
Representations of finite groups, I

November 30, 2014

This series of notes is a guide to reading Serre’s text, with some additional results and
exercises included. A key point to realize is that Part I of the text is aimed at readers who
have much less background in abstract algebra than we do. So you need to constantly be
alert to the possibility of simplifying Serre’s proofs by applying more advanced machinery.
In particular, Serre doesn’t introduce the group algebra until Chapter 6, whereas we already
have it and will exploit it every chance we get. The same remark applies to modules.

Notation: F is always a field. G is a finite group except where otherwise specified. We
will use the notation RepkFG for the set of isomorphism classes of irreducible representations
of G over F of dimension k.

There are certain notations in Serre that I won’t use. For example, he uses g for |G|,
and z∗ for complex conjugates. We’ll stick with |G| and z. On the other hand I will use his
notation (v|w) for the Hermitian inner product, or “scalar product” of two vectors. Normally
I use 〈v, w〉 but Serre uses it for something else and this would lead to major confusion.

1 Serre, Chapter I

1.1 Completely reducible modules, semisimple rings, and Maschke’s
theorem

In our language, Serre’s Theorem 1 says that every short exact sequence of finite dimensional
CG-modules splits. Now for any ring R, call an R-module M completely reducible if it is a
finite direct sum of simple modules. Call R semisimple if every finitely-generated R-module
is completely reducible. Then Serre’s Theorem 2 says that every finite dimensional CG-
module is completely reducible, and hence CG is semisimple. In this section we consider
more generally for which F,G the algebra FG is semisimple.

If V,W are FG-modules, then HomF (V,W ) is an FG-module, with g ∈ G acting by
(g · φ)(v) = gφg−1(v). (We note in passing that there is no analogue of this construction for
general F -algebras; it is special to group algebras.) Moreover

(HomF (V,W ))G = HomFG(V,W ).

The implication (c) ⇒ (a) in the next theorem is Maschke’s theorem.
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Theorem 1.1 Let F be a field, G a finite group. Then the following are equivalent:
a) Every short exact sequence of finite dimensional FG-modules splits.
b) FG is semisimple.
c) char F doesn’t divide |G|.

Proof: (a) ⇒ (b): Let M be a nonzero CG-module. If M is irreducible, it is completely
reducible. If not, then there is a short exact sequence 0−→V−→M−→M/V−→0 with V
irreducible and M/V 6= 0. By induction (on either dimension or length, take your pick)
we can assume M/V is completely reducible. Since the short exact sequence splits, M is
completely reducible as required.

(b) ⇒ (c): Suppose p divides |G|. Then I claim the regular representation is not com-
pletely reducible. Consider the short exact sequence

0−→Ker ε−→FG ε−→ F−→0.

Here F has the trivial G-action and ε(g) = 1 for all g ∈ G. If FG is completely reducible,
then by Schur’s lemma some irreducible summand L of FG maps isomorphically to F under
ε. But L must then be a trivial 1-dimensional module, and the only such submodule of FG
is generated by G. But since p| |G|, ε(G) = 0, contradiction.

(c) ⇒ (a) Suppose char F doesn’t divide |G|. Then the averaging operator e0 (our
notation; see the notes on algebras)

e0 =
1

|G|
∑
g∈G

g ∈ FG

is defined, and projects any module M onto its fixed-points MG. In particular it projects
HomF (V,W ) onto HomFG(V,W ). Now consider a short exact sequence (the modules need
not be finite dimensional here)

0−→L−→M π−→ N−→0.

Since every F -module is free, there is a splitting s : N−→M as vector spaces. Then e0s :
N−→M is a map of FG-modules, and it is still a splitting:

π(e0s) = e0(πs) = e0IdN = IdN .

Thus Serre’s Theorems 1 and 2 are special cases of the preceding theorem.

