: spt S is compact and M(S) < 00} 

consists of all those m dimensional currents with compact support which are 
representable by integration. 

We are now ready to begin the discussion of those special classes of 
currents which have been most useful for geometric measure theory. 

We call an m dimensional current S locally normal if and only if S is 
representable by integration and either dS is representable by integration or 
m = 0. 

We call a current normal if and only if it is locally normal and has compact 
support. The set 

Nm(C/) - <%m(U) fi {S: S is normal} 

is the union of the sets 

^mAu) - ^miV) n {S: S is normal and spt S C K) 

corresponding to all compact K c U. For S E ^m{U) we define 

N(5) - M(5) + M(dS) in case m > 0, 

N(S) = M(S') in case m = 0. 

For example the n dimensional locally normal currents in Rn are the currents 
En L ^ corresponding to all weakly differentiable real valued functions $, with 

[8(E? L *)](*) - ƒ<*! A • • • A *„,*(*) #W> dtnx 

- (-1)*-1 JV(*)div £(*) </£"* 

whenever <> E ^ - ^ R " ) and |(x) = (e, A • • • A O L «-«) f o r x e R"-
The current En \__A corresponding to an tn measurable set A is locally 

normal if and only if our version of the Gauss-Green formula holds for A. 
The vectorspaces NmK(U) are complete with respect to the norm N, but 

hardly ever separable. Often the images of a normal current under two 
neighboring smooth maps have large N distance. For these and other reasons 
it is frequently advantageous to use the (real) flat seminorm 

TK(S) 

defined whenever S E tf)m(U) as the supremum of 

{S(4): 4» S <5Dm(t/), «£(<*>) < 1, P°K(d<t>) < I}-
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In case spt S c K, then FK(S) equals the least member {possibly oo) of 

{M(5 -dT) + M(T): T E ^m+l(U) with spt T c # } . 

The homotopy formula leads to the basic estimate 

F* (g#S - US) <f\g-f\d(c"\\S\\ + c"-'\\dS\\) 

for 5 E Nm yK(U) and any two infinitely differentiable maps ƒ and g of U into 
I/' such that 

{(1 - t)f(x) + #(JC): 0 < * < 1, JC E # } C K' C £/', 

||/>/(*)|| < c and ||Z>s(*)|| < c for JC E if. 

For each compact K c 1/ the vectorspace 

Fm,*(t/) = the F* closure of Nm,*(t/) in <$m(U) 

is complete with respect to the flat norm F^. The union of the spaces FmtK(U) 
corresponding to all compact K c U is the space 

of m dimensional (real) flat chains in U. Endowing Fm(U) with the largest 
topology such that the inclusion maps from all the subspaces FmK(U) are 
continuous one obtains the dual space 

Fm(U) 

of all continuous real valued linear functions on Fm((/), which are called 
(real) locally flat cochains of degree m of U. 

The images of flat chains under differentiable maps behave rather well with 
respect to equi-Lipschitzian convergence [23, §4.1.14]. One can define 

USEFm,K,(U') forSEFmiK(U) 

whenever f : U ^>U' is locally Lipschitzian and K, K' are compact subsets of 
U, U' with f (K) c Int K', in such a way that 

lim F ^ ( / # S - gJ#S) = 0 
y->oo 

for every sequence of infinitely differentiable maps gy. U-* U' which converge 
to f uniformly on K and whose first differentials are bounded uniformly on K. 

This convergence property of flat chains is not shared by arbitrary currents. 
For instance if 

f{x) = 0 and gj(x) = j~lsin(Jx) for* E R, 

then /#(ô0 A ^i) = 0 is not the limit of gj#(ô0 A ^i) = ô0 A ^i with respect to 
the topology of 6D,(R); thus 

60 A ex E M,(R) ~ F,(R) c M,(R) ~ N^R). 

It follows from the convergence property that 

/ 0 | s p tS= / , | sp tS implies f0#S = fx#S 

for S E Fm(U) and locally Lipschitzian maps j ^ j \ : U"-» U'. 
Flat chains also enjoy very useful measuretheoretic properties: If S G 
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¥m(U),then 

5?(spt S) = 0 implies S = 0. 

If S G Fm(f/) n Mm(f/) arc/£ c U, then 

^ ( £ ) = 0 implies \\S\\(E) = 0. 

We have defined flat chains analytically, but Whitney introduced them first 
geometrically. The equivalence of the two approaches is confirmed in part by 
the following theorem on polyhedral approximation [23, §§4.1.23, 4.2.24]. 

If Kis a compact subset of U and 

S G¥m(U) with spt S C Int K, 

then there exist real polyhedral chains Pj E Pm(l/) n Fm K(U) such that 

lim FK(P: - S) = 0, lim M(P.) = M(5), 
j—>oo y-* oo 

lim M(dPj) = M(35) I/I awe m > 0. 
y-* oo 

We remark that the two conclusions involving M would fail if in place of 
mass and comass we used the norms induced by the standard inner products 
of the Grassmann algebra of R". (See [27, §2].) 

We gain still another pertinent view of flat chains through representation 
by pairs of £" summable multivectorfields [23, §4.1.18]. Whenever 

S £VmAU) md E > 0 

there exist tn summable functions £ and 7] whose values are m vectors and 
m + 1 vectors ofRn, respectively, such that 

(spt £) U (spt rj) c U D {x: dist(x, K) < e}, 

ƒ (HEU + IMI) </£" < FK(S) + e, S = (£" A Q + 3 (£" A i?). 

Of course £ and TJ are not unique unless m = /z, in which case TJ = 0 and 
F*(S) = M(5) = /Hill </£". 

Our last description of flat chains leads immediately to Wolfe's theorem 
representing a locally flat cochain X E Fm(U) by a pair of foctf/Zy bounded 
£n L f/ measurable differential forms <f> and \p with degrees m and m + 1 such 
that 

x[(e,AO+a(e-Aij)]-f«fc*> + <iî »rfe' 

whenever £ and TJ are £" summable m and m + 1 vectorfields with compact 
support in U, and such that (see [27, §4.6(4)']) 

E ^ A w + ( - l ) m ( j ) A ^ ] = 0 for<oE ^jy»-'"-'(£/), 

which says that \p is a weak exterior derivative of <j>. All such pairs (</>, \p) 
represent locally flat cochains. Useful sufficient conditions [27, §6.2] are that 
<j> be continuous 9C1"1 almost everywhere in U and there exist a sequence of 
sets Fk with 3C,""1(F*) < oo for which 
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oo 

U~ U Fkc {x:x G dmn D<t> and d<p(x) = \p(x)}. 

7. Rectifiable currents. The currents which we have discussed so far may be 
viewed as generalized chains with real coefficients. Now we turn to the much 
more significant and subtle task of extending the concept of chain with 
integer coefficients in ways useful for analysis. Our aim is to gain comp
leteness and compactness properties for suitable groups of integral chains, 
while maintaining as much as possible of the basic geometry of sums of pieces 
of class one oriented manifolds with integer multiplicities. Starting with 
integral polyhedral chains we will use Lipschitzian maps, convergence in mass 
and the boundary operator to construct rectifiable currents, integral currents 
and integral flat chains. 

Whenever A' is a compact subset of an open subset U of R" we define 

as the class of those m dimensional currents S in U which have the property 
that for every positive number e there exist a locally Lipschitzian map ƒ of an 
open subset Z of some Euclidean space into U, a compact subset C of Z with 
f(C) c K9 and an integral polyhedral chain 

P E <3>m,c(Z) with M(S - UP) < e. 

We note that 

%*AU) i s a n additive subgroup of VmK{U) n Mm(U). 

The union of the classes %ntK(U) corresponding to all compact K c Uis the 
group 

of m dimensional rectifiable currents in U. 
Several alternate descriptions [23, §4.1.28] of rectifiable currents are useful. 

For example, %„(U) consists of the currents 

( 3 C " L * n A * 
corresponding to all (3C, m) rectifiable Borel sets W with compact closure in 
U and all 3C" [__ w summable m vectorfields £ such that, for 3C" almost all x 
in W, 

£(x) is a simple m vector, ||£(*)|| is a positive integer, 

Tanm(9C" [_ W, x) is the vectorspace associated with £(*). 

In fact, if S G «*(£/), then | |5 | | - 3C |_ ©m(||S'||, • ) and 

S = [3C L {*: ®m(F| | , x) > 0} ] A £ 

with 

£(*) - @m(||S||, x)S (x) for ||5|| almost all x. 

We observe that DC" almost all of {x: ®m(\\S\\9 x) > 0} can be covered by a 
countable family of m dimensional submanifolds of class 1 of U, but spt S 
may contain a nonempty open subset of U. Another characterization states 
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that 

S 6 f t m ( [ / ) if and only if S G Fm(U) n Mm(U) and 

0m(||5||, x) is a positive integer for ||5|| almost all x. 

