
Homology of adjoint orbits via Morse theory

Let G be a Lie group with Lie algebra g. An adjoint orbit is an orbit of the natural
action of G on g induced by conjugation. For example, if G = U(n) is the unitary group,
with Lie algebra u(n) the skew-Hermitian matrices, then the orbit of a diagonal matrix with
two distinct entries is a complex Grassmannian. More generally, every “flag variety” can be
obtained as an adjoint orbit. In these notes we use Morse theory to study the homology of
adjoint orbits. Our inspiration is expository paper of Bott “The geometry and representation
theory of compact Lie groups”, found in the volume Representation Theory of Lie Groups
edited by Atiyah et. al., although we pursue the matter in greater depth than is done there.

Some convenient notation: 1. If α is a smooth curve on a manifold M , defined on some
neighborhood of 0 with α(0) = p, then δ(α) = d

dt
|t=0α ∈ TpM .

2. If v ∈ ThG and g ∈ G, then g∗v ∈ TghG is the image of v under left translation by g,
and vg∗ ∈ ThgG is the image of v under right translation.

1 The exponential map

Here we recall a few salient points; see [Lee], Chapter 20, for more background. Let G be a
connected Lie group, with Lie algebra g. Recall that g is the tangent space at the identity
element e, and can be identified with the left-invariant vector fields on G (thereby obtaining
its Lie algebra structure). The exponential map exp : g−→G is defined as follows: Let θX(t)
denote the integral curve of X through e. Then expX = θX(1). Frequently, the following
characterization is more convenient:

Proposition 1.1 If X ∈ g then the map t 7→ exp tX is the integral curve through e of the
left-invariant vector field generated by X.

Moreover t 7→ exp tX is a Lie group homomorphism R−→G (a so-called “one-parameter
subgroup”).

Note that the proposition is not immediate; one has to check that θtx(1) = θX(t). But
this is not hard; see Lee, Proposition 20.5.

Some further noteworthy properties of exp:

• exp is smooth, and the differential exp∗(0) : g−→g is the identity. Hence exp maps
some neighborhood of zero diffeomorphically onto a neighborhood of e ∈ G.

• exp is natural with respect to Lie group homomorphisms (see Lee, Prop. 20.8g).

• exp is a group homomorphism if and only if G is abelian.

• ForG = GLnR (or any closed Lie subgroup thereof), exp is just the classical exponential
of matrices exp(A) = eA.

We note also:
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Proposition 1.2 Let θ : R × G−→G denote the flow associated to X. Then θ(t, g) =
gexp tX.

Proof: Fix g and check the derivative.

Finally, here is one of the most striking applications of exp:

Theorem 1.3 Let G be any Lie group, H a closed subgroup (not assumed to be even a
submanifold). Then H is an embedded Lie subgroup.

See Lee for the interesting and difficult proof.

2 The adjoint representation

Now G acts smoothly on itself by conjugation, with the identity element e as a fixed point.
This yields a representation Ad : G−→GL(g) called the adjoint representation. For GLn or
closed subgroups thereof it is just the conjugation action on matrices. It has a Lie algebra
counterpart denoted lower-case ad : g−→EndRg, given by ad(X)(Y ) = [X, Y ]. Note ad is a
homomorphism of Lie algebras. But there is another natural such Lie algebra homomorphism
lying about, namely the differential Ad∗ at the identity.

Proposition 2.1 Ad∗ = ad. Equivalently, for all X, Y ∈ g we have

δ(Ad(exp(tX))Y ) = [X, Y ].

Proof: The two assertions are equivalent because one way to compute the value of a differ-
ential on a tangent vector v at point p is to take any smooth curve through p with tangent
vector v, push it forward by the given map and take the derivative at 0. Here we use the
curve exp(tX).