1.2 Tensor products

Serre gives a very “low-tech” version of tensor products, since he is writing for quantum
chemists. It might be good enough for them, but it’s not good enough for us; a more
thorough treatment is needed. In fact tensor products can be defined for modules over an
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arbitrary ring R, but we will limit ourselves here to tensor products over fields F . Later we’ll
consider the case of modules over F -algebras, and later still modules over arbitrary rings.

Let V,W be vector spaces over F , not necessarily finite-dimensional. The tensor product
V ⊗F W is defined by the following proposition:

Proposition 1.2 There is an F -vector space V⊗FW and a bilinear map α : V×W−→V⊗W
such that for any F -vector space U and bilinear map β : V ×W−→U , there is a unique linear
map φ : V ⊗F W−→U such that φα = β:

V ×W U

V ⊗F W

-β

?

α

p p p p p
p p p p p�
∃!φ

Moreover, V ⊗F W is unique up to a canonical isomorphism.

Proof: Let F (V × W ) denote the F -vector space with basis V × W . Then let V ⊗F W
denote the quotient F (V × W )/X, where X is the subspace spanned by all elements of
the form (cv, w) − c(v, w), (v1 + v2, w) − (v1, w) − (v2, w) and the analogues with the roles
of v, w reversed. We write v ⊗ w for the equivalence class of (v, w) in V ⊗F W . Setting
α(v, w) = v ⊗ w, we see that α is bilinear by construction. Given β as above, we take
φ(v ⊗ w) = β(v, w). The bilinearity of β implies that φ is well-defined, and is the unique
linear map commuting in the diagram.

The uniqueness statement follows by the universal argument used for universal properties.
I’ll remind you of the idea. If you have two object X, Y satisfying the same universal property
such as the above, then the property itself formally yields unique morphisms X−→Y and
Y−→X commuting in the appropriate diagram (the triangle above, in our present example).
The composite of these two in either order yields the appropriate identity map, because it is
a morphism commuting in the same diagram (the triangle in our case) as the identity map.
In this sense the isomorphism between X and Y is not merely “canonical” (an undefined
term), but actually unique, subject to the commutative diagram condition.

Remarks. 1. Caution. Note that not all elements of V ⊗F W are of the form v ⊗ w. In
general they are linear combinations of such elements:

∑
ci(vi ⊗ wi).

2. The Plain English version of the universal property says: If you want to define a linear
map V ⊗F W−→U , it is enough (indeed equivalent) to define a bilinear map V ×W−→U .
There is an adjoint functor version too, but we’ll save that for another day.

3. From a philosophical point of view, one advantage of the tensor product is that it
allows us to treat bilinear maps in terms of morphisms in our original category F-mod.
Instead of inventing a new category to deal with our bilinear β, we reinterpret it as a good
old-fashioned linear map φ.

We develop some formal properties of the tensor product before going further (always a
good idea). First of all, the tensor product is a functor C × C−→C where C =F-mod. If
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fi : Vi−→Wi are linear maps for i = 1, 2, then f1⊗f2 : V1⊗F V2−→W1⊗FW2 is characterized
by

(f1 ⊗ f2)(v1 ⊗ v2) = f1(v1)⊗ f2(v2).

Some comments are in order, however, especially in view of the caution just given. Cer-
tainly the displayed equation determines f1 ⊗ f2, since elements of the form v1 ⊗ v2 span
V1 ⊗F V2. But if we use the equation to define f1 ⊗ f2, there is much to check in order to
know it is well-defined. Much better is to use the universal property to define it, then check
that it is in fact given by the simple formula above. To do this we need only find a suitable
bilinear map V1 × V2−→W1 ⊗F W2. The composite

V1 × V2
f1×f2−→ W1 ×W2−→W1 ⊗F W2,

where the second map is the canonical bilinear map of the proposition, does the job. Mo-
roever, tracing through the construction we find that it is indeed given by the displayed
equation.