(The proofs of this statement in [50, §5.3.1] and [47, §1.4] adapt parts of the 
proof of [23, §4.2.15], deducing the (\\S\\,m) rectifiability of U from [23, 
§3.3.15] and the absolute continuity of ||S|| with respect to 3f, then using the 
simple mapping properties of flat chains.) 

Applying the generalized area formula to compute the image of a 
rectifiable current (3C1 [_ W) A £ under a locally Lipschitzian map one 
obtains 

ƒ#[(«?" L W)/\£] = [3C L f{W)] Ari 
with 

V(y)= 2 £(*) for 3C" almost all/, 

where 

* ( * ) - [ AmapZ>( ƒ | W)(x) ]£(x)/ap/m ( ƒ | W)(x) 

whenever ƒ | W has an (9C1, m) approximate differential of rank m at *. 
It happens often that S 6 ^ , ( [ / ) but 35 g &„_!(£/). For instance 

f [ - 2 - ' , 2" ' ] G %(R), f ([2">] - [ - 2 - ' ] ) € %(R). 

However, we use the groups of rectifiable currents to construct chain 
complexes closed to the boundary operator in two ways, by restriction or 
enlargement, as follows: 

The union of the groups 

KK{U) = { S : S E %^{U)9 35 G fl*-i*(tf) or m = 0} 

corresponding to all compact K c U is the group 

of m dimensional integral currents in U. 
The union of the groups 

$m>K(U) = {R+dT:RB <&m,K{U), T G %,+uc{U)} 

corresponding to all compact K c U is the group 

of m dimensional integral flat chains in t/. 
Sometimes we need integral chains with noncompact support. Therefore we 

define the group 

<%}*(U) = <%m(U) n {S: For every x G U there exists 

/? G &m(£/) with JC « s p t ^ - R)} 
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of m dimensional locally rectifiable currents in U, and similarly the groups 
1]™(U) and &™(U) of locally integral currents and locally integral flat chains. 

For example, if W is an m dimensional submanifold of class 1 of U, with 
^{W n K) < oo for all compact K c W, and if £ is a tangent m 
vectorfield on W orienting W, so that £ is continuous and ||£|| = 1, then the 
corresponding locally rectifiable current (9C* [_ **0 A £ equals the classical 
operator integrating differential forms of degree m over the oriented manifold 
W [23, §4.1.31]. Hence, in classical notation, 

[(5C" L W) A «](*) = f * for * E ^ ( t f ) . 

We call OC1 L WO A£ an orientation current of W. 
Every 1 dimensional integral current is a sum of finitely many oriented 

simple arcs and countably many simple closed curves, with finite total length. 
Every n dimensional integral current in R" is a countable sum of currents 
± E" |_ A corresponding to tn measurable sets A for which our version of the 
Gauss-Green formula holds. However, the structure of m dimensional 
integral currents in Rn can be very complicated when 1 < m < n [23, 
§4.2.25]. 

The classes of currents most important for our work appear in the diagram 
of inclusions: 

n n n 
HmAV) C Fm ,*(£/)nMm(£/) c F^U) 

There is an integral analogue ^K of the real flat norm F^. For S G 
$m,K(U) we define 

$K(S) - inf{M(/?) + M(T): R E %Hjs{U)t 

T<E<&m+lK(U),R+dT=S}. 

The group ^m^K{U) is a complete metric space with respect to the integral flat 
distance fK(Sx - S2) between 5, and S2. Moreover, Im>K(U) is $jK dense in 
^ ^ ( C / ) . Since Lipschitzian deformation chains of rectifiable currents are 
rectifiable, one can use the homotopy formula to estimate the integral flat 
distance between the images of an integral current under Lipschitz-homotopic 
maps. 

A close connection between integral flat chains and elementary geometry is 
expressed by the following approximation theorem [23, §§4.2.21, 4.2.22]: 

If Kis a compact subset of U and 

S E <5m{ U) with spt S c Int K, 

then there exist integral polyhedral chains Pj E ^m(U) D ^, ,^(^0 suc^ ÜMÜ 

lim &JR - S) « 0, lim M(i\) - M(S), 
y'-x» J y-*oo 

lim M(&P.) = M(dS) in case m > 0. 
j—>oo 

For an integral current 5 in C/ we can even do much better, by deforming 
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U slightly in such a way as to map S and dS onto currents largely overlap
ping an integral polyhedral chain and its boundary [23, §4.2.20]: 

Whenever S Elm(U) and e > 0 there exist 

P E 9m(U) with spt P C {x: dist(x, spt S) < e) 

and a diffeomorphism f of class 1 mapping U onto U such that 

N(P — f#S) < e, 1 + e is a Lipschitz constant for f and f ~*x, 

| ƒ (*) ~ *| < e for x E U,f(x) = x /ƒ dist(x, spt S) > e. 

It follows that N(f#lP - S) < (1 + e)w€ and ƒ#'P is a nonsingular chain of 
class 1, belonging to some triangulation of class 1 of U. 

To proceed further we need the concept of (local) Lipschitz neighborhood 
retract in R", which means a set A such that for some neighborhood Z of A in 
Rn there exists a (locally) Lipschitzian map 

ƒ: Z -» A with f (x) = xfor x E A. 

Examples are convex subsets of R", linearly embedded compact polyhedra, 
submanifolds of class 1, the closures of open subsets bounded by n — 1 
dimensional submanifolds of class 1. In case A is connected, the retraction ƒ 
may be required to have class k > 1 if and only if A is a submanif old of class 
A: [23, §§4.1.16, 3.1.20, 4.1.29]. 

The following theorem [23, §§4.2.16, 4.2.17] conveys the most essential 
information about closure and compactness properties of integral and normal 
currents, and about the structure of integral flat chains: 

If Kis a compact Lipschitz neighborhood retract in U and c E R, then 

(1) \m<K{U) is ¥K closed in Nm,K(U), 

(2) fl*,+1Jf(C0 D {T: M(dT) < 00} = lm+hK(U), 

(3) %,K(U) n {S: M(5) < 00} = %,K(U), 
(4) Nm>Ar(t/) n {S: N(5) < c} is FK compact, 

(5) lm<K(U) n {S: N(5) < c) is % compact. 

These results, particularly proposition (5), are basic for the new geometric 
methods in the calculus of variations. 

The need for the flat norm in proposition (1) is illustrated by the fact that 

lim 2 [ ( 2 * - l)/(2j%k/j] = [0 , l ] / 2 

with respect to the weak topology in ^ ( R ) , but of course not with respect to 
F{*:0<.x<l}-

In case 0 < m < n it is not known whether vmK(U) is F^ closed in 
FmK(U), or whether v^mtK(U) is ®sK closed in $m,K(U) for every integer v, 
even when AT is a cube. 

Our measuretheoretic methods can also be used to construct [23, §4.2.26] a 
theory of chains with coefficients in the cyclic group Z„ = Z / P Z of order v. 
Defining the group of m dimensional flat chains modulo v as the quotient of 
^m(U) by the closure of v$m(U), and introducing appropriate notions of 
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boundary, support, mass and rectifiability, one finds that flat chains modulo v 
have structural and compactness properties largely analogous to those of 
integral flat chains. One can represent m dimensional flat chains modulo v 
with finite mass by rectifiable currents whose densities do not exceed v/2; in 
case v = 2 such chains correspond simply to (3C, m) rectifiable sets with 
compact closure in U. 

Many problems in classical geometry involve currents supported by analy
tic varieties. To each finite set F of real valued analytic functions on an open 
subset V of R" corresponds the analytic subvariety 

V n {x: f(x) = 0 whenever/ E F) 

of V. We call S an m dimensional analytic chain in U if and only if 

s e $Z(U) 
and every point of U has a neighborhood V with analytic subvarieties A, B 
such that 

dim A < m and V n spt S C A9 

dim B < m - 1 and V n spt 35 c B or m = 0. 
Local analytic geometry [23, §§3.4.5 - 12, 4.2.28-29] has the following 
implications: 

All m dimensional analytic chains in U are locally integral currents, and 
are locally representable as finite sums of integral multiples of disjoint 
oriented m dimensional analytic submanifolds of U. 

If P and Q are analytic subvarieties of U, dim(P ~ Q) = m, 

/ î - U [Vn(P~Q): VisopenmUzndV n(P~Q) 
is an m dimensional analytic submanifold of V } 

is the regular part of P ~ Q, and if W is a component of R which can be 
oriented by a continuous tangent m vectorfield £ with |£| = 1, then 
(%m L W) A £ is an m dimensional analytic chain in U. 

