Clopen Sets

October 17, 2006

Theorem 1. The only clopen subsets (both open and closed) of \mathbf{R}^n are \mathbf{R}^n and \emptyset .

Proof. Suppose A is clopen and not \mathbf{R}^n or \emptyset . Then there are points $a \in A$ and $b \notin A$. Let q(t) = tb + (1 - t)a, $0 \le t \le 1$. Let $t_0 = \sup\{t : q(t) \in A\}$. Since A and A^c are open, $0 < t_0 < 1$. Where is $q(t_0)$? If $q(t_0) \in A$ then t_0 is not the $\sup\{t : q(t) \in A\}$, since A is open. If $q(t_0) \in A^c$ then t_0 is not the $\sup\{t : q(t) \in A\}$, since A is open. If $q(t_0) \in A^c$ then t_0 is not the $\sup\{t : q(t) \in A\}$, since A or A^c is empty, so either $A = \emptyset$ or $A = \mathbf{R}^n$.