To prove the displayed formula, recall that for any vector fieldsX, Y on a smooth manifold
M , we have [X, Y ] = LXY . Here LXY is the Lie derivative, defined by

(LXY )p = δ(θ−t∗Yθ(t,p)),

where θ is the flow associated to X. In our situation this yields

[X, Y ] = δ((exp tX)∗Y (exp − tX)∗) = δ(Ad(exp tX)Y )

as desired.
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3 Compact Lie groups

Now suppose G is compact. Then if G−→GL(V ) is any representation, we can find find
an inner product on V that is G-invariant, i.e. 〈gv, gw〉 = 〈v, w〉, or equivalently 〈gv, w〉 =
〈v, g−1w〉, for all g, v, w. This is possible thanks to compactness: choose any inner product
on V and average it over G. In particular there is an AdG-invariant inner product 〈−,−〉 on
g. Indeed the existence of such an inner product almost characterizes compact Lie groups: If
there is an Ad-invariant inner product, then G/C(G) is compact, where C(G) is the center.
To see this recall that any two inner products on V are equivalent under the action of GL(V ),
from which it follows that G/C(G) is conjugate in GL(V ) to a subgroup of the (compact)
orthogonal group O(V ). The Ad-invariance is reflected in the Lie algebra as follows:

Proposition 3.1 For all X, Y, Z ∈ g, we have

〈[X, Y ], Z〉 = 〈X, [Y, Z]〉.

Proof: We have

〈Ad(exp(tY ))X,Z〉 = 〈X,Ad(exp(−tY ))Z〉.

Applying d
dt
|t=0 to the left side yields −〈[X, Y ], Z〉; on the right side we get −〈X, [Y, Z]〉.

A torus is a compact Lie group isomorphic to a product of circle groups. We can char-
acterize such groups in several interesting ways.

Proposition 3.2 Let G be a compact connected Lie group. Then G is abelian if and only if
it is a torus.

Proof: The “if” is immediate. Now suppose G is abelian. Then expG is a Lie group homo-
morphism whose image contains a neighborhood of the identity. But any neighborhood of the
identity in a connected topological group generates the group (a standard exercise), so exp
is surjective. It follows that Ker exp is a discrete subgroup, free abelian with rank = dimG,
and that G ∼= Rn/Zn, i.e. is a torus. Details of these last steps are left as an exercise.

A topological group H is topologically cyclic if it has a dense cyclic subgroup < h >; the
generator h is called a topological generator.

Proposition 3.3 Let G be a connected Lie group. Then G is topologically cyclic if and only
if G is a torus.

Proof: For the “if” one can assume G = Rn/Zn, with g = Rn. Then one shows that any
h = (x1, ..., xn) such that 1, x1, ..., xn are linearly over Q is a topological generator; this is a
classical theorem of Kronecker. Note this shows further that the set of topological generators
h is dense in g. For details see e.g. Brocker and tom Dieck, Representation theory of compact
Lie groups.

Conversely suppose G is topologically cyclic, with topological generator g. Since 〈g〉 is
dense and abelian, G is abelian (the fact that the closure of an abelian subgroup is abelian
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holds in any topological group whose identity element is closed, e.g. a Hausdorff group). If
G is compact, then since G is connected it is a torus by what we proved earlier. This is
all we really need, but for completeness we remark that a connected abelian Lie group is
isomorphic to T × Rk for some k, where T is a torus. For G topologically cyclic, it follows
easily that G = T .

For another variant, note that the exponential map of a torus is surjective. So if h ∈
T is a topological generator, there is an X ∈ t such that expX = h. By considering
the corresponding one-parameter subgroup exp tX, we get the following generalization of
Example 7.19 in Lee.

Corollary 3.4 Let T be a torus. Then there exists X ∈ t such that exp tX is dense in T .
In fact the set of such X is dense in t.

Here is a further useful corollary, whose proof combines several of the ideas introduced
so far:

Corollary 3.5 Let G be a compact Lie group, exp tX a one-parameter subgroup (X ∈ g).
Then the closure H := exp tX is a torus, embedded as a closed Lie subgroup.

Proof: Since H is a closed subgroup, it is a closed Lie subgroup. Since exp tX is abelian,
so is its closure. Since connectedness of subspaces is always preserved by closures, exp tX is
connected. So it is a compact connected abelian Lie group, hence a torus.

We conclude with a brief discussion of the representation theory of tori, leaving details to
the reader. First of all, for any compact Lie group G and representation V of G, V splits as
a direct sum of irreducible representations. To see this, we first choose a G-invariant inner
product on V . Now if W ⊂ V is any G-invariant subspace (meaning vector subspace), then
the orthogonal complement of W is also G-invariant. Our assertion now follows by a trivial
induction. In the case of tori we have further:

Proposition 3.6 Let T be a torus. Then every non-trivial irreducible representation of T
over R has dimension 2.