Here are some further properties:

Proposition 1.3 There are natural isomorphisms of vector spaces:
a) identity: F ⊗F V ∼= V .
b) associativity: (V ⊗F W )⊗F U ∼= V ⊗F (W ⊗F U).
c) commutativity: V ⊗F W ∼= W ⊗F V .
d) distributivity: V ⊗ (⊕αWα) ∼= ⊕α(V ⊗Wα). (The direct sum is over an arbitrary index

set.)

Proof: We give a brief sketch and leave the details to the reader.
a) Scalar multiplication F × V−→V is bilinear, and so induces a linear map

φ : F ⊗F V−→V . It is clear that φ is an isomorphism, with inverse v 7→ 1⊗ v.
b) One approach is to first define an analogue of the tensor product for trilinear maps

V ×W ×U−→T . This yields an object V ⊗F W ⊗F U with a universal property for trilinear
maps. Then show that it is naturally isomorphic to each of the two vector spaces in (b).

c) This one is easy. Use the universal property again to get a map V ⊗F W−→W ⊗F V
such that v ⊗ w−→w ⊗ v. Symmetry yields an inverse.

d) Use the universal property of tensor products and of direct sums to define natural
maps in each direction, then check they are mutually inverse.

Now suppose that V,W are representations of a group G over F . Then V ⊗F W is also a
representation, with g · (v⊗w) = gv⊗gw. The fact that this is a well-defined representation
follows from the functoriality of the tensor product (in fact any functor between categories
takes group actions to group actions; I leave it to the categorically-minded reader to decipher
this statement).

Examples. 1. The simplest case is when one of the representations, say V , is 1-dimensional.
Then we can assume V = F with G acting via some homomorphism λ : G−→F×; we denote
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this representation Fλ. (See below for a thorough discussion of 1-dimensional representa-
tions). Using our natural isomorphism F ⊗F W ∼= W , we see that V ⊗F W is just W as
a vector space, but with the “twisted” G-action g · w = λ(g)gw. This makes it clear that
tensoring with Fλ preserves irreduciblility.

2. Tensor products of permutation representations also have a simple interpretation, in
terms of products of G-sets. See the exercises.

3. In general it isn’t easy to decompose the tensor product V ⊗W of two irreducible
representations into irreducibles, and indeed much research has been done on this topic
for various groups G. But it is easy to give examples where such a tensor product can’t
possibly be itself irreducible. For example, when F = C and G = S3 we saw that there is one
irreducible V of dimension 2, and two more of dimension 1. So V ⊗CV cannot be irreducible,
as it has dimension 4. See the exercises for further examples.

2 Hermitian inner products

This section expands on Serre’s remarks at the bottom of p. 6.

Let V,W be complex vector spaces. A map f : V−→W is semilinear if it is a group
homomorphism and f(zv) = zf(v) for all v ∈ V , z ∈ C. A Hermitian inner product, or
simply “inner product” on V is a map β : V × V−→C that is linear in the first variable,
semilinear in the second variable, and such that β is positive definite, i.e. β(v, v) > 0 for all
v 6= 0. Serre calls these scalar products.

Often we write (v|w) for β(v, w). If V = Cn, then

((a1, ..., an)|(b1, ..., bn)) =
n∑
i=1

aibi

is a Hermitian inner product. In fact a routine argument shows that for any V of dimension
n and inner product β on V , there is a basis e1, ..., en for V such that in the corresponding
coordinates β is given by the displayed formula. In particular the ei’s form an orthonormal
basis with respect to β.

Given an inner product β on V , the corresponding unitary group U(V, β) is the group of
complex linear automorphisms g of V that preserve β. In other words, β(gv, gw) = β(v, w)
for all v, w. If V = Cn with its standard inner product given above, then we write U(n)
for the corresponding unitary group; it is the subgroup of GL(n,C) consisting of matrices A

such that AA
T

= Id. By the remarks of the preceding paragraph, any U(V, β) is isomorphic
to U(n), where n = dimV . (A cultural aside: U(n) is a compact topological group and even
a Lie group. It has many beautiful, deep topological properties.)

