
The Poincaré Conjecture and the h-cobordism theorem
The generalized Poincaré Conjecture is now a theorem:

Theorem 0.1 Let M be a smooth compact n-manifold homotopy-equivalent to Sn. Then M
is homeomorphic to Sn.

M need not be diffeomorphic to Sn, however, as discussed in an earlier lecture. The
original conjecture of Poincaré was the case n = 3, formulated as follows:

Every simply-connected compact 3-manifold is homeomorphic to S3.

It turns out that every 3-manifold admits the structure of smooth manifold, but we won’t
worry about this point; we are considering only smooth manifolds. To connect the original
version with the above theorem, one needs to show:

Lemma 0.2 If M is a simply-connected compact 3-manifold, then M is homotopy-equivalent
to S3.

For those who are familiar with basic homotopy theory, I’ll sketch the proof (those who
are not can ignore it). Since π1M = 0, also H1M = 0. By Poincaré duality H2M = 0,
and then by “universal coefficients” H2M = 0. Since H3M ∼= Z, the Hurewicz theorem
yields a map f : S3−→M inducing an isomorphism on homology groups (this step needs M
simply-connected, not just H1M = 0). Then the homology version of Whitehead’s theorem
shows that f is a homotopy-equivalence. This last step again requires simple-connectivity,
and also that M has the homotopy-type of a CW-complex.

Remark: Poincaré’s first version of the conjecture only assumed that M has the homology
of S3. But he himself soon found a counterexample, with fundamental group the binary
isosahedral group of order 120. Recall here that H1 is the abelianization of π1, so if π1 has
trivial abelianization then homology doesn’t see it.

Let’s consider various cases of the theorem, in historical order.

n = 1. Every compact 1-manifold is homeomorphic to the circle. Although this seems
intuitively “obvious”, it’s surprisingly tricky to prove rigorously. Try it if you don’t believe
me! If you assume the manifold is smooth, it’s still a highly non-trivial exercise to get a
diffeomorphism to S1. See Milnor’s Topology from the differentiable viewpoint, or Lee’s text,
Problem 15.13.

n = 2. Here the theorem is a special case of the classification theorem for compact
surfaces. It’s worth pointing out, however, that the proof of the surface theorem is extremely
complicated; the hardest step, that of showing that surfaces can be triangulated, is hardly
ever included in textbooks. For smooth surfaces there is a proof based on Morse theory; see
Hirsch, Differential Topology. In any case, the difficulty of n = 2 is an ominous sign.

n ≥ 5: This case was proved by Stephen Smale in 1961, using Morse theory. As far as
I know, Smale’s amazing proof has never been significantly simplified. It will take many
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lectures just to outline the argument, but it’s worth it. One key point to be addressed, of
course, is why Smale’s argument breaks down in dimensions < 5.

n = 4: Proved by Michael Freedman in 1982. Completely different techniques are re-
quired; this case is beyond our scope.

n = 3: Proved by Grigori Perelman in 2002. Here the techniques are completely different
from those of Smale or Freedman, with differential geometry playing a critical role. Again
this case is beyond our scope.

1 Smale’s h-cobordism theorem

The starting strategy of Smale’s proof is easy to explain, and probably any of us could have
gotten this far: Reeb’s theorem says that if M admits a Morse function with only two critical
points, then M is homeomorphic to a sphere. Moreover we know that any M admits some
Morse function f . So what we need to show is that if M is homotopy-equivalent to Sn, then
f can be modified so as to eliminate all but two critical points.

But there’s a better way to reformulate this approach, replacing Reeb’s theorem by the
Regular Interval Theorem and in the process obtaining a much more general result. By
removing two small disjoint discs we get a manifold W whose boundary is the disjoint union
of two Sn−1’s. If M is homotopy-equivalent to Sn, then using “basic homotopy theory” as
alluded to earlier, one can show that each of these boundary components is a deformation
retract of W . This suggests that W is diffeomorphic to a cylinder Sn−1 × I. If true the
Poincarè conjecture would follow immediately.

So let’s consider the general question: Let W,V0, V1 be a triad as defined at the beginning
of the course; i.e. W is a smooth compact manifold with boundary the disjoint union of
the nonempty closed submanifolds V0, V1. In other words, each Vi is a union of boundary
components of W ; usually we are thinking of all three manifolds as connected, but this need
not be the case in general. We call W an h-cobordism if V0 and V1 are deformation retracts
of W , in which case we say that V0 and V1 are h-cobordant. The only example of such a thing
that comes to mind—even after lengthy contemplation—is a cylinder V0 × I, or something
diffeomorphic to such a cylinder (so V0 would have to be diffeomorphic to V1). This raises
the:

h-cobordism question: Is every h-cobordism diffeomorphic to a cylinder? In particular,
are h-cobordant manifolds diffeomorphic?