Similarly one uses complex valued holomorphic functions to define 
holomorphic subvarieties of C\ We call S a complex K dimensional 
holomorphic chain in an open subset U of C if and only if 

S E #£( ( / ) , 3 S « 0 or /c«0 , 

and every point of U has a neighborhood V with a holomorphic subvariety A 
such that 

d i m ^ < K and V n spt S c A. 

It follows that 5 is locally rectifiable. We say that S is positive in case for ||S|| 
almost all z there exists a factorization 

S (z) * vx A to, A • • • A vK A K with vl9...9vKe Cn. 

If P is a complex fc dimensional holomorphic subvariety of U, then the 
regular part R of P is oriented by a unique positive 2*c vectorfield £, and 
0&* L ^ ) A f is the unique complex K dimensional positive holomorphic 
chain S in U for which | |5 | | - 302" L /*• 
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8. Homology groups and isoperimetric inequalities. We will employ the local 
Lipschitz category, whose objects are the pairs (A, E) such that, for some n, A 
and B are local Lipschitz neighborhood retracts in R" with B c A, and whose 
morphisms are the locally Lipschitzian maps 

f:(A,B)-*(A\B'). 
We define the groups of m dimensional integral flat chains, cycles, 
boundaries 

Wm(A) = §m(R")n{S:sptScA}, 

ZJLA, B) = Vm(A) n {S: 35 G <5m_x(B) or m = 0}, 

<&m(A, B) = {R+dT:Re %{B), T E <5m+l(A)} 

and the integral homology groups 
Hm(A,B;Z) = Zm(A,B)/%m(A,B). 

Replacement of Rn by any neighborhood of A in Rn yields isomorphic groups. 
Each locally Lipschitzian function on A can be extended to some neigh
borhood retractible onto A9 and any such extension yields chain 
homomorphisms which in turn induce homology homomorphisms 

Hm(ƒ; Z): Hm(A, B; Z) -Hm(A', B'; Z). 

Moreover, the boundary operator induces connecting transformations 

dm(A, B; Z): Hm(A, B; Z) -> Hm_, (B; Z). 

One verifies quite easily that these functors and natural transformations 
satisfy the axioms of Eilenberg and Steenrod for a homology theory with 
coefficient group Z. Regarding excision one finds that inclusion maps 

(A, B) c+ (A', B') with A n B' = B9 

A' n Clos(,4' - B') cA, A'n Clos(A' ~ A) c B' 
induce homology isomorphisms [23, §4.4.1]. 

Our homology theory is isomorphic with the restriction of the classical 
singular theory to the local Lipschitz category. However, for problems invol
ving integration and for intersection theory, our chain groups are decisively 
preferable to the singular chain groups. It should be noted that flat chains, 
unlike singular chains, are equal to their subdivisions. This identification 
simplifies the construction of cycles, and yields better cocycles with real 
coefficients. On the other hand it is an open question how usefully integral 
flat chains could be related to cohomology with integer coefficients. 

One of the turning points in the development of geometric measure theory 
was the discovery that isoperimetric inequalities do not only apply to certain 
special situations studied in classical differential geometry, but are generally 
valid metric estimates related to the homology theory of arbitrary pairs in the 
local Lipschitz category. This fundamental connection between measure 
theory and algebraic topology is described by the following theorem [23, 
§4.4.2]. 

Suppose (Ay B) belongs to the local Lipschitz category, Kis a compact subset 
of A, and K n B is compact. 
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(1) One can find a positive number co such that 

%m(A9 B) n {S: spt S C K9 M(S) < w} C ®m(i4, 5). 

(2) Owe can find a compact subset K' of A and a real number o such that for 
every S E 9>m(A9 B) with spt S C K there exists 

T E &m+\(A) with sPt T C A"', spt(5 - 37) c 5, 

[M(r)]m/(m+1) + M(S -a r ) < oM(S). 

It follows that ®m(i4, 2ï)n Sr
mA:(R'ï) is relatively open and closed in 

Zm(A9 B) n ^ ^ ( R " ) with respect to S1*. 
Combining this isoperimetric theorem with the compactness theorem for N 

bounded sets of integral currents one can prove that for every compact 
Lipschitz neighborhood retract K contained in A and each c ŒRthe two sets 

%m(A9 B) n {S: spt S CK, M(5) < c}9 

%m{A9 B) n {S: spt S cK, M(5) < c) 

are ^K compact in case B n K = 0 , and are ^KB compact in case B n K =£ 
0, where 

&KAS) = ƒ*°° ®K[S L {^: dist(jc, K n B) > r}] dtxr 

whenever S E $lmK(Rn). These facts are applied in the solution of 
variational problems with homological constraints. 

Replacing integral flat chains by flat chains modulo v9 one obtains 
analogous results for a measuregeometric homology theory with coefficient 
group Z„. 

In the case of the real coefficient field R the situation is only partially 
analogous. Proceeding as before we define the vectorspaces of m dimensional 
real flat chains, cycles, boundaries 

Fm(^) = F m ( R w ) n { 5 : s p t S c ^ } , 

Zm(A, B) - Fm(A) n {S: dS E Fm(B) or m = 0}, 

Bm(A, B) = {R+dT:RtE ¥m(B)9 T E F w + I (^ )} , 

the homology vectorspaces with real coefficients 

Hm(A,B;R) = Zm(A,B)/Bm(A,B), 

the induced homomorphisms Hm(/; R) and the connecting transformations 
dm(A9 B; R). Thus we obtain a homology theory with coefficient group R on 
the local Lipschitz category, which is isomorphic to the restriction of the 
classical real singular theory. However, the real analogue of the integral 
isoperimetric theorem is false. On a circle there are 1 dimensional real cycles 
with arbitrarily small mass which do not bound. For 2 dimensional normal 
currents T in R2 (which are uniquely determined by dT) the ratios 

M(r)/[M(ar)]2 

can be arbitrarily large [23, §4.5.13]. Only the following modified estimate is 
true [27, §3.1]. 
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Suppose {A, B) belongs to the local Lipschitz category, K is a compact subset 
of A, and K D B is compact. 

One can find a compact subset K' of A and a real number r such that for 
every S E Bm(A, E) with spt S C K there exists 

T E Fm+X(A) with spt T c K\ spt(5 - dT) c B, 

M(T) + M(S-dT) < T M ( S ) . 

When B is relatively closed in A it follows that 

Bm(A, B) n Fm^(R") is F* closed in Fm^(R"); 

moreover Zm(A, B) and Bm(A, B) have M bounded compactness properties 
analogous to those of %m(A, B) and %m(A, B% with respect to F^ and the 
function FKB analogous to 9 ^ , provided AT is a Lipschitz neighborhood 
retract. 

The flat closedness of Bm(A, E) is useful not only in homological 
variational problems but also in the proof of the following generalizations [27, 
§§4.8, 4.9] of two classical theorems of De Rham, which provide an 
isomorphism between 

HomR[Hm(^, B; R), R] 

and the mth cohomology group of the complex of germs of smooth 
differential forms defined on neighborhoods of A and vanishing on neigh
borhoods of B. 

Suppose (A, B) belongs to the local Lipschitz category and B is relatively 
closed in A. 

(1) A and B have neighborhoods U and V such that for every R linear map 

v:Um{A,B;R)->R 

there exists 

<J> E &m(U) with d<t> = 0, spt <f> c U~ V, 

S(<» = *>(x) whenever S e X E Hm(A, B; R). 

(2) Given any neighborhoods U and V of A and B, one can find neighborhoods 
U' and V' of A and B such that for every 

<{> E &m(U) with m > 0, d<}> = 0, spt </> c U~ V, 

S (<ƒ>) = 0 whenever S E Zm(A, B), 

there exists 

xP E &m-\U') with dxp = <(>\U', spt i f c t / ' - V\ 

9. Parametric integrals. Our discusion of m dimensional surface integrals 
has been confined so far to the case where the integrand corresponds to a 
differential form of degree m. Now we consider an arbitrary parametric 
integrand ^ of degree m on the open subset U of Rn. This is, by definition, a 
continuous map 

* : u x AwRn-^R 
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which satisfies the homogeneity condition 

*(*, t£) « /*(*, £) for x e u91 E AmRn> 0 < / e R. 
We call ^ a positive integrand if and only if 

*(*,£) > 0 îoîxEU.O^îe /\mR\ 

We term ^ an integrand of class k if and only if the restriction of ^ to 
U X ( A m

R n ~ (°}) i s a unction of class A:. 
Examples of positive integrands are 

the area integrand mapping (x, £) onto | | | = ( | • | )1 / 2 , 

where • designates the inner product of Am*" induced by the standard 
inner product of Rn, and 

the mass integrand mapping (x, £) onto ||£||. 

