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A CW-complex is first of all a Hausdorff space X equipped with a col-
lection of characteristic maps φnα : Dn−→X. Here n ranges over the non-
negative integers, Dn is the unit n-disc, and α ranges over some index set (or
one index set for each n, if you prefer) that is customarily suppressed from
the notation. These maps are subject to the following axioms:

A1. The restriction of each φnα to the interior of Dn is an embedding.

A2. Let enα = φnα(IntDn). Then as a set, X is the disjoint union of the enα.
(The enα are called the cells of X.)

A3. φnα(Sn−1) lies in a finite union of cells of lower dimension (i.e. of dimen-
sion < n).

A4. A subset W of X is closed if and only if (φnα)−1W is closed in Dn for all
n, α.

The term CW-complex comes from “closure-finite with the weak topol-
ogy”, where “closure-finite” refers to A3 and “weak topology” refers to A4.
A finite complex is a CW-complex with only finitely many cells. Observe
that if X is a finite complex, A4 is redundant, since W is the union of the
compact sets φnα((φnα)−1W ), and these are closed since X is Hausdorff.

If X has cells of dimension n but no cells of higher dimension, we say that
X is n-dimensional. X is infinite-dimensional if there are cells of arbitrarily
large dimension. A subcomplex A of X is a closed subspace which is a union of
cells of X. It is clear that A is then itself a CW-complex, whose characteristic
maps are just the given characteristic maps for those cells of X which lie in
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A. The n-skeleton of X is the union of all the cells of dimension at most
n. Notations for this vary; I’ll denote it as Xn. Clearly the n-skeleton is a
subcomplex. The attaching map ψnα for enα is the restriction of φnα to Sn−1,
regarded as a map Sn−1−→Xn−1 (see A3).

Exercises. 1. A CW-complex is compact if and only if it is a finite complex.
2. The zero-skeleton of X is a discrete space.

1 Discussion of the weak topology axiom A4

Keep in mind that this section is relevant only for complexes with infinitely
many cells.

Let ēnα denote the closure of enα, and note that ēnα = φnα(Dn). It follows
that A4 is equivalent to requiring that W ⊂ X is closed if and only if W ∩ ēnα
is closed for all n, α, or that W ⊂ X is closed if and only if the intersection
of W with every finite subcomplex of X is closed.

Now let X be an arbitrary Hausdorff space (some of this works for non-
Hausdorff spaces, but I want to avoid distracting technicalities). We say that
the topology on X is compactly generated if it has the property that a subset
W of X is closed if and only if its intersection with every compact subset of
X is closed. From Exercise 1 and the above remarks, it follows that every
CW-complex is compactly-generated. Any locally compact Hausdorff space
is compactly-generated (exercise).

The class of compactly-generated Hausdorff spaces has some very conve-
nient properties. For example, if X is such a space then a map X−→Y is
continuous if and only if its restriction to every compact subspace is contin-
uous. Often the latter condition is easier to check. Furthermore, for many
purposes there is no loss of generality in supposing a space to be compactly-
generated. For if X is any Hausdorff space, we can always re-topologize X by
declaring a set to be closed if and only if its intersection with every compact
subset is closed. Let κX denote X with this new topology. This is a finer
topology, so the identity map κX−→X is continuous. It is not a homeomor-
phism in general, but the distinction between the topologies is invisible to
compact Hausdorff spaces W, in the sense that a map W−→X of sets is con-
tinuous in one topology if and only if it is continuous in the other topology.
As an exercise, one can then easily check that κX−→X induces an isomor-
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phism on homology groups (essentially because a simplex is compact) and
on homotopy groups1(essentially because a sphere is compact). So as far as
homology and homotopy groups are concerned, nothing is lost by replacing
X with κX.

2 Examples of CW-complexes

Note that in the definition of CW-complex, the disc Dn could be replaced by
any homeomorphic space, such as an n-cube or n-simplex.

Example 1. The real line admits the structure of 1-dimensional CW-
complex with the integers as zero-cells and the intervals [n, n+ 1] as 1-cells.
More generally, Rn is an n-dimensional CW-complex in an obvious way: the
n-cells are the cubes whose vertices have integer coordinates (so the 0-cells
are these integer lattice points, etc.).