Examples due to Milnor show the answer is no in general. But Milnor’s examples have
non-trivial fundamental group, leaving open the possibility that the answer is yes in the
simply-connected case. Here is Smale’s 1961 theorem:

Theorem 1.1 Let W be a simply-connected h-cobordism of dimension ≥ 6. Then W is
diffeomorphic to a cylinder. In particular, h-cobordant manifolds of dimension ≥ 5 are
diffeomorphic.

If dimW = 5 and the boundary components are ordinary spheres, the result still holds.
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The Poincaré conjecture for n ≥ 5 follows. However, examples due to Donaldson show
that in general the simply-connected h-cobordism theorem fails for n = 5. For n = 4 it is
still an open problem, equivalent to the “smooth Poincaré conjecture” in dimension 4. For
n = 3 it follows from the 3-dimensional Poincaré conjecture proved by Perelman. For n = 2
the boundary components are necessarily circles, so we are no longer in the simply-connected
case, but the we still get the h-cobordism theorem as a consequence of the classification of
compact surfaces with boundary.

Reference: For the many details that will be omitted in the lectures, see Milnor’s Lectures
on the h-cobordism theorem, henceforth referred to as LHCT.

2 Morse functions on triads

Before opening the discussion of the proof of the h-cobordism theorem, we need to say a word
about Morse functions on manifolds with boundary. We can define Morse functions exactly
as we did in the boundaryless case, but without some restriction on the behaviour near the
boundary they are not very useful. Given a triad (W,V0, V1), an admissible Morse function
on it is a smooth f : W−→[a0, a1] such that (i) a0, a1 are regular values; (ii) f−1ai = Vi; and
(iii) all critical points are nondegenerate. If you’re worried about condition (i) at a boundary
point, remember that we can always glue on collars to the boundary components, thereby
obtaining a noncompact boundaryless manifold Ŵ . Then f can be extended to Ŵ so that
W is just f−1[a, b] as usual.

Lemma 2.1 For any triad as above there exists an admissible Morse function f on W .

For a proof see LHCT. Now, if there are no critical points then by the regular interval
theorem we conclude that W is diffeomorphic to V0× I. So the game now is to start with an
h-cobordism, choose an admissible Morse function f on it, and then try to modify f so as
to eliminate all critical points. With the hypotheses of Smale’s theorem, this miraculously
works, but only after many difficult steps. In our outline of the proof we will keep track
carefully of when the three key hypotheses (1) W is an h-cobordism, (2) W is simply-
connected, and (3) n ≥ 6 are being used. In particular we do not assume any of these three
hypotheses except where explicitly stated. To avoid silly counterexamples, however, we will
assume n ≥ 3.

3 Outline of the proof

The goal of the remaining lectures is to sketch the proof of Smale’s theorem. The proof is
long and intricate, but worth studying even if the Poincaré conjecture itself lies far from
your main interests. For example, you will find here homology groups that live and breathe;
especially striking is the realization of the cellular chain complex in terms of flows and
intersection numbers (the latter being a geometric manifestation of Poincaré duality). To
learn homology (or anything else in mathematics), you have to internalize it at a deep
intuitive level. That means seeing the theory “in action”, in interesting applications, and
there are few applications more fascinating than this beautiful theorem of Smale.
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I. Proof of the h-cobordism theorem: Preliminaries.

• Gradient-like vector fields. Given a Morse function f , a vector field X is gradient-like
if (i) Xf > 0 away from critical points; and (ii) near critical points X looks like the
gradient of f in a Morse chart. All references to “the flow” in the sequel refer to the
flow associated to a gradient-like vector field.

• Level-adjusting lemma. Given a Morse function f and a critical point p, we can perturb
f slightly so as to change the level of p without affecting its index or any of the other
critical points.

• Flow-adjusting lemma. If [a, b] is a regular interval for f , we know that the flow of
any gradient-like vector field X yields a diffeomorphism f−1a−→f−1b. This lemma
will allow us to alter X so as to replace the given diffeomorphism by any desired
diffeomorphism isotopic to it.

• Isotopies and Thom’s transversality theorem. The flow-adjusting lemma will be used in
the following way: We will want to arrange that under the flow in the previous bullet,
certain embedded spheres in f−1a intersect transversally certain spheres in f−1b. A
famous theorem of Thom says that for any pair of submanifolds A,B in a manifold
M , there is an isotopy ht of the identity of M such that h1(A) is transverse to B. By
flow-adjusting, any such isotopy of f−1b can be realized by the flow, and this will yield
the transversality we want.