Proof: Let V be a representation of T , and let h be a topological generator of T . By linear
algebra there is an h-invariant subspace W ⊂ V of dimension ≤ 2. By continuity plus
density of 〈h〉, W is in fact T -invariant. If dimW = 1, then T−→GL(W ) ∼= R× has image
a compact 1-dimensional subgroup of R×, hence is trivial. It follows that every non-trivial
irreducible representation has dimension 2, as desired.

Thus every real representation of T splits as a direct sum of 2-dimensional irreducibles
plus a summand on which T acts trivially.
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4 Regular elements and Cartan subalgebras

Now let X ∈ g and let gX , gX denote respectively the kernel and image of adX : g−→g.
Thus gX is the Lie centralizer of X and there is a short exact sequence

0−→gX−→g−→gX−→0.

In fact the short exact sequence exists for any Lie algebra, but the following lemma is
special to the compact setting.

Lemma 4.1 There is an orthogonal direct sum decomposition

g = gX ⊕ gX .

Moreover, it is a direct sum as gX-modules, and adX is an isomorphism on gX .

Proof: Suppose [X, Y ] = 0. Then for all Z ∈ g we have

〈Y, [X,Z]〉 = 〈[Y,X], Z〉 = 0.

Hence gX ⊥ gX . In particular gX ∩ gX = 0, so by the short exact sequence and dimension
count we’re done.

Remark: For general Lie algebras, gX ∩ gX can be nonzero. For example, Let g have
basis X, Y, Z with [X, Y ] = Z and all other brackets zero (i.e. the upper triangular 3 by 3
nilpotent matrices). Then gX = R(X,Z) and gX = RZ.

An element X ∈ g is regular if gX has minimal dimension, i.e. dim gX ≤ gY for all Y . A
Lie subalgebra h ⊂ g is a Cartan subalgebra if h = gX for some regular X. Other versions of
this somewhat obscure definition can be found in the literature; in the case of compact Lie
algebras, however, there is a simpler characterization.

Lemma 4.2 If h is a Cartan subalgebra, then h is a maximal abelian sublgebra. (The con-
verse is true too, but the proof must wait.)

Proof: Suppose h is Cartan, so h = gX for some regular X. If h is abelian then it is
clearly maximal abelian. So suppose h is not abelian. Then there exist Y, Z such that
[X, Y ] = 0 = [X,Z] and [Y, Z] 6= 0. By Lemma 4.1, for all t ∈ R, adX + tY preserves
the decomposition g = gX ⊕ gX . Furthermore, since adX acts isomorphically on gX and
the isomorphisms are an open subset of EndRg

X , adX + tY also acts isomorphically for
sufficiently small t. Hence gX+tY ⊂ gX . But Z /∈ gX+tY , contradicting dim gX minimal.
Hence h is maximal abelian as desired.
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5 Morse functions on adjoint orbits

Let O be an orbit of the adjoint action of G on g, and Y ∈ O.

Lemma 5.1 TYO = gY .

Proof: TY is the image of TeG = g under the map φ : G−→g given by φ(g) = Ad(g)Y . Since
Ad∗(e) = ad, we have φ∗(e)(Z) = [Z, Y ] and the lemma follows.

Theorem 5.2 Let O be an adjoint orbit. Let X be any regular element, with associated
Cartan subalgebra h = gX . Let f = fX denote the height function f(Y ) = 〈X, Y 〉 on O.
Then f is a Morse function with Crit f = O ∩ h.

Proof: We first show that Crit f = O ∩ h. By Lemma 5.1, Y is a critical point if and only
if 〈X, [Y, Z]〉 = 0 for all Z ∈ g, or equivalently 〈[X, Y ], Z〉 = 0 of all Z. Thus Y is critical if
and only if [X, Y ] = 0, i.e. Y ∈ h.

Next, we compute the Hessian at a critical point Y explicitly. Since ad Y acts isomor-
phically on gY = TYO, we can define W ∗ = (ad Y )−1W for W ∈ TYO.

