Measure of the n-Ball

November 20, 2007

This note will derive the following result.
Theorem 1. Let $S_{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right):|x|^{2}=\sum_{1}^{n} x_{j}^{2} \leq a^{2}\right\}$ be the n-ball of radius a. Denote the measure of this ball by $\mu_{n}(a)$. It satisfies the following recursion:

$$
\begin{aligned}
\mu_{n}(a) & =\beta_{n} a^{n}, \text { where } \\
\beta_{n} & =\left(\frac{2 \pi}{n}\right) \beta_{n-2} \\
\beta_{0} & =1 \\
\beta-1 & =2
\end{aligned}
$$

Proof. We define $\mu_{0}(a)=1, \mu_{1}(a)=2 a$. Let $r^{2}=x_{1}^{2}+x_{2}^{2}+\ldots x_{n}^{2}$ and $\rho^{2}=x_{n-1}^{2}+x_{n}^{2}$.

$$
\begin{aligned}
\mu_{n}(a) & =\int_{r \leq a} d^{n} x \\
& =\int_{\rho \leq a} \mu_{n-2}\left(\sqrt{a^{2}-\rho^{2}}\right) d x_{n-1} d x_{n} \\
& =\int_{\rho=0}^{a} \int_{\theta=0}^{2 \pi} \beta_{n-2}\left(a^{2}-\rho^{2}\right)^{n / 2-1} \rho d \rho d \theta \\
& =2 \pi \beta_{n-2} \int_{0}^{a}\left(a^{2}-\rho^{2}\right)^{n / 2-1} \rho d \rho \\
& =\frac{2 \pi}{n} \beta_{n-2}\left(-\left.\left(a^{2}-\rho^{2}\right)^{n / 2}\right|_{0} ^{a}\right. \\
& =\frac{2 \pi}{n} \beta_{n-2} a^{n} \\
& =\beta_{n} a^{n}
\end{aligned}
$$

Corollary 1. The measure of $2 n$-balls of radius a is $\frac{\left(\pi a^{2}\right)^{n}}{n!}$. The measure of $2 n+1$-balls is $2 \frac{(4 \pi)^{n} n!}{(2 n+1)!} a^{2 n+1}$

