Jordan Measurability

November 16, 2006

A bounded set E in the plane is Jordan Measurable if χ_{E} is Riemann integrable. χ_{E} is discontinuous exactly on ∂E, so from a general theorem, we have

Theorem 1. A bounded set E is Jordan measurable if and only if the Lebesgue measure of ∂E is 0 .
However there is a better theorem:
Theorem 2. A bounded set E is Jordan measurable if and only if the Jordan measure of ∂E is 0 .
Corollary 1. The boundary of a bounded set is of Lebesgue measure 0 if and only if it is of Jordan measure 0 .

The corollary can be proved directly using the Heine-Borel theorem.
To prove Theorem 2 we start with a lemma.
Lemma 1. A set E is of Jordan measure 0 if and only if for every $\epsilon>0$ there is a finite union of rectangles, $\bigcup_{1}^{n} R_{i}$, with sides parallel the the axis lines, so that $E \subset \bigcup_{1}^{n} R_{i}$ and $\sum_{1}^{n}\left|R_{i}\right|<\epsilon$.

Proof. If E has Jordan measure 0 then the upper sums $S_{P}\left(\chi_{E}\right)$ can be made as small as we please. This gives a finite set of rectangles satisfying the requirement. On the other had if we have a set of rectangles with $\sum_{1}^{n}\left|R_{i}\right|<\epsilon / 2$ and $E \subset \bigcup_{1}^{n} R_{i}$, then by fattening them up slightly we can assume they are open. Then taking a partition P that makes all edges of these rectangles unions of rectangles in the partition, we find that we can make $S_{P}\left(\chi_{E}\right)<\epsilon$.

Proof. (of Theorem 2.) Suppose E is Jordan measurable. Then there is a partition P such that $\partial E \subset$ $\bigcup \widetilde{R}_{i j}$, where $\widetilde{R}_{i j}$ are special rectangles and $\sum\left|\widetilde{R}_{i j}\right|=S_{P}\left(\chi_{E}\right)-s_{P}\left(\chi_{E}\right)<\epsilon$.

For the reverse direction, suppose $|\partial E|=0$. Then choose open rectangles such that $\partial E \subset \bigcup_{1}^{n} R_{i}$ and $\sum_{1}^{n}\left|R_{i}\right|<\epsilon$. Now choose a partition P so that these rectangles are unions of rectangles defined by the partition. Then every rectangle not included in this union either consists entirely of points of E or entirely of points of E^{c}. Hence every special rectangle (see definition of special rectangles in the remark following) for P and E is included in this union. Thus $\sum\left|R_{i j}\right|=S_{P}\left(\chi_{E}\right)-s_{P}\left(\chi_{E}\right)<\epsilon$ and χ_{E} is integrable.

REMARK. Here's another argument. Let P be a partition and let $\widetilde{R}_{i j}$ be the special rectangles for E in this partition. Recall the special rectangles are characterized by the property that $\widetilde{R}_{i j} \cup E \neq \emptyset$ and $\widetilde{R}_{i j} \cup E^{c} \neq \emptyset$. By looking at separate cases, it's not too hard to see that $\partial E \subset \bigcup \widetilde{R}_{i j}$. Here's a summary of that argument. If $p \in \partial E$ is in the interior of $R_{i j}$, then $R_{i j} \cup E \neq \emptyset$ and $R_{i j} \cup E^{c} \neq \emptyset$. If $p \in \partial E$ is on the boundary of some rectangle, then: if $p \notin E$ then there is a point in one of the neighboring rectangles that is in E; if $p \in E$, then there is a point in a neighboring rectangle that is not in E. So in every case, if $p \in E$, then $p \in \widetilde{R}_{i j}$ for some special rectangle $\widetilde{R}_{i j}$.

We now have (for any partition, P),

$$
\begin{equation*}
S_{P}\left(\chi_{E}\right)-s_{P}\left(\chi_{E}\right)=\sum\left|\widetilde{R}_{i j}\right| . \tag{1}
\end{equation*}
$$

Taking inf's,

$$
\begin{equation*}
\bar{A}(E)-\underline{A}(E)=\inf _{P}\left\{\sum\left|\widetilde{R}_{i j}\right|\right\} \tag{2}
\end{equation*}
$$

Since $\partial E \subset \bigcup \widetilde{R}_{i j}$,

$$
\begin{equation*}
\bar{A}(\partial E) \leq \bar{A}\left(\bigcup \widetilde{R}_{i j}\right)=\sum\left|\widetilde{R}_{i j}\right| . \tag{3}
\end{equation*}
$$

Now take inf's to get

$$
\begin{equation*}
\bar{A}(\partial E) \leq \bar{A}(E)-\underline{A}(E) \tag{4}
\end{equation*}
$$

Now take any special rectangle. Since it contains a point in E and a point in E^{c} and since it is convex it contains the line segment joining these two points. One of the points on this line segment must be a point of ∂E. Hence every special rectangle contains a point of ∂E. That means that every special rectangle contributes to the upper sum for ∂E. In other words,

$$
\begin{equation*}
S_{P}\left(\chi_{\partial E}\right) \geq \sum\left|\widetilde{R}_{i j}\right| . \tag{5}
\end{equation*}
$$

Take inf's of both sides to get

$$
\begin{equation*}
\bar{A}(\partial E) \geq \inf _{P}\left\{\sum\left|\widetilde{R}_{i j}\right|\right\}=\bar{A}(E)-\underline{A}(E) \tag{6}
\end{equation*}
$$

and we get

$$
\bar{A}(E)-\underline{A}(E)=\bar{A}(\partial E),
$$

whether E is measurable or not. In particular E is measurable if and only if $\bar{A}(\partial E)=0$.