Returning to our finite group G, we have:

Proposition 2.1 Let V be a complex representation of G. Then there is a G-invariant
inner product β on V , i.e. such that β(gv, gw) = β(v, w) for all g ∈ G.
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Proof: Choose any inner product α on V and average it:

β(v, w) =
1

|G|
∑
g∈G

α(gv, gw).

It is easy to check that β is an inner product; for the positive definite part note that any
linear combination of positive definite forms with positive real coefficients is again positive
definite. The G-invariance is also clear.

Thus we may assume that ρV maps into the unitary group of some inner product, or
even that ρV : G−→GLnC maps into U(n). Such representations are called unitary. If V is
a unitary representation of G, and W ⊂ V is a G-invariant subspace, then the orthogonal
complement W⊥ is also G-invariant. This yields another proof of complete reducibility, in
the special case of complex representations.

3 Representations of abelian groups; one-dimensional

representations

This material appears later in Serre (see e.g §3.1). But given that these are the easiest cases,
it makes sense to consider them right away.

3.1 1-dimensional representations

In this subsection we work over an arbitrary field F , and take G to be an arbitrary (not
necessarily finite) group.

First of all, every one-dimensional representation is irreducible, and so up to isomorphism
is given by a linear action of G on F , or equivalently a homomorphism ρ : G−→F×. Two
such homomorphisms yield isomorphic representations if and only if they are conjugate by
an element of F×, and as F× is abelian this means they are isomorphic as representations if
and only if they are equal. Furthermore ρ factors uniquely through the abelianization of G.
To sum up:

Proposition 3.1 Let G be any group, F any field. Then isomorphism classes of 1-dimensional
representations of G over F are in bijective correspondence with Hom (G,F×) ∼= Hom (Gab, F

×).

Example. Take G = Sn. Then for all n > 1 the commutator subgroup is An, so (Sn)ab = C2.
Hence for any field F of characteristic not 2, there are two 1-dimensional representations up
to isomorphism: the trivial one, and the sign representation given by σ · a = (sgn σ)a for
σ ∈ Sn, a ∈ F . If char F = 2, these two coincide (1 = −1!) and there is only the trivial
one-dimensional representation.

Now for any group G and abelian group H, Hom (G,H) is an abelian group under
pointwise multiplication: If f1, f2 ∈ Hom (G,H), then (f1 · f2)(g) = f1(g)f2(g). (Check
that this is an abelian group structure, and note it is essential to take H abelian.) Hence
Hom (G,F×) is an abelian group, and in view of the bijection of the proposition there
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must be some natural abelian group structure on the set Rep1F (G) of isomorphism classes of
1-dimensional representations. What is it?

Answer: tensor product. Suppose L1, L2 are 1-dimensional representations of G. Then
L1 ⊗F L2 is again a 1-dimensional representation.

Proposition 3.2 The tensor product gives Rep1F (G) an abelian group structure, with iden-
tity element the trivial representation and with inverses given by the dual representations L∗.
Moreover, the bijection of the preceding proposition is an isomorphism of groups.

Proof: The functoriality of tensor product shows the the operation L1⊗FL2 is well-defined on
isomorphism classes. It is associative and commutative with identity the trivial representa-
tion by the general such rules for tensor products. Finally the evaluation map L∗⊗F L−→F
given by ε(λ⊗ v) = λ(v) is an isomorphism of representations. To see this, note that it is a
nonzero F -linear map between 1-dimensional vector spaces, so is certainly an isomorphism
as vector spaces. So it remains to check that ε is G-equivariant; this follows because of the
inverse that appears in the definition of the dual: (g · λ)(v) = λ(g−1v). Thus

ε(g · (λ⊗ v)) = ε(g · λ⊗ gv) = λ(g−1gv) = λ(v) = g · (λ(v)).

