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A bounded set E in the plane is Jordan Measurable if χE is Riemann integrable. χE is discontinuous
exactly on ∂E, so from a general theorem, we have

Theorem 1. A bounded set E is Jordan measurable if and only if the Lebesgue measure of ∂E is 0.

However there is a better theorem:

Theorem 2. A bounded set E is Jordan measurable if and only if the Jordan measure of ∂E is 0.

Corollary 1. The boundary of a bounded set is of Lebesgue measure 0 if and only if it is of Jordan measure
0.

The corollary can be proved directly using the Heine-Borel theorem.

To prove Theorem 2 we start with a lemma.

Lemma 1. A set E is of Jordan measure 0 if and only if for every ε > 0 there is a finite union of rectangles,
n⋃
1

Ri, with sides parallel the the axis lines, so that E ⊂
n⋃
1

Ri and
n∑
1

|Ri| < ε.

Proof. If E has Jordan measure 0 then the upper sums SP (χE) can be made as small as we please. This
gives a finite set of rectangles satisfying the requirement. On the other had if we have a set of rectangles

with
n∑
1

|Ri| < ε/2 and E ⊂
n⋃
1

Ri, then by fattening them up slightly we can assume they are open. Then

taking a partition P that makes all edges of these rectangles unions of rectangles in the partition, we find
that we can make SP (χE) < ε.

Proof. (of Theorem 2.) Suppose E is Jordan measurable. Then there is a partition P such that ∂E ⊂⋃
R̃ij , where R̃ij are special rectangles and

∑
|R̃ij | = SP (χE)− sP (χE) < ε.

For the reverse direction, suppose |∂E| = 0. Then choose open rectangles such that ∂E ⊂
n⋃
1

Ri and

n∑
1

|Ri| < ε. Now choose a partition P so that these rectangles are unions of rectangles defined by the

partition. Then every rectangle not included in this union either consists entirely of points of E or entirely
of points of Ec. Hence every special rectangle (see definition of special rectangles in the remark following)
for P and E is included in this union. Thus

∑
|Rij | = SP (χE)− sP (χE) < ε and χE is integrable.
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REMARK. Here’s another argument. Let P be a partition and let R̃ij be the special rectangles for
E in this partition. Recall the special rectangles are characterized by the property that R̃ij ∪ E 6= ∅ and
R̃ij ∪ Ec 6= ∅. By looking at separate cases, it’s not too hard to see that ∂E ⊂

⋃
R̃ij . Here’s a summary

of that argument. If p ∈ ∂E is in the interior of Rij , then Rij ∪ E 6= ∅ and Rij ∪ Ec 6= ∅. If p ∈ ∂E is on
the boundary of some rectangle, then: if p /∈ E then there is a point in one of the neighboring rectangles
that is in E; if p ∈ E, then there is a point in a neighboring rectangle that is not in E. So in every case, if
p ∈ E, then p ∈ R̃ij for some special rectangle R̃ij .

We now have (for any partition, P ),

SP (χE)− sP (χE) =
∑

|R̃ij |. (1)

Taking inf’s,
A(E)−A(E) = inf

P
{
∑

|R̃ij |} (2)

Since ∂E ⊂
⋃

R̃ij ,

A(∂E) ≤ A
(⋃

R̃ij

)
=

∑
|R̃ij |. (3)

Now take inf’s to get
A(∂E) ≤ A(E)−A(E) (4)

Now take any special rectangle. Since it contains a point in E and a point in Ec and since it is convex
it contains the line segment joining these two points. One of the points on this line segment must be a
point of ∂E. Hence every special rectangle contains a point of ∂E. That means that every special rectangle
contributes to the upper sum for ∂E. In other words,

SP (χ∂E) ≥
∑

|R̃ij |. (5)

Take inf’s of both sides to get

A(∂E) ≥ inf
P
{
∑

|R̃ij |} = A(E)−A(E) (6)

and we get

A(E)−A(E) = A(∂E),

whether E is measurable or not. In particular E is measurable if and only if A(∂E) = 0.