Similar integrands are associated with every Riemannian metric tensor on U. 
For S E Mm(U) we define the parametric integral 

£*-ƒ*[*, S (x)]d\\S\\x. 
The homogeneity property of ^ implies 

f *-[*[x,S(x)]drx 
^ A f J 

for every Radon measure y with compact support in U and every y summable 
m vectorfield f. We also note that 

f*=S(</>) incaseS E MJU),<t> E &m(U), Js 

*(x, Q « <{, <*>(*)> forx E £/, £ E A , ^ 

and that fs<& = M(5) in case * is the mass integrand. 
Certain pointwise properties of parametric integrands are linked to 

convergence properties of the corresponding integrals [27, §2]. First we state a 
proposition relating convexity of a positive integrand to lowersemicontinuity 
of the integral on the weakly topologized space of currents with finite mass. 

For each positive integrand * on U the following three conditions are 
equivalent: 

(1) * is a convex integrand; this means that 

*(* , £ + Î,) < * (* , £) + *(* , TJ) for x E UandÇ, TJ E AmR"-

(2) ƒ * = sup{S(<f>): * > <t> E <$"(£/)} 

whenever S E Mm((7); /œre ^ > <}> means that 

*(* , 0 > <fe <H*)> for x E £ U E A - * 1 . 

(3) lim inf f * > f * 
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whenever all Rj and S belong to Mm(U) with 

lim /?,(<*>) = S (<J>) for<t>eQ)m(U). 

In case H is a submanifold of class 1 of U, we say that ^ is H flat if and 
only if, for x G H and £ E AmTan(//, x), ^(x, £) is nonnegative and equals 
the infimum of the set of numbers 

2 *(*.*&) 

corresponding to all finite sequences of simple m vectors TJ,, . . . , % in 
AmTan(#, x) such that 

N 

£ = 2 * 
/ - I 

For the mass integrand this condition holds always, but for the area 
integrand it fails when 1 < m < (dim H) - 1. 

Flatness of a positive integrand is a pointwise property related, in case 
H = (7, to lowersemicontinuity and polyhedral approximation of the integral 
on the space of real flat chains with finite mass. 

A positive integrand * is U flat if and only if the following two conditions 
hold for each compact K C U: 

(I) lim inf f * > f * 

whenever all Rj and S belong to Fm K(U) n Mm(U) with 

lim FK(R: - S) = 0. 

(II) For every S E FmK{U) n Mm(U) with spt S clntK there exist Pj E 
Pm(U) with spt Py c Int Ksuch that 

lim FA:(/
>. - S) = 0 and lim f * = f *. 

y-* » y-» oo .//^ Js 

Next we will define the notion of ellipticity for a parametric integrand. This 
pointwise property plays a crucial role in the regularity theory for rectifiable 
currents minimizing a parametric integral. 

We say that ^ is elliptic at the point a in (/, with ellipticity bound c > 0, if 
and only if 

f*[a, R(x)] d\\R\\x - f*[a, S (x)] d\\S\\x > c[M(R) - M(5)] 

whenever R E %„(Rn)9 S E ^(R") , dR =3S, spt S is contained in the 
vectorsubspace of Rn associated with a simple m vector £ of Rn and 

S (JC) = £ for || SU almost all x. 

We call * an elliptic integrand if and only if ¥ is elliptic at each point of U 
and for each compact K c U there exists a common ellipticity bound at all 
points of K. 
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Ellipticity of ^ at a with bound c is implied [28, §3] by the Weierstrass 
condition 

*(*, ij) - <(0, i,), D*(a, 0> > c\rj - | | 2 /2 

for all simple m vectors £, TJ of R" with |£| = |TJ| = 1. 
Replacement of the positive ellipticity bound c by 0 leads to the notion of 

semielliptic integrand. This pointwise property is related to lowersemi-
continuity of the integral on the group of rectifiable currents. 

A positive integrand ^ is semielliptic if and only if, for each compact K c U, 

lim inf f ¥ > f V 
J-+CO JRJ JS 

whenever all Rj and S belong to $lmyK(U) with 

lim &JRj - S) - 0. 

(Half of this equivalence was proved in [23, §5.1.5]. Regarding the other half 
we observe that if semiellipticity fails, then it fails in case S is some integral 
multiple of an m dimensional oriented cube, which equals the sum of 
arbitrarily small similar cubes, for whose multiples semiellipticity fails 
homothetically.) 

10. Minimizing currents. Assuming that (A, B) belongs to the local Lipschitz 
category, B is relatively closed in A and ^ is a positive convex parametric 
integrand of degree m on a neighborhood U of A in Rn, such that there exists a 
locally Lipschitzian retraction of U onto A, we now consider the problem of 
minimizing the integral of ^ on certain sets of currents with finite mass. We 
define 

* r ( S ) - inf{ ƒ * : Q G Mm(U), Q - S G Tj 

whenever T c Vm(A), 0 E T, T + T =•= T and 5 G ¥m(A). 
To convey the purpose of this concept we offer three initial illustrations: 
If 5 G^m(^),then 

equals the infimum of the integrals 

ƒ * 
corresponding to all m dimensional rectifiable currents Q with 

spt Q c A and spt(3g - dS) c B. 

In case B « 0 we thus formulate in terms of rectifiable currents the classical 
minimum problem with prescribed boundary 35. In case B ^ 0 w e allow a 
partially free boundary in B. 

If S E x e Hm(A, B; Z), then 

VajAMiS) « inf { ƒ * : Q EXn M„(t / )} . 
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If A = R2 n {x: \x\ > \}9p E A9 q E A and S is a curve in A from/7 to q 
which loops k times around the origin, then 

equals the infimum of the integrals j Q ^ corresponding to all those one 
dimensional rectifiable currents Q in A with boundary [q] — [p] which 
loop k times around the origin. 

The preceding examples involve chains with coefficients in Z. By 
appropriate choices of S and T one formulates analogous problems for chains 
with coefficients in R, or in Z„. 

In many important cases one can prove the existence of a current 

Q E Mm(U) with Q - S E T and *T(S) = f % 
JQ 

and then Q has the property that 

*r(Ô L E) - f ^ for every compact E c A. 
JQ\_E 

An m dimensional locally flat chain Q with (possibly noncompact) support in 
A9 which is represen table by integration and has the preceding property, is 
called ¥ minimizing with respect to T. In some special circumstances this 
property implies that the set 

spt Q~(B U spt dQ) 

is a smooth m dimensional submanifold of U9 but often this set has 
singularities, even if A = Rn. Also, the minimizing property of some currents 
can be detected by their values for suitable differential forms. We now 
proceed to a systematic account of what is known about such questions. 

Combining the compactness and closure properties of the groups of 
integral flat cycles and boundaries with the lowersemicontinuity of ¥ 
integration one obtains [23, §5.1.6] the following general theorem on the 
existence of ^ minimizing rectifiable currents: 

If K is a compact subset of A, 

%*AA> B) - * U ^ B) n {R: spt R c K)f 

®m,*(^ B) = Q>m(A9 B) n {R: spt R c K) 

and S E ^jr(C/), then there exist m dimensional rectifiable currents Q9 Q' 
such that 

Q-SE%m,K(A9B) and * W ^ ) ( S ) - ƒ * , 

Q'-SE<$>m,K(A9B) and *%mJ^M(S) = ƒ *. 

We refer to Q (or g') as absolutely (or homologically) ¥ minimizing in # 
with respect to (̂ 4, 5) over Z. 

Simple examples, like the length integrand on a punctured plane, explain 
the need for restriction to a compact subset of A. 
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The first half of our existence theorem includes a solution of the problem 
of Plateau. The second half implies, in case A is compact, that for every 
homology class 

x e H ^ , B>z) 
there exists a (relative) cycle Q' E x for which fQ & is least. Thorn discovered 
a smooth 14 dimensional manifold A with a homology class x £ H7(>l, 0 ; Z) 
such that x is not the image of the fundamental class of any 7 dimensional 
compact oriented manifold N under a continuous map of N into A ; in this 
case the support of a ^ minimizing cycle Q' E x cannot be a manifold. Also, 
Fédérer proved that every complex K dimensional holomorphic subvariety of 
an open subset A of Cn is the support of a 2K dimensional locally rectifiable 
current which is mass minimizing with respect to 2^ (4 , 0) ; often the 
singular part of such a variety has complex dimension ic — 1. These and other 
examples illustrate the immense difficulties presented by the problem of 
structurally characterizing the supports of minimizing rectifiable currents. 
Nevertheless, very significant partial results have been obtained. 