Example 2. For those who know the definiton of a simplicial complex, any
simplicial complex is a CW-complex, whose n-cells are just the n-simplices.

Example 3. In the first two examples, the characteristic maps φnα are em-
beddings. However, one of the advantages of CW-complexes is that the φnα
are not required to be embeddings on the boundary. In particular, Sn admits
a very efficient CW-structure with just one 0-cell, one n-cell, and no other
cells: take any point x (say the south pole) as 0-cell, and as characteristic
map for the n-cell use a quotient map φ : Dn−→Sn that takes the boundary
of Dn to the 0-cell and is a homeomorphism from the interior to Sn − x.

Example 4. The torus has a CW-decomposition with one 0-cell, two 1-cells,
and one 2-cell. If you think of the torus as a square with sides identified in
the standard way, this decomposition should be obvious.

Example 5. RP n has a CW-structure with one cell of dimension k, 0 ≤
k ≤ n. To see this, identify Dk with the “northern hemisphere” Sk+ =
{(x0, ..., xk) ∈ Sk : xk ≥ 0)} in Sk. Let RP k−→RP n denote the standard
inclusion. Finally, let φk denote the composite Sk+−→RP k−→RP n, where
the first map is the usual quotient map. Then it is easy to check that the

1Homotopy groups will be defined below.
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φk are characteristic maps for a CW-structure on RP n. (When checking A1
and A2, observe at the same time that the cell ek is precisely the set of
points whose homogeneous coordinates have the form [x0, ..., xk, 0, ...0] with
xk 6= 0,, and that such a point has unique homogeneous coordinates of the
form [a0, ..., ak−1, 1, 0, ..., 0].)

Example 6. CP n has a CW-structure with one cell of dimension 2k, 0 ≤
k ≤ n. The construction and proof are exactly analogous to those of the
previous example.

Example 7. The previous two examples can be generalized in a beautiful
way to real and complex Grassman manifolds; see Characteristic Classes by
J. Milnor. This CW-structure is called the Schubert cell decomposition. It
has many surprising and beautiful connections with algebraic geometry, Lie
theory, representation theory, combinatorics, etc.

Example 8. Any smooth manifold admits a CW-structure. In fact it is
known that any smooth manifold can be triangulated, and hence admits the
structure of a simplicial complex (see example 2).

Example 9. Suppose M is a compact smooth manifold and f is a Morse
function on M. Then M is homotopy equivalent to a CW-complex having
one k-cell for each critical point of f of index k. At first glance this might
seem a weaker result than (8), since we only get the CW-structure up to
homotopy-type. In fact the opposite is true, because the link between the
CW-structure and the Morse function has powerful consequences. (And of
course as far as homotopical and homological invariants are concerned, “up
to homotopy-equivalence” is always good enough anyway.)

Example 10. Here is a typical example of an infinite-dimensional CW-
complex: let RP∞ denote the set of lines through the origin in R∞ (a real
vector space of countably infinite dimension, with basis e1, e2, ...). Regarding
R∞ as the ascending union of the Rn’s, we see that as a set, RP∞ is the
ascending union of the RP n’s. The problem is how to topologize this union.
We declare a set to be closed if and only if its intersection with every RP n

is closed, n <∞. It is then immediate from Example 5 that RP∞ is a CW-
complex with one n-cell for each n, 0 ≤ n < ∞. Note that axiom A4 holds
by construction.
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3 Attaching cells

A CW-complex can and should be thought of as a space built up by “attach-
ing cells”. First consider an arbitrary space X and a map f : Sn−→X. Form
the quotient space (Dn+1 ∐X)/ ∼, where the equivalence relation identifies
x ∈ Sn with f(x) ∈ X. This space is said to be obtained from X by attaching
an n + 1-cell via f , and is denoted Dn+1 ∐

f X. The map f is the attaching
map for the cell. In categorical terms, the diagram

Sn X

Dn+1 Dn+1
∐
f

X

-f

?
?

i

-
j

is a pushout diagram of topological spaces. The maps i, j are the obvious
maps coming from the definition.

Example 1. Suppose we want to build a torus by attaching cells. Start with
a point (=0-cell), then attach two 1-cells, using the only possible attaching
maps, to obtain S1 ∨ S1, the wedge of two circles. Finally attach a 2-cell
to S1 ∨ S1 in the evident way suggested by viewing the torus as a quotient
of a rectangle. Notice, by the way, that the attaching map for the 2-cell is
precisely the commutator of the two generators of the free group π1(S

1∨S1).