II. Rearrangement Theorem. This theorem is valid for any triad. Call a Morse function
self-indexing if for every critical point p, f(p) = index p. The point of this condition is
that the critical points appear in the right order: In other words, critical points of the same
index appear at the same level, and index p < index q if and only if f(p) < f(q). Thus
the cells in the associated cell decomposition are being attached in skeletal progression. We
will show that given any Morse function f , it can be rearranged to be self-indexing, without
changing the critical points or their indices. (The level-adjusting lemma does not suffice for
this purpose.) From here on we assume our Morse function is self-indexing.

III. The Morse complex. The beautiful fact is that the boundary map in the cellular
chain complex can now be described in terms of the flow. Abstractly, the cellular chain
map ∂ : Ck+1−→Ck is a homomorphism between free abelian groups with bases given by
the critical points of index k + 1, k respectively, and hence is given by a certain matrix with
integer coefficients. We will see that these integers can be computed as intersection numbers
(a geometric manifestation of Poincaré duality) of “in-spheres” of the index k + 1 critical
points with the “out-spheres” of the index k critical points.

IV. Basis theorem. The group Ck is free abelian on the critical points of index k (in a way
made precise in step III). Suppose we are given some other basis of Ck. The basis theorem
says that provided k ≥ 2, we can modify our Morse function so that the index k critical
points of the new function correspond to the new basis (without changing anything else).
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V. Cancellation Theorem A. Suppose f is a self-indexing Morse function on the triad
W , with just two critical points of indices k, k + 1, and suppose H∗(W,V0) = 0. Then
homologically the critical points cancel out. The Cancellation Hypothesis is the assumption
that as the in-sphere of the top critical point flows down to the next level (going backwards
in time), it intersects the outset of the lower critical point transversally in a single point.
Assuming the Cancellation Hypothesis, we show that in this case the two critical points
can indeed be “cancelled”; that is, f can be modified to produce a function with no critical
points at all.

VI. Cancellation Theorem B. Unfortunately, verification of the Cancellation Hypoth-
esis involves serious difficulties. By the flow-adjusting lemma and standard transversality
theorems, we can easily arrange that the in-sphere of the top critical point has transverse
intersection with the outset of the bottom critical point. Furthermore, the algebraic inter-
section number is ±1 by purely homological considerations. But this does not mean the
intersection consists of a single point; it only means that the number of intersection points
is odd, and all but one cancel out in pairs of opposite sign. This lead to the general ques-
tion of cancelling intersection points of opposite sign for a pair of transversally intersecting
submanifolds. It turns out that this question is very subtle. It is answered affirmatively
by a theorem of Whitney, but only with certain restrictions on the dimensions and on the
fundamental groups. This is where the assumption “W is simply-connected of dimension
at least six” comes in; under those hypotheses Whitney’s theorem implies the Cancellation
Hypothesis and we can cancel critical points as in /Step V.

VII. Low Index Theorem. At various points in the proof (e.g., the Basis theorem), critical
points of low index would require special treatment. Provided that W is simply-connected
and n ≥ 5, the Low Index Theorem allows us to eliminate critical points of index zero and
one. It follows that critical points of index n and n−1 can also be eliminated: Just turn the
manifold upside down! (To be precise, replace f by −f ; note this changes index k to index
n− k.)

VIII. The h-cobordism theorem. With the above results in hand, the amazing proof
can be roughly summarized as follows: Given a simply-connected h-cobordism W with
dimW ≥ 6, we wish to show that W admits a Morse function with no critical points.
By the Rearrangement Theorem and Low-Index Theorem we can find a self-indexing Morse
function f with no critical points of index 0, 1, n−1, n. We then proceed by induction on the
number of critical points. At the inductive step we will modify f to produce a new Morse
function g with two fewer critical points, thereby completing the proof.

Let k be the minimal index occuring. Since W is an h-cobordism, H∗(W,V0) = 0. Thus
the cellular boundary map from the (k+ 1)-chains to the k-chains must be onto. So for any
critical point p of index k (thought of as a basis element for the cellular k-chains), there
must be some (k + 1)-chain that hits it. Using the Basis Theorem, one can show that the
(k + 1)-chain can be taken to be a basis element corresponding to some critical point q of
index k + 1. Now use the level-adjusting lemma to bump p up and q down, producing a
segment f−1[a, b] of W with only two critical points as in Cancellation Theorem A. Since
the Cancellation Hypothesis holds by Cancellation Theorem B, we can cancel these out and
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we’re done! Well...at least with the case n ≥ 6. The case n = 5 requires some additional
input, due to Kervaire-Milnor (to be discussed in due time).
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