Lemma 5.3 Hf (V,W ) = 〈X, [V,W ∗]〉.

Proof: Recall that the Hessian is defined as follows: Choose a smooth function φ(s, t) :
U−→O with U a neighborhood of the origin in R2, φ(0, 0) = Y , ∂φ

∂s
(0, 0) = V , ∂φ

∂t
(0, 0) = W .

Then

Hf (V,W ) =
∂2(f ◦ φ)

∂s∂t
(0, 0).

This is a well-defined symmetric bilinear form, thanks to the fact that Y is a critical
point. Here we take

φ(s, t) = exp(−sV ∗) exp(−tW ∗)Y.

Then

∂φ

∂s
(0, 0) =

d

ds
|s=0 exp(−sV ∗)(z) = −[V ∗, Y ] = [Y, V ∗] = V,

and similarly for W . By adjoint invariance of the inner product, we then have

f ◦ φ(s, t) = 〈exp(sV ∗)X, exp(−tW ∗)Y 〉.
Applying ∂2/∂s∂t at the origin then yields

〈[V ∗, X],−[W ∗, Y ]〉 = 〈[V ∗, X],W 〉 = 〈−V ∗, [W,X]〉 = 〈[W,V ∗], X〉,
proving the lemma.

Finally we show Hf is nondegenerate. Suppose 〈[W,V ∗], X〉 = 0 for all W ∈ gY . Then
〈[W,V ∗], X〉 = 〈W, [V ∗, X]〉, and since [V ∗, X] ∈ gY we conclude that [V ∗, X] = 0. Moreover,
V ∗ ∈ gX ⊂ gY , since Y ∈ gX . Hence V ∗ ∈ gY ∩ gY = 0. This completes the proof of the
theorem.
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Corollary 5.4 For any adjoint orbit O and Cartan subalgebra h, O∩h is finite and nonempty.

That the intersection is nonempty follows from the compactness of O, since f must then
have at least one critical point. This yields further corollaries:

Corollary 5.5 a) Any two Cartan subalgebras are conjugate under the adjoint action of G.
b) Every maximal abelian subalgebra is a Cartan subalgebra (so any two such are conju-

gate).
c) Any two maximal tori of G are conjugate.

Proof: a) Let h1, h2 be Cartan subalgebras, X1 a regular element of h1. Then by the previous
corollary, gX1 ∈ h2 for some g. Then h2 ⊂ ggX1 = ggX1 = gh1, and since h2 is maximal
abelian, the inclusion is an equality.

b) Let t be a maximal abelian subalgebra; we know that t is the Lie algebra of a maximal
torus T ; choose Y ∈ t, so that exp tY is dense in T . Let h = gX be a Cartan subalgebra, X
regular. Since gY ∈ h for some g by Corollary 5.4, we can assume Y ∈ h. Now h is maximal
abelian, so is the Lie algebra of a maximal torus H. Then exp tY ∈ H for all t, so T ⊂ H.
Since T is maximal, T = H and hence t = h is a Cartan subalgebra.

c)b) One can show that a torus T ⊂ G is maximal if and only if its Lie algebra t is a
maximal abelian (hence Cartan) subalgebra. Then (b) follows from (a). Details are left to
the reader.

Here’s an exercise that clarifies the relationship between regular X and X such that
expX is a topological generator of T .

Exercise: a) Suppose T is a maximal torus, X ∈ t and expX is a topological generator of
T . Then X is regular.

b) Give a counterexample showing the converse is false. Even better, find a good theorem
of the form “X is a topological generator if and only if X is regular and...”

We next compute the indices of the critical points. First observe that as T -modules there
is a splitting g = h⊕ (⊕θgθ), where the gθ’s are irreducible 2-dimensional representations of
T . Thus h acts on gθ via skew-adjoint transformations, and since the skew-adjoint transfor-
mations of a 2-dimensional inner product space have dimension 1, soθ is generated by the
image of adX. Denote this image Xθ.

Now let Y ∈ h be a critical point. Then the decomposition g = gY ⊕ gY is clearly
compatible with the above root space decomposition; in fact

gY = ⊕[Y,gθ]6=0gθ.