Interior structure (or regularity) theory deals with a minimizing rectifiable 
current Q in a smooth manifold A and investigates local properties of spt Q 
in the complement of B u spt dQ. Clearly it suffices to prove regularity 
properties of spt Q for the special case when A is an open subset ofRn, 

U = A,Q E <$%(A), 3g = 0 

and Q is ¥ minimizing with respect to %m(A, 0). Beginning with the obser
vation that, for || 21| almost all JC, 

Tan(spt Q, x) is an m dimensional vectorspace 

and ®m(||ö||> x) is a positive integer, 
one tries to prove that the tangent spaces vary continuously on a large 
relatively open subset of spt Q. Then higher order smoothness of such a part 
of spt Q follows from Morrey's regularity theory for the solutions of classical 
nonparametric variational problems. Among the connected relatively open 
subsets of spt Q, the smooth m dimensional manifolds appear to be those sets 
on which the density of | |g | | is constant. For the validity of regularity 
theorems, convexity of the integrand does not suffice, but ellipticity does. 
After earlier work by De Giorgi and Reifenberg on the special case of the 
area integrand, Almgren developed a general method which led to the 
following theorem [23, §5.3.16]. 

If ¥ is a positive elliptic integrand of degree m and class k + I > 3 on the 
open subset A ofRn, 

Q is ¥ minimizing with respect to %m(A9 0), 

a E spt Q, Tanm(|| Q ||, a) is contained in some m dimensional vectorsubspace of 
R", and a has a neighborhood V in A such that 

0m(||Ö||, x) > e*m(||g||, a) for \\Q\\ almost all x in V, 
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then a has a neighborhood W in A such that W n spt Q is an m dimensional 
submanifold of class k of A. 

A point a G spt Q is termed regular or singular with respect to Q according 
to whether or not a has a neighborhood Win A such that W n spt Q is an m 
dimensional submanifold of class 2 of A. 

Since the points a satisfying the hypotheses of the preceding theorem form 
a dense subset of spt Q, we infer the corollary: 

The subset of regular points is dense in spt Q. 

Knowing no counterexamples one is tempted to conjecture that the density 
hypothesis in the theorem could be replaced by the weaker hypothesis 

©m[||ô|| L {*: ©"-(Hell, x) < ®*"{\\Ql a)}, a] = 0, 

which holds for 3C" almost all a in spt Q. If this were true one could 
conclude that the singular subset of spt Q has 3C" measure zero. For two 
special dimensions such results have been proved [23, §§5.3.20, 5.3.19]: 

If m = 1, then the singular subset of spt Q is empty. 

If m = n — 1, then the singular subset of spt Q has 3C" measure zero. 

Examples show that for 1 < m < n — 1 the singular subset of spt Q can 
have dimension m — 2. For instance 

Rm+2 n {x: (je, = 0 and x2 = 0) or (jcm+1 = 0 and xm+2 = 0)} 

is the support of an area minimizing current in Rm+2. One may still hope that 
m — 2 is the highest possible dimension of the singular set of an m dimen
sional locally rectifiable current with boundary zero in A which minimizes an 
elliptic integrand of class 3 with respect to %m(A, 0) . 

It was shown recently [5] that in case m = n - 1 the singular subset of spt Q 
has 9C"~2 measure zero. 

Even more recently Almgren announced [Notices Amer. Math. Soc. 24 
(1977), A-541] that he has found a proof of the following proposition 
concerning the case when ^ is the area integrand of arbitrary degree m on an 
open subset A of R": 

If Q is an area minimizing locally rectifiable m dimensional current in A, with 
3(2 = 0, then the singular subset of spt Q has 3C" measure zero. 

Precise estimates of the maximal dimension of the singular set of a 
minimizing current have been obtained for the area integrand of degree m on 
Rm+1. Successive contributions by Fleming, De Giorgi, Triscari, Almgren, 
Simon and Fédérer led to the following results [23, §5.4.15] and [25]. 

Suppose A is an open subset ofRm+l, 
QBtfSftA), 30 = 0 

and Q is area minimizing with respect to %m(A, 0). 
Ifm<6, then the singular subset of spt Q is empty. 
If m > 7, then the Hausdorff dimension of the singular subset of spt Q does 

not exceed m — 1. 
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Analogous propositions are true for the area integrand of degree m induced 
by any Riemannian metric of class 3 on a manifold A of dimension m + 1. 

Singular sets with dimension m - 1 really occur. For instance, if m > 7, 
then 

is the support of an area minimizing m dimensional locally rectifiable current 
with boundary zero in Rm+l, as first shown by Bombieri, De Giorgi and 
Giusti [8]. Later we will sketch a simple proof using an appropriate 
differential form. Other examples were found by Lawson [52]. For m > 7 it is 
still unknown whether the m — 1 dimensional Hausdorff measure of the 
singular set must be locally finite in A. 

Replacing integral flat chains by flat chains modulo v, one similarly studies 
minimizing chains with coefficients in the cyclic group Z„ = Z/*>Z. This 
change in coefficient group hardly affects the existence theory, but the 
modified interior structure theory exhibits some distinctly new features. The 
nature of the singularities of minimizing chains modulo v really depends on 
the value of v. 

In case v = 2, the singular set of an area minimizing m dimensional flat 
chain modulo 2 in any Riemannian manifold A has Hausdorff dimension at 
most m — 2 [25, §3]. Moreover, the singular set is empty if m = 1, and has 
dimension at most m - 7 if dim A = m + 1. 

In case v = 3, the singular set of an area minimizing m dimensional flat 
chain modulo 3 in any Riemannian manifold has Hausdorff dimension at 
most m — 1. Singularities occur even if m = 1; for example a length minimi
zing flat chain modulo 3 in C is supported by the union of the three line 
segments from zero to the cube roots of unity. According to J. E. Taylor [76] 
the singular set of any area minimizing 2 dimensional flat chain modulo 3 in 
R3 is the union of a locally finite family of smooth curves, along each of 
which three surfaces composed of regular points meet at 120° angles. 

Next we consider chains with real coefficients. For every positive convex 
integrand ^ the following theorem [27, §3.9] guarantees the existence of ^ 
minimizing real flat chains, with respect to suitable spaces of real flat cycles 
and boundaries. 

If Kis a compact subset of A, 

ZmAA> B) - Zm(A> B) n {*: spt R C K}9 

Bm>K(A, B) = Bm{A9 B) n {R: spt R c K) 

and S E FmK(U), then there exist m dimensional real flat chains Q, Q' with 
finite mass such that 

Q-SEZm,K(A,B) and *zmAA,B)(S) = f % 

Q'-SBBm,K(A,B) and *BmM,B)(S) = ( V. 
JQ> 
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We refer to Q (or g ') as absolutely (or homologically) ¥ minimizing in K 
with respect to (A, E) over R. 

In general, minimizing real flat chains do not enjoy regularity properties 
analogous to those of minimizing rectifiable currents. We will soon illustrate 
this deficiency by an example. However, partial compensation is afforded by 
the fact that often the minima ^T(S) associated with sets T of real flat chains 
can be alternately characterized by the values of S on suitable sets of 
differential forms [27, §§4.11(2), 4.10(4)]. 

IfS<EFmtKmthen 

* z ^ , * ) ( S ) - sup{S(<ty): * e S»-\U)9 spt * c U~ B, 

<fc 4K*)> < *(*, 9 for (*, |) E tf X A„,R"} 

*Bm,^,f»(S) = sup{S(<|>): </> E Sm(£/), rf<|> = 0, spt $ c £ /~ 5, 

<fc <K*)> < *(*> © for (*, S) E tf X A^R'1}. 

In case S E Fm>Ar(i/) n M J ( / ) the equation 

V . ^ ) ( S ) = / S * 
holds whenever there exists a differential form <j> which has the properties 
listed above and which also satisfies the condition 

(S(x), <f>(x)) = ¥ [ * , £ (* ) ] for ||5|| almost all x. 

We proceed to the use of such differential forms in several examples. 
(1) Given any nonnegative real valued E1 measurable function g such that 

f g d tl < oo for every compact C c R, Jc 
we define ${x) = (0, g(;c,)) E R2 for x E R2, 

r=e2AîeN'1
oc(R2) with9r = o, \\T\\= e2LU°*i)> 

f(jc) = (0, 1) and (f(jc),DJf2(jc)) - 1 for ||7]| almost all JC. 

For each compact E CR2 our sufficient conditions are satisfied by 5 = T L. Ey 

<t> = DX2 and the length integrand *, hence 

*B1(R2,0)(2rL^)=f *• 

Thus T is length minimizing with respect to R2 over the coefficient group R, 
but of course T is only as smooth as the function g. 

(2) On the space Cn with the usual coordinate functions Z, = XJf + î^i we 
consider the differential forms 

Û = \ 2 ^ A D? - 2 M}A ^ ^ ^(C), 

<f>K = 0" /K! e S ^ C ) for fc = 1 , . . . , n9 
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and recall Wirtinger's inequality [23, §1.8.2] 

<t *.(*)> <||£|| for (2, ( ) E C X /\2KC\ 

in which equality holds if and only if £ belongs to the convex hull of 

{t>i A iv{ A • • • A vK A ivK: v{ E C , . . . , vK E C } . 

