Solving for the Limit of a Recursively Defined Sequence

Owen Biesel

October 5, 2006

Let x_{k} be defined recursively by $x_{1}=1 / 2$,

$$
x_{k+1}= \begin{cases}\frac{1}{2}+\frac{x_{k}}{2}, & \text { if } x_{k}<1 \\ 2, & \text { if } x_{k} \geq 1\end{cases}
$$

Then $x_{k} \rightarrow 1$ as $k \rightarrow \infty$, but this solution cannot be obtained by letting $x_{k+1}=L=x_{k}$ in the recursion relation.

Proof. We will show that $x_{k}=1-2^{-k}$ by induction on k. The base case is easily verified: $x_{1}=\frac{1}{2}=1-\frac{1}{2}$. Now suppose $x_{k}=1-2^{-k}$ for some k. Then $x_{k}<1$, so

$$
\begin{aligned}
x_{k+1} & =\frac{1}{2}+\frac{x_{k}}{2} \\
& =\frac{1}{2}+\frac{1-2^{-k}}{2} \\
& =\frac{1}{2}+\frac{1}{2}-2^{-k-1} \\
& =1-2^{-(k+1)}
\end{aligned}
$$

Therefore $x_{k}=1-2^{-k}$ for all k. Hence $\lim _{k \rightarrow \infty} x_{k}=1-0=1$.
Now let $x_{k+1}=L=x_{k}$ in the recursion relation, so that

$$
L= \begin{cases}\frac{1}{2}+\frac{L}{2}, & \text { if } L<1 \\ 2, & \text { if } L \geq 1\end{cases}
$$

If $L<1$, then $L=\frac{1}{2}+\frac{L}{2}>\frac{L}{2}+\frac{L}{2}=L$, a contradiction. Thus $L \geq 1$, so the recursion relation tells us that $L=2$. Since $L \neq \lim _{k \rightarrow \infty} x_{k}$, we therefore cannot always use a recursion relation directly as a condition on the limit of the recursively defined sequence.