Example 2. Attach an n-cell to a point by the only possible attaching map.
The result is an n-sphere (up to homeomorphism).

Example 3. Attach an n + 1-cell to RP n using the standard quotient map
π : Sn−→RP n. The resulting space is homeomorphic to RP n+1. (This follows
easily from Example 5 of the previous section.)

The process of attaching cells can be generalized to allow more than one
cell at a time. Suppose we are given maps fnα : Sn−1−→W with α ranging
over some index set (possibly infinite), and n is fixed. Then we can attach
all the cells simultaneously by forming the pushout diagram
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∐
α

Sn−1 X

∐
α

Dn
Y

-

?
?

-

Example 4. Let X be an arbitrary CW-complex. Then by definition, the
n+ 1-skeleton is obtained from the n-skeleton by attaching n+ 1-cells - that
is, there is a pushout diagram∐

Sn Xn

∐
Dn+1

Xn+1

-

? ?
-

where the disjoint unions are over all n+ 1-cells of X.
So we can think of a CW-complex as a space obtained by starting from a

discrete space (the 0-skeleton) and inductively attaching 1-cells, 2-cells, etc.

4 Homology of CW-complexes

Theorem 4.1 Suppose Y is obtained from X by attaching n-cells, as in the
preceeding section. Then the relative homology group Hn(Y,X) is the free
abelian group on the set of n-cells being attached. Furthermore Hk(Y,X) = 0
for k 6= n.

The proof is an easy application of excision.

Corollary 4.2 Suppose X is a CW-complex. Then Hn(Xn, Xn−1) is the free
abelian group on the n-cells of X, and Hk(X

n, Xn−1) = 0 for k 6= n.

Now if X is a CW-complex, define the n-th cellular chain group by Ccell
n X =

Hn(Xn, Xn−1). Define a boundary map ∂ : Ccell
n X−→Ccell

n−1X as the compos-
ite
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Hn(Xn, Xn−1)−→Hn−1X
n−1−→Hn−1(X

n−1, Xn−2)

where the first map is the boundary map in the long exact sequence of the
pair (Xn, Xn−1) and the second map comes from the long exact sequence of
the pair (Xn−1, Xn−2). It is clear that ∂2 = 0, since ∂2 is a composite of
four maps, the middle two of which come from the long exact sequence of
the same pair, namely (Xn−1, Xn−2). Thus Ccell

∗ X is a chain complex - the
cellular chain complex of X. The homology groups of this complex are the
cellular homology groups of X, written Hcell

∗ X.

Theorem 4.3 Let X be a CW-complex. Then the singular homology groups
H∗X are isomorphic to the cellular homology groups Hcell

∗ X.

Corollary 4.4 If X has finitely-many n-cells, then HnX is finitely-generated.
In particular, the homology groups of a finite complex are finitely-generated.

The proof, which is surprisingly easy, will be given in class. Note this
shows in particular that the cellular homology groups are independent of the
choice of CW-structure on a given space X. It will be clear from the proof
that the isomorphism is natural with respect to cellular maps f : X−→Y
between CW-complexes; that is, maps with the property that f(Xn) ⊂ Y n

for all n.
There is a relative version of the theorem that applies to CW-pairs (X,A).

Using it one can show:

Theorem 4.5 Let (X,A) be a CW-pair. Then the map of pairs (X,A)−→(X/A, ∗)
induces an isomorphism H∗(X,A) ∼= H∗(X/A, ∗) = H̃∗(X/A).

Theorem 4.3 greatly simplifies many homology calculations. For example,
suppose X is a path-connected CW-complex with only even-dimensional cells
(e.g. CP n). Then the boundary maps in the cellular chain complex are all
zero, for trivial reasons, and we conclude that HnX is free abelian on the
n-cells of X if n is even, and zero if n is odd.