It follows that if T is a complex K dimensional positive holomorphic chain in 
an open subset U of C , then 

( f (z), <t>K(z)) = 1 for |j7]| almost all z, 

and for each compact E C U our sufficient conditions are satisfied by 
S = rL£,(J> = (f>, and the mass integrand ¥, hence 

*B2.(c/,o)(ri_2r)=/rL/-

Thus T is mass minimizing with respect to U over the coefficient group R. 
One sees similarly that every complex K dimensional positive holomorphic 

chain in any Kaehler manifold A is mass minimizing with respect to 
**M, 0)-

(3) Suppose W is an open subset of Rm and ƒ E S°(W) satisfies the 
minimal surface equation 

J U [ 0 +i|z>yii2)_,/V] = o. 

The function ƒ is the support of the current 

T= F# (Em L W) E f%{W X R) 

where F(w) = (w, /(w)) E W X R for w E FF, and the unit vectorfield f 
defined by the formula 

S(w,y) =\\DF(w)f f(-grad/(w), 1) E R" X R 

for (w,j) E ^ X R has divergence zero. Using the standard coordinate 
functions Xv . . . , Xm+X on Rm X R a R f f l + l we obtain the differential form 

* - f _J (ZHf, A • • • A DXm+l) E Ê*(W X R) 

with d<f> = 0, Ĥ ll = 1, and 

( f (w, ƒ), 4>(w, >>)) = 1 for (w, y) E spt T 

because (/>,F(w) A • • • A DmF(w)9 <t>[F(w)])= JmF(w) for w G W. It 
follows that Tis area minimizing with respect to Bm(W X R, 0) = Zm(W X 
R,0) [23, §5.4.18]. 

In the interest of wider applicability it is essential that one can liberalize 
the sufficient conditions for minimality by requiring much less smoothness of 
the differential form </>. A general theorem [27, §6.2] on flat cochains corres
ponding to differential forms with certain types of singularities has the 
following corollary. 

IfZ is an open subset of U9 m < n — I, 
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3 C ( t / ~ Z ) = 0, </>eSm(Z), # = 0, 

<£, <*>(*)> < *(*, £) for (x, |) G Z X AmR", 

r E F °̂( (/), T is representatie by integration, 

( f (x), <}>(x)) = *[x,f(x)] for ||7]| a/mew/ a//x, 

then T is ¥ minimizing with respect to Bm((/, 0). 

We will give two examples. Both employ the angle forms 

TKESK(RK + 1^{0}) 

defined by the equation 

T^-C- l» ! -" - 1 * _l(*iA---A*.+ I) 
for JC G R K + I - {0}, whence HT^JOH = |x|-K and rfT^x) = 0. 

(4) We use the proper embedding F: R2 -* R3 such that 

F(w) = (w2 COS(H>,), w2 sin(w,), w{) for w G R2 

to construct the half helicoid 

T = F # (E
2 L {H>: W2 > 0}) G I^(R3), 

and note that dT = G#E1 with (7(5) = (0, 0, s) for s G R. We further define 

p(x) = (x„ x2) and r(x) = |/?(^)| for x G R3, 

Z = R 3 n {x:r(jc) > 0}, 

<f> = (r2 + l)~ l / 2(r^#T, + £>Jr3) A ^ G S2(Z). 

Inasmuch as 9(?(R3 - Z ) = 0,J(j) = 0, ||<J>|| = 1, and 

( f (JC), <j>(x)) = 1 for || 7]| almost all x 

because (D}F(w) A #2^(w)> <t>[F(w)])= JiFM i f w2 > 0, our corollary 
implies that T is area minimizing with respect to R3 over R. However, the 
whole helicoid F#E2 is not area minimizing [62, §111]. 

(5) In U = R4 X R4 we consider the current 

T = 3[(E4 X E4) L U n {(*,ƒ): W < M } ] e I T W 

with spt T = £/ n {(x,y): \x\ = |>>|} and dT = 0. For (x,y) E £/we let 

p(x , j ) = x, 9(x,7)=>', r(x,y) = (\xf +\yf) ; 

in case r{x,y) > 0 we define 9(x,y) so that 0 < 6{x,y) < TT/2 and 

|*|= r(*»J')cos[0(x,.>O], 1̂ 1= r(*».>Osin[*(*»J')]-
The restrictions of p, q, r, 0 to Z = (R4 ~ {0}) x (R4 •—< {0}) are of class oo, 
and 3C(U ~ Z) = 0. We further let 

« = (r7/7)[sin(20)]49/8, 

* - - i z > « A / > # T 3 A * # T 3 e S 7 ( Z ) . 
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After verifying through elementary computations [27, §6.3] that d<f> = 0, 
\\<Kx,y)\\ < l for(x, .y)EZ,and 

( f (x,y), <j>(x,y)) = 1 for (x,y) G Z n spt 7, 

one infers from our corollary that T is area minimizing with respect to U over 
R. The singular subset of spt T consists of the point (0, 0). 

For each integer m > 7 the current 

T X Em"7 G I^(R4 X R4 X R"1"7), 

which has boundary zero, is area minimizing with respect to R4 X R4 X 
Rm~7 » Rm+1, and the singular subset of the support of this current equals 
{0} X {0} X Rml. 

Given an integral flat chain S, one may reasonably choose to minimize the 
integral of ¥ over currents with finite mass which differ from S by integral 
flat cycles, or one may allow the differences to be real flat cycles. Similarly 
one may admit either integral boundaries or real boundaries as differences. 
Of course the values of the minima are likely to depend, in general, on the 
choice of Z or R as coefficient group. We will now review the known results 
[27, §5] comparing such minima. For this purpose we assume that K is a 
compact subset of A, K and K n B are Lipschitz neighborhood retracts in U9 

and K equals the union of a countable sequence of submanifolds Ht of class 1 of 
U such that * is Ht flat [T7, §2.13]. The last hypothesis is quite tolerable, 
because for instance the mass integrand associated with any Riemannian 
metric on U is H flat for every submanifold H of class 1 of U. 

If S G <ÏÏ K(U),then 

and 

*zm.M,B){S) = omî&zr^mK(A,B)(JS) 

^jA,B)(S)=QMezr^mM,B)(jS). 

(One may replace inf0</eZ by H m ^ ^ . ) 

For example, if K = A and 

a £ Hm(A, B; Z), fi G H JA, B; R) with a c fi, 

one can take 5 G a to obtain 

inf{ ƒ *: Q G fi J = inff./"1/ ,*: 0 <j G Z, Q' Eja\. 

It has also been shown that 

(I) * W . « ( 5 ) - * W ^ > ( S ) 
in case m = 1 and ty is an even integrand, 

but in case m > 2 the equation (I) often fails for the mass integrand ¥ in a 
Riemannian manifold A. Furthermore 

(II) *B„.M,B)(S) = nmjA,BiS) 

in case A is an m + I dimensional orientable 
manifold of class 1 and ̂  is an even integrand, 
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but in case dim A > m + 1 or A is nonorientable the equation (II) often fails 
for the mass integrand. 

In general one really needs to use infinitely many multiples jS, because it 
can happen that 

^^JAM(S) <J-}*^K(A*B)US) 

for every positive integer j . Such examples, with ^ = the mass integrand and 
5 = 0 , have been constructed by Almgren [27, §5.11] for m = 1 in a 
Riemannian manifold A diffeomorphic with S1 X S2, and by Lawson [53] for 
m > 3 in a 2m dimensional flat torus A. Thus Lawson found a complex 4 
dimensional Abelian variety with a 4 dimensional integral homology class a 
such that an invariant positive current of type (2, 2) belongs to the real 
homology class /? containing a, but no positive holomorphic chain belongs to 
any integral multiple of a. 

We have seen that minimization over Z differs globally from minimization 
over R. However, it is not known whether these two properties differ locally. 
The theory of geodesic fields shows that they coincide in some neighborhood 
of every regular point. 

