
Modules I: Basic definitions and constructions

October 23, 2014

1 Definition and examples

Let R be a ring. A left R-module is an abelian group M equipped with a map θ : R×M−→M
satisfying the three conditions listed below; we usually omit θ from the notation and write
simply rx or r · x for θ(r, x):

1. distributive law: (r1 + r2)x = r1x+ r2x and r(x1 + x2) = rx1 + rx2.
2. associative law: r(sx) = (rs)x.
3. identity: 1 · x = x for all x ∈M .

Right R-modules are defined similarly; we put the “r” on the right so that the associative
law is (xr)s = x(rs). As with the group actions, the distinction is just that in a left module
rs acts by s first, then r; in a right module r acts first and then s.

1.1 On left versus right modules, and the opposite ring

In constrast to group actions, however, one cannot always convert left module structures to
right structures and vice versa. To clarify the situation, it is convenient to introduce the
opposite ring Rop, which has the same underlying abelian group R but with multiplication
a · b = ba. Then a left module over Rop is the same thing as a right module over R,
and vice versa. Consequently, if Rop happens to be isomorphic to R—preferably in some
canonical way—then we can convert back and forth between left and right actions in much
the same way as we did for group actions. Explicitly, suppose we are given an isomorphism

α : R
∼=−→ Rop, and M is a right R-module. Then r ? x = xα(r) (r ∈ R, x ∈ M) makes

M into a left R-module. Note also that such an isomorphism α is the same thing as an

anti-automorphism of R, i.e. an isomorphism of abelian groups α : R
∼=−→ R such that

α(ab) = α(b)α(a) for all a, b ∈ R.
Many familiar rings admit such anti-automorphisms:

• If K is a commutative ring and R = MnK, then A 7→ AT (the transpose) is an
anti-automorphism.

• If K is a commutative ring, G is a group and R = KG, then g 7→ g−1 (extended
K-linearly) is an anti-automorphism.
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• If x = a + bi + cj + dk is a quaternion, its quaternionic conjugate is defined by x =
a − bi − cj − dk. Quaternionic conjugation is an anti-automorphism of H, as can be
checked by direct computation.

• If R is a commutative ring, then the identity is both an automorphism and an anti-
automorphism.

Thus in all of these examples, one has the option of converting between left and right
modules. As in the case of G-sets, however, it is still essential to pay close attention to
which side the ring is acting on (well, except in the commutative ring example, where left
and right modules are the same thing). For an example of a ring which is not isomorphic to
its opposite, i.e. which does not admit any anti-automorphism, see the exercises.

1.2 An alternate view of modules

This section is exactly analogous to the one entitled “An alternate view of group actions”
in the G-set notes. Recall that in that section we showed how to interpret a left group
action G × S−→S can be interpreted as a group homomorphism G−→PermS. Similarly,
a left R-module structure θ : R × M−→M is the same thing as a ring homomorphism
φ : R−→EndZM : Given θ, for r ∈ R we let φ(r)(x) = rx. Given φ, we define rx by the same
equation. One can easily check that this works. If M is a right module, one obtains similarly
a homomorphism R−→(EndZM)op (check this!—you’ll find that the order of composition
gets reversed, hence the “op”).

If R is an F -algebra, then M is an F -vector space. In this case we get a homomorphism
of F -algebras φ : R−→EndFM . Thus for each r ∈ R the endomorphism φ(r) constructed
in the previous paragraph is not only an abelian group homomorphism but an F -linear
map. For example, in the case of a group representation, i.e. an FG-module V , we get an
F -algebra homomorphism FG−→EndFV . This is the same homomorphism defined in the
“Algebras over a field” notes.

1.3 The category of R-modules, and first examples

If M,N are left R-modules, an R-module homomorphism φ : M−→N is a homomorphism
of abelian groups such that φ(rx) = rφ(x) for all r ∈ R, x ∈ M . Since identity maps are
R-module homomorphisms and the composition of two R-module homomorphisms is an R-
module homomorphism, left R-modules form a category that we denote R-mod. Similarly,
there is a category Mod-R of right R-modules. Some examples:

• If F is a field, an F -module is the same thing as a vector space over F . Module
homomorphisms are the same thing as F -linear maps; thus F-mod=F-Vect.

• A Z-module is the same thing as an abelian group. Here n · x = x + x + ... + x (n
terms). Module homomorphisms are the same thing as group homomorphisms; thus
Z-Mod=Ab.

• If I is a left ideal in R, then I is a left R-module. Similarly for right ideals. In
particular, R itself is both a left and a right R-module under its ring multiplication.
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• If F is a field, the usual multiplication of column vectors by matrices (A,X) 7→ AX
(A ∈MnF , X ∈ F n) makes F n a left module over MnF . Similarly right multiplication
(X,A) 7→ XA, where X is now a row vector, defines a right module structure.