For another example, consider once more the calculation of H∗RP n. The
cellular chain complex takes the form

0−→Z−→Z−→...−→Z−→0
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where there is one copy of Z in each dimension from 0 to n. We conclude
instantly from this that HkRP n is a cyclic group for all k and zero for k > n.
To get the precise value of Hk we have to analyze the boundary maps more
closely. This would make a very instructive and perhaps rather challenging
exercise. (Since we have already computed the homology by other means,
we could easily show the boundary maps above are forced by the known
answer. The problem is to do the calculation directly from the cellular chain
complex.)

Homology of CW-complexes can be characterized axiomatically:

Theorem 4.6 Suppose given a sequence of functors Gn from the category of
topological spaces to the category of abelian groups, n ≥ 0, which sastisfy (1)
Dimension axiom: Gn(∗) is Z for n = 0 and zero otherwise; (2) Homotopy
invariance; (3) Mayer-Vietoris (or alternatively, excision, assuming relative
Gn groups are defined). Then for all finite CW-complexes X there is a natural
isomorphism GnX ∼= HnX.

If one assumes given a natural transformation Gn−→Hn, inducing an
isomorphism for X = ∗, the proof is an easy induction on the number of cells
of X. To characterize homology on arbitrary CW-complexes, just one further
axiom is needed; the slogan is “homology commutes with direct limits”, but
I won’t try to describe it here. Further discussion can be found in the classic
original source: the text by Eilenberg and Steenrod.

5 The Euler Characteristic

Let X be a finite CW-complex, of dimension n. Let ai denote the num-
ber of i-cells of X. Then the Euler characteristic χ(X) (historically the first
topological invariant ever considered!) is the alternating sum

χ(X) = a0 − a1 + a2 − ....+ (−1)nan

Now let bk denote the rank of HkX and let χH(X) denote the alternating
sum of the bk’s:

χH(X) = b0 − b1 + b2 − ....+ (−1)nbn
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Theorem 5.1 χ(X) = χH(X). In particular, the Euler characteristic is
independent of the choice of CW-structure on X, and is even a homotopy-
type invariant of X.

The proof is an exercise in rather trivial algebra. First show that if
0−→A−→B−→C−→0 is a short exact sequence of finitely-generated abelian
groups, then rank B = rank A + rank C. Then restate the theorem as a
purely algebraic result about chain complexes of finitely-generated abelian
groups, of finite length, and prove it by induction on the length (=highest de-
gree in which the chain complex is nonzero). If you know how to tensor with
the rationals, the whole argument becomes elementary dimension-counting.

6 Homotopy Theory of CW-complexes

The purpose of this section is to outline some of the key theorems on the ho-
motopy theory of CW-complexes (plus one theorem, the Hurewicz theorem,
that applies to arbitrary spaces). The first result will seem rather obscure;
it is included here only for future reference.

Theorem 6.1 Homotopy Extension Property: Let (X,A) be a CW-
pair, and let Y be any topological space. If f : X−→Y is any map, and
H : A × I−→Y is a homotopy with H0 equal to the restriction of f to A,
then H extends to a homotopy X × I−→Y .

Now recall that a map f : X−→Y between CW-complexes is cellular if
f(Xn) ⊂ Y n.

Theorem 6.2 Cellular Approximation: Any map f : X−→Y between
CW-complexes is homotopic to a cellular map. Furthermore, if A is a sub-
complex of X, and f is already cellular on A, the homotopy can be taken rel
A.

The power of this result is easy to see. For example, consider Sn with
its minimal CW-structure as in example 3 of section 2. Then for k < n the
k-skeleton consists of only the basepoint. So by cellular approximation, we
conclude that if X is any CW-complex of dimension less than n, any map
f : X−→Sn is nullhomotopic. In particular this is true for X = Sk, k < n.
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For another application, consider a CW-complex X and a map Sn−→X.
Let Y denote the space obtained by attaching an (n+ 1)-cell to X via f . We
would like to say that Y is again a CW-complex, with just one new (n+ 1)-
cell. If f maps Sn into the n-skeleton of X, this is true and easy to prove.
In the general case this fails, but by cellular approximation we know f is
homotopic to a map taking Sn to the n-skeleton. It follows that Y is at least
homotopy-equivalent to a CW-complex of the desired type, using Lemma 3.6
on p. 20 of Milnor.