11. Slicing. In conclusion we briefly discuss the measuretheoretic method 
[23, §4.3] of slicing an m dimensional flat chain 

SeFm(U) 

by a locally Lipschitzian map 

ƒ: t / ^ R " , 

where m > (i. Corresponding to y E RM one frequently needs to consider the 
part of S iiif~l{y} as an m - jüt dimensional current 

For the definition of this concept we will need the volume form 

Ö - DYX A • • • A DY^ E S"(R"), 

where Yu . . . , Y^ are the standard coordinate functions on RM. 
Our general procedure can be motivated by the special case when S = 

(3C1 L_ W) A £ for some m dimensional submanifold W of class 1 of U such 
that 3C* ( W) < oo and W is oriented by the m vectorfield £. For x E W we 
factor 

É ( * ) - i l ( x ) A Î ( * ) 
so that t]{x) is a simple /i vector of Tan( W, x), 

||r,(x)|| = l and <i ï (*) , / # 0(Jc)) - / M ( / I» r ) (x) . 

f (x) is a simple m — /i vector of Tan( W, x\ 

||f (JC)|| = 1 and ker D (ƒ| W)(JC)
 i s associated with f (JC) 

in case /M(/|JT)(x) > 0. Using the coarea formula we find that if ^ E 
^)m~^(U) and 4> is any real valued bounded Baire function on R*\ then 
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[ S L / # W ] W = s[/#(4>a)A*] 

= fj>[f(*)]Wf\W)(x)(!;(x), *(*)> d<XTx 

•'R" • /H'n/- |{>'} 

It follows from differentiation theory that, for f almost all.y, 

S L ƒ* (b,ja)/[a(n)p'] -* (3C-" L ^ n f ' {ƒ }) A f 

in ^m-niU) as pjO, where ̂  is the characteristic function of B(y, p). 
When 5 is an arbitrary flat chain one can still prove the existence of the 

slice 

(S,f,y) = limS L ƒ* (by4>2)/[a(n)p"] G <^m.,(U) 

for & almost all y, with 

*pt(SJ9y}cf-l{y} nsptS, 

à(SJ,y> = (-l)\dSJ>yy incase/w>/*. 

Furthermore (S,f,y} G Fm_M(£/) for E*4 almost ally9 

[SL/*0] (*) = j(S9f9y^)dt*y for* e <*>—'(£/), 

M(S L / # « ) = ƒ M< £,ƒ,>>> dt*y. 

In case 5 is a rectifiable current, so is (S9f9y} for £** almost ally. 
In case S G Nm(i/) it is further known [26, §3] that the condition 

J\f(x)-y\l-"d(\lS\\ + \\dS\\)x<oo 

implies that <S, ƒ,>>> exists, and that 

<£,ƒ,ƒ> = (95) L / % + (-1)"3(5 L / % ) 

if either ƒ is of class 1 or /x = 1, where Ty is the differential form of degree 
ft - 1 on R44 given by the formulae 

ry(z) = M-yMrV-ir> ->>n* -y) _j(r, A • • • A i;) 
for 2 E R ^ {>>}, and I^Cy) = 0. Moreover the set of those points y in R*, 
for which the above condition fails, has /* — 1 dimensional potentialtheoretic 
capacity zero, hence Hausdorff dimension at most jti — 1. 

In case S is an analytic chain and ƒ is an analytic map it was proved by 
Hardt [38, §4.3] that (S9f9y) exists and is an analytic chain whenever 

dim(/~! {y} n spt S) < m - fi and dim(/"l {y} n spt 35) < m - 1 - p, 
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and that ($,ƒ,ƒ} varies continuously on the set of all such points y. This 
makes slicing a useful method of assigning orientations and multiplicities to 
the varieties of solutions of analytic equations depending on parameters. 

Among the applications of slicing are various integralgeometric formulae, 
such as 

M(S) = c f f M(S9p9y}d&yd9*lj> 

for S G Fm(R"), where 

c _ T[(m + l) /2]r[(n - jc + l ) /2] 

r [ ( n + l ) / 2 ] r [ ( m - M + l ) / 2 ] ' 

The current (S9p9y} should be viewed as the part of S in the n — \k 
dimensional affine space p~l{y). Brothers has obtained general results of this 
type for homogeneous spaces of Lie groups, assuming only that the isotropy 
group acts with sufficient transitivity on the exterior algebra of the tangent 
space at the identity. 

We use the subtraction map 

ƒ: R"XR%R", f(x9y) = x -y for (x9y) G R" X R", 

and the diagonal map 
g: R" ~* R" X R", g{x) = (x9 x) for x G R", 

whenever 

S G FXR"), T G F/R"), S XT E F^/R" X R"), 

i + y > it and <5 X TJ9 0> G Fl>^/,(R
n X R") 

to define [23,4.3.20] the intersection current 

SnreF i + y , ,(R") 
characterized by the equation 

g*(s nr).(-i) ("-^<s x r,/,o>. 
This operation generalizes alternating multiplication in the sense that 

( E T L * ) n ( F L * ) - F L ( * A * ) 
for <f> G q)"-'(R") and ^ G ^ ^ (Rn). 

The work of Hardt shows that S n T exists whenever S and T are i andy 
dimensional analytic chains in R" satisfying the two conditions 

dim(spt S n spt T) < i + j - /i, 

dim[(spt 5 n spt 37) u (spt T n spt 35)] < i +7 - 1 - n. 
Moreover Hardt extended this intersection theory to analytic chains in 
arbitrary oriented analytic manifolds, and proved that the product has all the 
formal properties [38, §5.8] required for use in algebraic geometry and 
topology. He also proved the uniqueness [38, §5.11] of such an intersection 
product. Thus slicing provides an analytic approach to intersection theory, 
which gives the same result as the customary method by way of homological 
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algebra, and which sheds additional light on the continuous geometry. 
Finally I want to mention that interesting applications of slicing to complex 

analysis have been made by King, Harvey, Lawson and Shiffman [44], [46], 
[47], [50]. 

REFERENCES 

The following list is a supplement to the extensive bibliography in [23]. 
1. W. K. Allard, On the first variation of a varifold, Ann. of Math. (2) 95 (1972), 417-491. 
2. , On the first variation of a varifold: Boundary behavior, Ann. of Math. (2) 101 

(1975), 418-446. 
3. W. K. Allard and F. J. Almgren, Jr., The structure of stationary one dimensional varifolds 

with positive density, Invent. Math, (to appear). 
4. F. J. Almgren, Jr., Existence and regularity almost everywhere of solutions to elliptic 

variational problems with constraints, Mem. Amer. Math. Soc. No. 165 (1976). 
5. F. J. Almgren, Jr., R. Schoen and L. Simon, Regularity and singularity estimates on 

hypersurfaces minimizing parametric elliptic variational integrals, Acta Math, (to appear). 
6. F. J. Almgren, Jr. and W. P. Thurston, Examples of unknotted curves which bound only 

surfaces of high genus within their convex hulls, Ann. of Math. (2) 105 (1977), 527-538. 
7. T. Bagby and W. P. Ziemer, Pointwise differentiability and absolute continuity, Trans. Amer. 

Math. Soc. 191 (1974), 129-148. 
8. E. Bombieri, E. De Giorgi and E. Giusti, Minimal cones and the Bernstein theorem, Invent. 

Math. 7 (1969), 243-269. 
9. E. Bombieri and E. Giusti, Harnack's inequality for elliptic differential equations on minimal 

surfaces, Invent. Math. 15 (1972), 24-46. 
10. K. E. Brakke, The motion of a surface by its mean curvature, Princeton Ph. D. Thesis, 1975. 
11. J. E. Brothers, A characterization of integral currents, Trans. Amer. Math. Soc. 150 (1970), 

301-325. 
12. , Stokes9 theorem. I, II, Amer. J. Math. 62 (1970), 479-484; ibid. 63 (1971), 479-484. 
13. , Existence and structure of tangent cones at the boundary of an area minimizing 

integral current, Indiana Univ. Math. J. 26 (1977), 
14. , The structure of solutions to Plateau9s problem in Sn with boundary in an m 

dimensional hemisphere, J. Differential Geometry 11 (1976), 387-400. 
15. R. O. Davies, Increasing sequences of sets and Hausdorff measure, Proc. London Math. Soc. 

(3) 20 (1970), 222-236. 
16. R. O. Davies and C. A. Rogers, The problem of subsets of finite positive measure, Bull. 

London Math. Soc. 1 (1969), 47-54. 
17. E. De Giorgi, F. Colombini and L. C. Piccinini, Frontière orientate di misura minima e 

questioni collegate, Pubbl. Classe Sci. Scuola Norm. Sup., Pisa, 1972. 
18. L. R. Ernst, A proof that & and 5* are distinct measures, Trans. Amer. Math. Soc. 173 

(1972), 501-508. 
19. , A proof that DC? and ^ are distinct measures, Trans. Amer. Math. Soc. 191 (1974), 

363-372. 
20. , 9" measure of Cartesian product sets, Proc. Amer. Math. Soc. 49 (1975), 199-202. 
21. , fT measure of Cartesian product sets. II, Trans. Amer. Math. Soc. 222 (1976), 

211-220. 
22. L. R. Ernst and G. Freilich, A Hausdorff measure inequality, Trans. Amer. Math. Soc. 219 

(1976), 361-368. 
23. H. Fédérer, Geometric measure theory, Grundlehren math. Wiss., Band 153, Springer-

Verlag, Berlin and New York, 1969. 
24. , On spherical summation of the Fourier transform of a distribution whose partial 

derivatives are representable by integration, Ann. of Math. (2) 91 (1970), 136-143. 
25. , The singular sets of area minimizing rectifiable currents with codimension one and of 

area minimizing flat chains modulo two with arbitrary codimension, Bull. Amer. Math. Soc. 76 
(1970), 767-771. 