Thus the image of Y in soθ is a multiple of Xθ; i.e. there is a cθ 6= 0 for all Z ∈ gθ we have
[Y, Z] = cθ[X,Z]. Let mY = |θ : cθ > 0|.

Proposition 5.6 Let Y ∈ O be a critical point. Then ιY = 2mY .
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Proof: Consider the restriction of the Hessian quadratic form Q to gθ ⊂ TYO. We have

Q(V ) = 〈X, [V, V ∗]〉 = −〈X, [[V ∗, [Y, V ∗]]〉 = −〈[X, V ∗], [Y, V ∗]〉 = −cθ|[X, V ∗]|2.

Hence ⊕cθ>0gθ is a maximal negative definite subspace for Q, proving the proposition.

Finding the critical points explicitly in specific cases is easy, using the Weyl group W =
NGT/T . For example, when G = U(n), W = Sn, the symmetric group on n letters (identified
with the permutation matrices).

Proposition 5.7 O ∩ h is an orbit of the Weyl group.

Proof: Suppose Y, Z ∈ h, and gY = Z. Then h, gh ⊂ gZ . So by Corollary 5.5, there is an
element x ∈ G0

Z such that xgh = h, so xg ∈ NGT . But xgY = xZ = Z, QED.

As a corollary (which can also be proved directly) we get:

Corollary 5.8 W is finite.

Proof: Take X so that expX is a topological generator of T (hence X regular). If g ∈ NGT
and gX = X, then g centralizes exp tX for all t and hence centralizes T . So g ∈ CGT . Thus
NGT/CGT ∼= O is finite. Now observe that CGT/T is zero-dimensional, since T is a maximal
torus. Since it is also compact, it is finite. (Here CGT is the centralizer.) This proves the
result.

Remark: In fact one can show that CGT = T .

6 Some consequences

We can now instantly compute the Euler characteristic χ and indeed the total rank of the
homology.

Proposition 6.1 Let OY be an adjoint orbit as above. Then
a) H∗OY is free abelian and concentrated in even dimensions.
b) χ(OY ) = rank H∗OY = |W/WY |.

Proof: Since the critical points all have even index, an adjoint orbitO is homotopy-equivalent
to a finite complex with cells in even dimensions. Moreover the cells are in bijective corre-
spondence with W/WY . All of the assertions of the proposition then follow immediately.

Corollary 6.2 Let T be a maximal torus of G. Then χ(G/T ) = rank H∗G/T = |W |.
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Remark: One of the key theorems in the structure theory of connected compact Lie groups
states that (i) any two maximal tori are conjugate; and (ii) every element lies in a torus
(hence in a maximal one). We have already proved (i) above, but we have not proved
(ii). Note that (ii) is equivalent to saying that for any g ∈ G and given maximal torus
T , the action of g on G/T has a fixed point. One elegant proof of (ii) then proceeds by
applying the Lefschetz Fixed-Point Theorem from algebraic topology; this requires knowing
that χ(G/T ) 6= 0. For those familiar with the Lefschetz theorem, here’s the proof of (ii):
Let φg : G/T−→G/T be the left action of g. By the Lefschetz theorem, it suffices to show
the Lefschetz number L(g) is nonzero. Since G is path-connected, φg is homotopic to the
identity. So L(g) = L(Id) = χ(G/T ) = |W | 6= 0, QED!

We also remark that it is easy to show that (ii) is equivalent to expG being surjective,
but a direct proof that exp is surjective is not so easy.

We can do much better than the Euler characteristic, however, by computing the ranks
of the individual homology groups. This information is best encoded in the Poincaré poly-
nomial, which is defined for any finite complex X (or space homotopy-equivalent to such a
complex) by

|X|(t) =
∑
j

(rank HjX)tj.

In our situation HjX will be zero for all odd j, so it’s a bit easier on the brain to assign
dimension 2 to the indeterminate t and write instead

|X|(t) =
∑
j

(rank H2jX)tj.

For example, in this new notation CP 2 has Poincaré polynomial 1 + t + t2, whereas in the
old it would be 1 + t2 + t4. Now for Y ∈ h, define

pY (t) =
∑
w

tmw ,

where w ranges over a set of coset representatives of W/WY and mw = mwY (the factor of
2 occuring in the index formula above is omitted because of our new convention). We then
have at once:

Proposition 6.3 Let OY be an adjoint orbit, Y ∈ h. Then

|OY | = pY .