Now let X be any pointed space (i.e., a space equipped with a chosen
basepoint). The n-th homotopy group of X, denoted πnX, is the set of pointed
homotopy classes of pointed maps Sn−→X (a basepoint for Sn having been
fixed once and for all). For n = 0 this is just the set of path-components of
X, and there is no natural group structure. For n > 0, however, there is a
natural group structure defined as follows:

Identify Sn with In/∂In, the n-cube with its boundary collapsed to a
point. Then elements of πnX are maps from In to X that take the entire
boundary to the basepoint, and similarly for homotopies. Given two such
maps f, g, we define f ∗ g by (f ∗ g)(x1, x2, ..., xn) = f(2x1, x2, ..., xn) if
x1 ≤ 1/2 and (f ∗ g)(x1, x2, ..., xn) = g(2x1− 1, x2, ..., xn) if x1 ≥ 1/2. Notice
that this is exactly the usual definition of the fundamental group when n = 1.

Theorem 6.3 The product f ∗ g gives πnX a natural group structure for
n > 0 (in particular, it is well-defined on homotopy classes, and defines a
functor from the category of pointed spaces to the category of groups). If
n > 1 this group structure is abelian (in which case we write f + g in place
of f ∗ g). If X is path-connected, then up to non-natural isomorphism, πnX
is independent of the choice of basepoint.

A map of spaces f : X−→Y is a weak equivalence if for all choices of
basepoint and all n ≥ 0, the induced homomorphism πnf : πnX−→πnY is
an isomorphism. If the spaces are path-connected, then we only need to
consider a fixed choice of basepoint. Any homotopy equivalence is a weak
equivalence, but the converse is false. The single most important property of
CW-complexes is the following theorem of J.H.C. Whitehead (which probably
motivated his definition in the first place).

Theorem 6.4 Suppose X, Y are CW-complexes. Then any weak equivalence
f : X−→Y is a homotopy equivalence.
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For example, if X is a CW-complex and all homotopy groups of X are
zero (for π0 this means X is path-connected), then X is contractible. Again,
this is false for arbitrary spaces. In some cases, it is possible to show that
a map induces an isomorphism on homotopy groups even without knowing
explicitly what the homotopy groups are; then the theorem is useful as it
stands. If, on the other hand, we want to show π∗f is an isomorphism
by explicit computation, the theorem is often useless, since computing the
homotopy groups explicitly tends to be impossible. Fortunately, Whitehead
also proved a weaker version based on homology:

Theorem 6.5 Suppose X, Y are simply-connected CW-complexes. Then any
map f : X−→Y inducing an isomorphism on all homology groups is a ho-
motopy equivalence.

The assumption that the spaces are simply-connected can be substantially
weakened, but cannot be eliminated. For example, there exists a smooth com-
pact 3-dimensional manifold with boundary (in particular a CW-complex)
whose reduced homology groups all vanish, and yet has nontrivial fundamen-
tal group, so can’t be contractible. The problem is that although any weak
equivalence induces an isomorphism on homology groups (proof is hard),
the converse isn’t true without restrictions on the fundamental group. In
the simply-connected case, however, every homology isomorphism is a weak
equivalence (again, the proof is hard); so the second Whitehead theorem
follows from the first.
Remark: Note that in both Whitehead theorems, the assumption that the
spaces are CW-complexes could be replaced by the assumption that they are
CW-spaces: that is, spaces having the homotopy type of a CW-complex.

Now fix once and for all a generator ιn for HnS
n. Given any space X

and map f : Sn−→X, we get a homology class f∗ιn ∈ HnX. By homotopy
invariance of homology, this class depends only on the homotopy class of
the map f . In particular, having chosen a basepoint, we get a map of sets
h : πnX−→HnX sending [f ] to f∗ιn. This map is called the Hurewicz map.
In fact h is a group homomorphism; the proof of this makes an interesting
exercise. When n = 1, this is the same map considered earlier in the notes
on homology. In general, h is neither injective nor surjective. In fact, it is
usually a long way from being an isomorphism; this is what makes homotopy
theory so hard. In one case, however, we do get an isomorphism; this is the
famous Hurewicz theorem:
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Theorem 6.6 Suppose n > 1 and πkX = 0 for k < n. Then the Hurewicz
map is an isomorphism πnX ∼= HnX.

As a corollary we get πnS
n ∼= Z, since cellular approximation shows the

lower homotopy groups are zero.
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