Finally, note that the natural isomorphism F ⊗F F
∼=−→ F is just multiplication: a ⊗

b 7→ ab. It follows that the tensor product of L1, L2 corresponding to homomorphisms
f1, f2 : G−→F× is isomorphic to the representation L corresponding to f1f2. This proves
the last statement of the proposition.

Remark. Note that we now have an action of the group Rep1FG on the set RepnFG for all n,
given by tensor product. This helpful when constructing character tables; see below.

3.2 Representations of abelian groups over C

In this section we could take F to be any algebraically closed field of characteristic zero, but
to avoid distractions we’ll take F = C.

Proposition 3.3 Let G be any abelian group (not necessarily finite). Then every irreducible
representation of G over C is 1-dimensional.

Proof: Let ρ : G−→GLnC be a representation. Then Imρ is a commuting set of linear
transformations and hence by a previous exercise can be simultaneously triangularized. In
particular, the elements of Imρ have a common eigenvector, i.e. there is a line L invariant
under Imρ and hence invariant under the G-action. So if the representation is irreducible
then n = 1, QED.

Now return to our assumption G finite. The next lemma was stated without proof in
exercise 3 of the notes on algebras over a field.

Lemma 3.4 Let G be a finite abelian group. Then Hom (G,C×) is (non-naturally) isomor-
phic to G.
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Proof sketch (you fill in the details): By the classification theorem for finite abelian groups,
G is a direct product of cyclic groups (note this involves some arbitary choices). This reduces
the problem to the case of cyclic groups. That case can be done using the fact that the torsion
subgroup of C× is the union of the cyclic subgroups µn (n-th roots of unity), although again
some arbitrary choices must be made.

We then conclude:

Proposition 3.5 For any finite group G, the group of 1-dimensional representations Rep1CG
is naturally isomorphic to Hom (Gab,C×), and hence (non-naturally) isomorphic to Gab. In
particular, there are |Gab| 1-dimensional representations, up to isomorphism.

Example. Both the quaternion group Q8 and the dihedral group D8 have abelianization
C2 × C2 (check this!). Hence they have four one-dimensional representations. Taking Q8 to
illustrate, these representations are given as composite homomorphisms

Q8−→C2 × C2
λ−→ C2,

where λ ranges over the four elements of Hom (C2 × C2, C2).

4 Serre, Chapter 2

Some results can be simplified significantly by making use of the group algebra. For example,
Proposition 6 and Theorem 6 look more complicated than they really are. I’ll give simplified
proofs in class.

When classifying irreducible representations and constructing character tables, whenever
possible you should incorporate the action of Rep1FG on RepnFG. See for instance the S4

example in §5.8 of Serre. Our magic formulas reveal that S4 has two distinct 3-dimensional
irreducibles, one of which is the standard (n − 1)-dimensional representation W of Sn you
constructed in an exercise. But what’s the other one? Your first guess should be to tensor
W with the sign representation (denoted ε in Serre). It is possible that this doesn’t change
the isomorphism type of W ; for example, in the S3 analogue it does not. Here you can read
off immediately from the characters that W and Csgn ⊗C W have different characters and
hence are not isomorphic.

Proposition 7 I call the Second Orthogonality Formula. Here’s where it comes from: A
square matrix has orthonormal rows if and only if it has orthonormal columns. The first
orthogonality formula (Theorem 3) can be viewed as expressing orthogonality of the rows of
a certain matrix. Orthogonality of the columns then yields Proposition 7!

To be continued in Part II.

5 Exercises

1. Suppose V,W are finite dimensional vector spaces over a field F .
a) Show that there is a natural isomorphism of vector spaces
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φ : V ∗ ⊗W
∼=−→ HomF (V,W ).