26. , Slices and potentials, Indiana Univ. Math. J. 21 (1971), 373-382. 



GEOMETRIC MEASURE THEORY 337 

27. , Real flat chains, cochains and variational problems, Indiana Univ. Math. J. 24 
(1974), 351-407. 

28. , A minimizing property of extremal submanifolds, Arch. Rational Mcch. Anal. 59 
(1975), 207-217. 

29. H. Fédérer and W. P. Ziemer, The Lebesgue set of a function whose distribution derivatives 
are pth power summable, Indiana Univ. Math. J. 22 (1972), 139-158. 

30. A. T. Fomenko, Minimal compacta in Riemannian manifolds and Reifenberg's conjecture, 
Math. USSR Izv. 6 (1972), 1037-1066. 

31. , The multidimensional Plateau problem in Riemannian manifolds, Math. USSR 
Sbornik 18 (1972), 487-527. 

32. R. Gariepy, Current valued measures and Geocze area, Trans. Amer. Math. Soc. 166 (1972), 
133-146. 

33. , Geocze area and a convergence property, Proc. Amer. Math. Soc. 34 (1972), 
469-474. 

34. , Geometric properties of Sobolev mappings, Pacific J. Math, (to appear). 
35. E. Giusti, Superfici cartesiani di area minima, Rend. Sem. Mat. Fis. Milano 40 (1970), 

135-153. 
36. C. Goffman, An example in surface area, J. Math. Mech. 19 (1969), 321-326. 
37. C. Goffman and W. P. Ziemer, Higher dimensional mappings for which the area formula 

holds, Ann. of Math. (2) 93 (1970), 482-488. 
38. R. M. Hardt, Slicing and intersection theory for chains associated with real analytic varieties, 

Acta Math. 129 (1972), 75-136. 
39. , Slicing and intersection theory for chains modulo v associated with real analytic 

varieties, Trans. Amer. Math. Soc. 183 (1973), 327-340. 
40. , Homology theory for real analytic and semianalytic sets, Ann. Scuola Norm. Sup. 

Pisa (4) 2 (1975), 107-148. 
41. , Topological properties of subanatytic sets, Trans. Amer. Math. Soc. 211 (1975), 

57-70. 
42. , Uniqueness of nonparametric area minimizing currents, Indiana Univ. Math. J. 26 

(1976), 65-72. 
43. , On boundary regularity for integral currents or flat chains modulo two minimizing the 

integral of an elliptic integrand, Comm. Partial Differential Equations (to appear). 
44. R. Harvey, Holomorphic chains and their boundaries, Proc. Sympos. Pure Math., vol. 30 

Amer. Math. Soc., Providence, R. I., 1977, pp. 309-382. 
45. R. Harvey and H. B. Lawson, Extending minimal varieties, Invent. Math. 28 (1975), 

209-226. 
46. , On boundaries of complex analytic varieties, Ann. of Math. (2) 102 (1975), 223-290. 
47. R. Harvey and B. Shiffman, A characterization of holomorphic chains, Ann. of Math. (2) 99 

(1974), 553-587. 
48. S. Kar, The (<fc 1) rectifiable subsets of Euclidean space, Indiana Ph.D. Thesis, 1975. 
49. R. Kaufman and P. Mattila, Hausdorff dimension and exceptional sets of linear trans-

formations, Ann. Acad. Sci. Fenn. Ser. AI 1 (1975), 387-392. 
50. J. R. King, The currents defined by analytic varieties, Acta Math. 127 (1971), 185-220. 
51. R. V. Kohn, An example concerning approximate differentiation, Indiana Univ. Math. J. 26 

(1977), 393-397. 
52. H. B. Lawson, Jr., The equivariant Plateau problem and interior regularity, Trans. Amer. 

Math. Soc. 173 (1973), 231-249. 
53. , The stable homology of aflat torus, Math. Scand. 36 (1975), 49-73. 
54. H. B. Lawson, Jr. and R. Osserman, Nonexistence, nonuniqueness and irregularity of 

solutions to the minimal surface system, Acta Math, (to appear). 
55. H. B. Lawson, Jr. and J. Simons, On stable currents and their applications to global problems 

in real and complex geometry, Ann. of Math. (2) 98 (1973), 427-450. 
56. P. Mattila, Hausdorffm regular and rectifiable sets in n space, Trans. Amer. Math. Soc. 205 

(1975), 263-274. 
57. , Hausdorff dimension, orthogonal projections and intersections with planes, Ann. 

Acad. Sci. Fenn. Ser. AI 1 (1975), 227-244. 
58. N. G. Meyers and W. P. Ziemer, Integral inequalities of Poincare and Wirtinger type, Amer. 

J. Math, (to appear). 



338 HERBERT FEDERER 

59. M. Miranda, Un principio di massimo forte per le frontière minimale e una sua applicazione 
alla risoluzione delproblema al contornoper I'equazione delle superfici di area minima, Rend. Sem. 
Mat. Univ. Padova 45 (1971), 355-366. 

60. F. Morgan, A smooth curve in R4 bounding a continuum of area minimizing surfaces, Duke 
Math. J. 43 (1976), 867-870. 

61. , Almost every smooth curve in R3 bounds a unique area minimizing surface, Princeton 
Ph.D. Thesis, 1977. 

62. J. C. C. Nitsche, Vorlesungen uber Minimalflachen, Grundlehrcn math. Wiss., Band 199, 
Springer-Verlag, Berlin and New York, 1975. 

63. R. Osserman, Minimal varieties, Bull. Amer. Math. Soc. 75 (1969), 1092-1120. 
64. H. R. Parks, Some new constructions and estimates in the problem of least area, Trans. Amer. 

Math. Soc. (to appear). 
65. , A method for computing non-parametric area minimizing surfaces over n dimensional 

domains, together with a priori error estimates, Indiana Univ. Math. J. 26 (1977), 625-643. 
66. , Explicit determination of area minimizing hypersurfaces, Duke Math. J. 44 (1977), 

519-534. 
67. S. O. Paur, Stokes9 theorem for integral currents modulo v, Amer. J. Math, (to appear). 
68. , An estimate of the density at the boundary of an integral current modulo v, 
69. J. T. Pitts, Existence and regularity of minimal surfaces on Riemannian manifolds, Bull. 

Amer. Math. Soc. 82 (1976), 503-504. 
70. C. A. Rogers, Hausdorff measures, Cambridge Univ. Press, London-New York, 1970. 
71. E. Santi, Sul problema al contorno per Vequazione delle superfici di area minima su domini 

limitati qualunque, Annali delFUniversita di Ferrara 17 (1971), 13-26. 
72. V. Schef f er, Regularity and irregularity of solutions to nonlinear second order elliptic systems 

of partial differential equations and inequalities, Princeton Ph.D. Thesis, 1974. 
73. B. Shiffman, Applications of geometric measure theory to value distribution theory for 

meromorphic maps, Proc. Tulane Conf. on Value Distribution Theory, Part A, Dekker, New 
York, 1974, pp. 63-95. 

74. L. Simon, Boundary regularity for solutions of the nonparametric least area problem, Ann. of 
Math. (2) 103 (1976), 429-455. 

75. K. Steffen, Isoperimetrische Ungleichungen und das Plateausche Problem, Sonder-
forschungsbereich 40 (1973), Theoretische Mathematik, Universitat Bonn. 

76. J. E. Taylor, Regularity of the singular sets of two-dimensional area-minimizing flat chains 
modulo 3 in R3, Invent. Math. 22 (1973), 119-159. 

77. , The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces, 
Ann. of Math. (2) 103 (1976), 489-539. 

78. , The structure of singularities in solutions to ellipsoidal variational problems with 
constraints in R3, Ann. of Math. (2) 103 (1976), 541-546. 

79. , Boundary regularity for solutions to various capillarity and free boundary problems, 
Comm. Partial Differential Equations 2 (1977), 323-358. 

80. A. I. Volpert, The space BV and quasilinear equations, Math. USSR Sbornik 2 (1967), 
225-267. 

81. W. P. Ziemer, Change of variables for absolutely continuous functions, Duke Math. J. 36 
(1969), 171-178. 

82. , Extremal length as a capacity, Michigan Math. J. 17 (1970), 117-128. 
83. , Slices of maps and Lebesgue area, Trans. Amer. Math. Soc. 164 (1972), 139-151. 
84. , Some remarks on harmonic measure in space, Pacific J. Math. 55 (1974), 629-637. 

DEPARTMENT OF MATHEMATICS, BROWN UNIVERSITY, PROVIDENCE, RHODE ISLAND 02912 