7 Examples

Example 1. Let G = U(n) be the unitary group, with Lie algebra g the skew-Hermitian
matrices. The diagonal matrices form a maximal torus T , whose Lie algebra consists of
diagonal matrices with pure imaginary entries, and is our Cartan subalgebra h. The Weyl
group W is just the symmetric group Sn, acting in the evident way. As regular element X
we choose a decreasing sequence a1 > a2... > an and take X = diag(a1i, ..., ani).
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Now consider the orbit O of Y = diag(i, ...i,−i, ...,−i), where there are k i’s and n− k
−i’s. Clearly GY = U(k) × U(n − k), and O is the Grassmann manifold GkCn. Similarly
WY = Sk × Sn−k. At this point we can already conclude:

Proposition 7.1 χ(GkCn) = rank H∗GkCn =
(
n
k

)
.

But we can do much better: we compute the Poincaré polynomial explicitly. There is a
canonical set of coset representatives for Sn/(Sk × Sn−k), namely the shuffles: the permu-
tations w such that the restriction of w to {1, ..., k} and {k + 1, ..., n} is order-preserving.
Note that a shuffle is uniquely determined by its Schubert symbol σ = (σ1 < ... < σk), where
σi = w(i). From now on we identify shuffles with their Schubert symbols.

Now for r < s let Mr,s ⊂ g denote the skew-Hermitian matrices whose (a, b)-coordinate
is zero if (a, b) is not (r, s) or (s, r). Note dimRMr,s = 2, and that it is invariant under the
actions of T and h. Moreover the action is determined by what it does on the above diagonal
coordinate, so for present purposes the below-diagonal part can be ignored. Thus [X,−]
multiplies Mr,s by (ar − as)i (where i =

√
−1). If w is a shuffle with Schubert symbol σ, it

follows that

mw = d(σ) :=
k∑
j=1

(σj − j).

(Note σj − j is the number of −j’s to the left of the +j that has moved to slot σj. Thus the
righthand side of the displayed equation is the number of root spaces on which wY acts as
a negative multiple of X, as required.)

This reduces the computation of the Poincaré polynomial to a purely combinatorial prob-
lem. The following are polynomial analogues of n, n!, and

(
n
k

)
respectively:

[n](t) =
1− tn

1− t
= 1 + t+ ...+ tn−1

[n!](t) =
n∏
i=1

[i](t)

[

(
n

k

)
](t) =

[n!](t)

[k!](t)[(n− k)!](t)
.

These are all polynomials with non-negative integer coefficients. In the case of
(
[n
k]

)
this

follows from the Pascal’s triangle recursion formula

tn−k[

(
n

k

)
] + [

(
n

k + 1

)
] = [

(
n+ 1

k + 1

)
],

whose proof we leave to the reader). Note that when evaluated at t = 1 these yield n,

n!,
(
n
k

)
respectively.

Proposition 7.2 |GkCn| = [
(
n
k

)
].
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Proof: We know that |GkCn| = pk,n :=
∑
σ t

mσ , where σ ranges over the k-shuffles and mσ is
computed as above. It is easy to check that pk,n satisfies the same Pascal recursion formula

as the [
(
n
k

)
]’s, with the same initial conditions.

For a specific example, we find that G2C4 has Poincaré polynomial 1 + t + t2 + t3 + t4

with our |t| = 2 convention. Thus the “real” Poincaré polynomial is 1 + t2 + t4 + t6 + t8.

Remark: The Grassmannian can also be realized as a homogeneous space GLnC/Pk, where
Pk is the evident block triangular subgroup of matrices preserving Ck. This point of view
leads to the conclusion that GkCn is a projective algebraic variety; it is an example of a class
of particularly beautiful varieties known as flag varieties.

I’ll briefly sketch the remaining examples. Working out the details is a highly recom-
mended exercise.

Example 2. Again take G = U(n), X as above, but now let Y = X. Then GY = T and
O = U(n)/T is the space of ordered n-tuples of orthogonal lines in Cn. Clearly WY = Sn.