Your isomorphism should be “natural” enough to show simultaneously: If V,W are FG-
modules, then it is an isomorphism of FG-modules, as well as to prove part (b) below.

Note. The dimensions of the source and target are the same, so of course some isomor-
phism as vector spaces exists. But there is only one correct, natural definition of φ.

b) Let ε : V ∗ ⊗ V−→F denote the evaluation map, given by ε(λ⊗ v) = λ(v). Show that
the isomorphism φ constructed in (a) is such that the following diagram commutes:

V ∗ ⊗ V F

HomF (V, V )

-ε

?

φ

�
�
�
���

tr

This gives an elegant, coordinate-free interpretation of the trace. (If your φ doesn’t have
this property, go back to the drawing board!)

2. Tensor products of algebras. Suppose R, S are F -algebras. Show that the tensor
product R ⊗F S has an F -algebra structure such that (r1 ⊗ s1) · (r2 ⊗ s2) = (r1r2 ⊗ s1s2).
The structure map (required for F -algebras) F−→R ⊗F S is given by a 7→ a ⊗ 1 = 1 ⊗ a.
Now prove the following isomorphisms of F -algebras:

a) F [x1, ..., xm]⊗F F [y1, ..., yn] ∼= F [x1, ...xm, y1, ..., yn].
b) For arbitrary groups G,H (not necessarily finite), FG⊗F FH ∼= F (G×H).
c) For any F -algebra A, MnF ⊗F A ∼= MnA. Conclude from this that MmF ⊗F MnF ∼=

MmnF .
d) Optional problem: Show that for commutative F -algebras R, S, the tensor product

R⊗F S is the coproduct in the category of commutative F -algebras.

3. Permutation representations. Consider the functor Φ : G-set → F-mod that takes
a G-set X to FX with the evident G-action: G acts on the given basis X of FX using the
given action on X.

a) Given two G-sets X, Y , we can form their disjoint union X
∐
Y and their Cartesian

product X × Y . Show that Φ takes disjoint unions to direct sums, and Cartesian products
to tensor products. More precisely, show that there is a natural isomorphism

F (X × Y ) ∼= FX ⊗F FY.
and similarly for disjoint unions/direct sums. (As usual, you’re not required to prove nat-
urality in the technical categorical sense of the term; just be sure your isomorphisms don’t
depend on arbitrary choices.)

b) What is the dimension of (FX)G? Look for a simple answer involving only the G-set
X.
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c) Take F = C, G = S4 and X = P2[4] (the set of 2-element subsets of [4]), with S4 acting
in the evident way. Compute the character of CX and, using characters only, determine
the composition factors (=irreducible summands in our completely reducible setting) with
multiplicities. (Use the character table for S4 given in Serre §5.8.)

4. The standard 2-dimensional irreducible representation of D8 over R can be regarded
as a representation over C, and as such it is still irreducible. Call this complex representation
V .

a) Write down the character table for D8. (This is discussed in Chapter 5 of Serre. Note
his Dn is my D2n, as I am indexing these groups by their order.)

b) Use Theorem 4 of Serre to determine the decomposition of V ⊗C V into irreducibles.
(In other words, use characters only.)

c) Using the standard basis e1, e2 for V , exhibit explicitly a decomposition as in (b).

5. Let p be an odd prime, and let G = Aff1Fp. Recall that this is the semidirect product
T o F×p , where T is the group of translations of Fp. Thus T ∼= Z/p (beware the mixing of
additive and multiplicative notation), and under this isomorphism the action of F×p is just
the usual action by multiplication on Z/p = Fp. All questions refer to representations over
C.

a) How many irreducible representations does G have (up to isomorphism, of course).
b) What are the dimensions of the irreducibles?
c) Give explicit constructions of the irreducibles.
d) For p = 5, give the complete character table. (As a check on your work, make sure

the orthogonality relations are satisfied.)
Note. If it helps, you might want to note that the case p = 3 is just our old friend S3.
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