This note will derive the following result. There is a more general result which I will post later.

Theorem 1. Let \(f(x_1, \ldots, x_n) \) be a differentiable function. Let \(S = \{ x_{n+1} = f(x_1, \ldots, x_n) \} \subset \mathbb{R}^{n+1} \). Then the \(n \)-dimensional area of \(S \) is

\[
A(S) = \int (1 + |\nabla f|^2)^{1/2}.
\]

This theorem will rely on the following formula.

Theorem 2. Let \(\Pi \) be the \(m \)-dimensional parallelotope in \(\mathbb{R}^n \) with coterminous edges given by the vectors \(v_1, \ldots, v_m \). Then the \(m \)-dimensional area of \(\Pi \) is

\[
A(\Pi) = (\det(C))^{1/2},
\]

where \(C \) is the \(m \times m \) matrix with entries \(v_i \cdot v_j \).

Proof. (of Theorem 2) Notice that we can write \(C \) in the following form.

\[
C = V^T V, \quad V = [v_1, \ldots, v_m]
\]

where \(V \) is the \(n \times m \) matrix matrix whose columns are the column vectors \(v_1, \ldots, v_m \). If \(\Pi \) is rectangular (the \(v_i \) are orthogonal), the matrix \(C \) is diagonal and the diagonal entries are \(|v_i|^2 \); so the result is true in this case. \(C \) is symmetric and it is easy to see it is positive semi-definite, since

\[
\sum v_i \cdot v_j x_i x_j = \left| \sum_{i=1}^m x_i v_i \right|^2.
\]

Hence \(\det C \geq 0 \). (If the vectors are linearly dependent (\(\Pi \) is degenerate), then \(\sum_{i=1}^m x_i v_i = 0 \) for some choice of the \(x_i \) and \(\det C = 0 \).) So assume the \(v_i \) are linearly independent. Let’s modify \(v_1 \) by subtracting multiples of \(v_2, \ldots, v_m \) to make it orthogonal to each of \(v_2, \ldots, v_m \). This requires solving the equations

\[
\sum_{j=2}^m a_j v_j \cdot v_k = v_1 \cdot v_k, \quad k = 2, \ldots, m.
\]

Since \(v_2, \ldots, v_m \) are linearly independent, this system has a unique solution. If we let \(v_1 = v_1 - \sum_{j=2}^m a_j v_j \) and keep the rest of the columns the same, we get a new parallelotope with the same area. The new matrix \(\overline{C} \) is related to the original matrix \(C \) by the formula

\[
\overline{C} = A^T C A,
\]
where A is the matrix that differs from the identity matrix by having the last $n - 1$ entries in the first column replaced by $-a_2, -a_3, \ldots, -a_n$. The determinant of A is 1, so $\det(C) = \det(A)$. Eventually this process produces a rectangular parallelepiped Π with the same area as Π and thus

$$A(\Pi) = A(\Pi) = (\det(C))^{1/2} = (\det(C))^{1/2}$$

(5)

Theorem 1 is a consequence of the following lemma. To simplify notation we use vertical bars to denote determinant, $|A| = \det(A)$.

Lemma 1. In the statement of the lemma, d denotes the determinant.

$$1 + a_1^2 + a_2^2 + \cdots + a_n^2 = \begin{vmatrix} 1 + a_1^2 & a_1 a_2 & a_1 a_3 & \ldots & a_1 a_n \\ a_2 a_1 & 1 + a_2^2 & a_2 a_3 & \ldots & a_2 a_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_n a_1 & a_n a_2 & a_n a_3 & \ldots & 1 + a_n^2 \end{vmatrix} = d$$

(6)

Proof. The proof is by induction on n.

$$d = \begin{vmatrix} 1 & 0 & 0 & \ldots & 0 \\ a_2 a_1 & 1 + a_2^2 & a_2 a_3 & \ldots & a_2 a_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_n a_1 & a_n a_2 & a_n a_3 & \ldots & 1 + a_n^2 \\ a_1 & a_2 & a_3 & \ldots & a_n \end{vmatrix} + a_1$$

(7)

Now by subtracting appropriate multiples of the first row from the other rows in the second determinant we get

$$\begin{vmatrix} a_1 & a_2 & a_3 & \ldots & a_n \\ a_2 a_1 & 1 + a_2^2 & a_2 a_3 & \ldots & a_2 a_n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_n a_1 & a_n a_2 & a_n a_3 & \ldots & 1 + a_n^2 \\ a_1 & a_2 & a_3 & \ldots & a_n \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 & \ldots & 0 \\ 0 & 1 & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & 1 \end{vmatrix} = a_1$$

(8)

Hence $d = (1 + a_2^2 + \ldots + a_n^2) + a_1^2$.

Proof. (of Theorem 1). According to the definition of area, the area of the surface is

$$A(S) = \int A(\Pi)dx_1 dx_2 \ldots dx_n$$

(9)

Where Π is the parallelepiped spanned by the column vectors $[1, 0, 0, \ldots, f_{x_1}]^T, [0, 1, 0, \ldots, f_{x_2}]^T, \ldots, [0, 0, \ldots, 1, f_{x_n}]^T$. Theorem 2 and Lemma 1 tell how to compute $A(\Pi)$ and the result is $A(\Pi) = (1 + f_{x_1}^2 + f_{x_2}^2 + \ldots f_{x_n}^2)^{1/2} = (1 + |\nabla f|^2)^{1/2}$.

$$\square$$