Proposition 7.3 |U(n)/T | = [n!](t). In particular, χ(U(n)/T ) = rank H∗U(n)/T = n!.

The proof is analogous to the Grassmannian case, and in some ways easier. One arrives
at the combinatorial problem of counting pairs i < j such that σ(i) > σ(j), for given σ ∈ Sn,
which one can manage by inductive arguments. (On the other hand, the Euler characteristic
formula is again immediate.)

Remark: Here again we have a complex projective variety: U(n)/T = GLnC/B, where B is
the “Borel subgroup” of upper triangular matrices.

In the next two examples, G = SO(n). Here the real Grassmannians are not adjoint
orbits (this would contradict our main theorem, since their homology is not concentrated in
even dimensions—think of real projective space, for example).1 We also mention that from a
Lie-theoretic point of view, the infinite family of groups SO(n) really falls into two separate
families: n even and n odd. An thorough explanation of this point would require too long a
digression into “root systems” and the classification of compact Lie groups, but this is what
lurks behind the parity distinctions that you’ll find below.

Recall that the Lie algebra of SO(n) is so(n), the skew-symmetric n × n matrices. As
Cartan subalgebra h we can take the 2 × 2 block-diagonal matrices, where for n odd there
will be an extra zero in the nn position. For a ∈ R, let a denote the skew-symmetric matrix(

0 −a
a 0

)

For n = 2m or 2m + 1 we then we identify ∼= h by identifying (a1, ..., am) with the evident
block diagonal matrix diag(a1, ..., am) (with that extra zero in the lower right corner when
n is odd). In this notation the Weyl group can be described as follows: For n = 2m, it is

1They do arise from a variant of the adjoint orbit construction, but we won’t go into that here.
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the group of order 2m−1m! generated by permutations of the ai’s and multiplication of an
even number of entries by −1. For n = 2m+ 1 it is the group of order 2mm! defined in the
same way but without the even parity restriction. As a regular element we may take any
X = (a1, ..., am) with a1 > a2 > ... > am > 0.

Example/Exercise 3. Let n = 2m or n = 2m+ 1 and Y = (1, 0, ..., 0). Then the orbit OY
is SO(n)/S(O(2)× SO(n− 2)), which is the Grassmanian G̃2Rn of oriented 2-planes in Rn.
The W -orbit of Y consists of elements with one non-zero entry ±1, so in both cases we have
at once that the Euler characteristic is 2m. The homology is the same as for CP 2m−1 in the
odd case, and the same as for CP 2m−2 in the even case except that the middle dimension
H2m−2 has rank 2.

Show also that OY is diffeomorphic to the quadric hypersurface
∑
z2i = 0 in CP n−1.

Example/Project 4. Now consider Y = (1, 1, ..., 1) in the above notation. Then the
isotropy group of Y is U(m) ⊂ SO(2m + 1), so OY = SO(n)/U(m). If you check the
Weyl group action, you’ll find that χ(OY ) is 2m−1 in the even case and 2m in the odd case.
Computing the Poincaré polynomial is again a combinatorial exercise, a bit harder this time.

These orbits have an interesting interpretation as projective varieties. For a quadratic
form Q on a vector space V (real or complex), a subspace on which Q vanishes identically
is called an isotropic space. For suitable k one can then define isotropic Grassmannian
Gk(V,Q) ⊂ GkV as the subspace of k-dimensional Q-isotropic spaces. Now take V = Cn,
where again n = 2m or n = 2m+ 1, and let Q =

∑
z2i . If k = 1 then Gk(Cn, Q) is precisely

the quadric hypersurface of Example 3. At the opposite extreme, it is not hard to show
that maximal Q-isotropic spaces have dimension m. For n odd there is a natural transitive
action of SO(n) on Gm(Cn, Q), with isotropy group U(m). So the Grassmannian of maximal
isotropic spaces is an adjoint orbit. For n even, O(n) acts transitively on Gm(Cn, Q) with
isotropy group U(m). Thus there are two path-components, with SO(n) acting transitively
on each, again with isotropy group U(m). So again we have an adjoint orbit.

Working out the details of these assertions is a lengthy but rewarding project.
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