• For any ring R, the zero module is the zero group {0} with its unique R-module
structure.

The next two examples deserve sections of their own.

1.4 Modules over a polynomial ring

Consider the polynomial ring F [x], and let V be an F [x]-module. Then V is an F -vector
space and the module structure is equivalent to giving an F -algebra homomorphism ρ :
F [x]−→EndFV . By the universal property of polynomial rings, this in turn is equivalent to
just specifying one element A ∈ EndFV , namely A = ρ(x). So if we start with A, we get an
F [x]-module we’ll denote VA.

Now assume that dimFV = n <∞. Then linear algebra, one of the most widely applied
subjects in mathematics (applied both within pure mathematics and in the sciences, business,
etc.) can be viewed as the study of such transformations A (along with linear transformations
between two different vector spaces). Now we see that large parts of linear algebra become
a chapter in module theory. For example, one of the main jobs of the linear algebraist is
to find a basis for V in which the matrix of A takes a particularly simple form: triangular,
diagonal, etc. Let’s see how this translates into the F [x]-module world.

In basic linear algebra the question is usually phrased in terms of “similar” matrices.
Here we assume a fixed basis for V has been chosen, so we might as well take V = F n with
the standard basis. Then A,B are said to be similar if there is an invertible matrix P with
B = PAP−1. This is equivalent to saying that we have a new basis, namely {vi := Pei(1 ≤
i ≤ n)}, such that the matrix of linear transformation A in the new basis is B. For example,
if we were trying to show A is diagonalizable (i.e. there is a basis of eigenvectors) we would
need a P as above with B a diagonal matrix. Now, rather than just finding a good basis for
one linear transformation, we might want to classify all matrices up to similarity; or in our
G-set terminology, determine the orbits of the conjugation action of GLnF on MnF .

Proposition 1.1 A and B are similar if and only if VA and VB are isomorphic as F [x]-
modules.

Proof: We denote the VA module structure using a dot ·, and the VB structure using a star
?. Suppose B = PAP−1. Here P is an F -linear isomorphism V−→V . On the other hand

P (x · v) = PAv = BPv = x ? P (v).

Hence P is an F [x]-module homomorphism and therefore an F [x]-module isomorphism. For
the converse just run this argument in reverse: If we are given an isomorphism of modules

P : VA
∼=−→ VB, then P is in particular an F -linear isomorphism. Using the same equations

as above we find that PA = BP as desired.

3



Thus our linear algebra problem has been converted to a problem about modules over
the principal ideal domain F [x]. As we will see in subsequent installments of the notes, this
problem has a complete, elegant solution.

1.5 Representations of groups and modules over the group algebra

Representations of groups were invented and studied before modules, and before the abstract
concept of a ring was fully developed, so suppose for a moment that the concepts of “module”
and “group algebra” have not yet been invented. Let V be a representation of G over F of
dimension n, where for illustrative purposes we will takeG finite and F = R. Choosing a basis
for V for concreteness, we think of our representation as a homomorphism ρ : G−→GLnF .
Since GLnF ⊂ MnF , we are free to take linear combinations of the elements ρ(g) inside
MnF . And this is something one definitely wants to do. For example, one might want to
know the invariants V G = {v ∈ V : gv = v ∀g ∈ G}. Since R has characteristic zero, we can
define an averaging operator

f := fρ =
1

|G|
∑
g∈G

ρ(g) ∈MnF.

Then by a familiar calculation one checks that f is idempotent and in fact is a projection
onto V G, so in particular V G = Imf . The unsatisfying thing is that f depends on the
particular ρ, whereas the averaging operator longs for a home of its own, depending only on
the group and not on the representation.

This leads us to define the group algebra FG—RG in this case—which provides a happy
home indeed for our universal averaging operator e0, defined in the exercises to “Algebras
over a field”. Upon further reflection (we are compressing many years of mathematical
history into a moment) we realize that not only does G act on V but in some sense the
entire group algebra FG “acts” on V . Pondering what it might mean for an algebra (or
even just a ring) such as FG to “act” on V , we arrive at the definition of a module structure
FG× V−→V .

Returning to the present where we have in fact defined group algebras and modules, the
upshot of the discussion is that a representation of G over F is the same thing as an FG-
module. Explicitly, if we have an FG-module V with scalar multiplication FG×V−→V , by
simply restricting to G×V ⊂ FG×V we get a linear action of G on V , i.e. a representation.
Conversely if we start with a linear action G × V−→V , we extend it by the distributive
law to FG× V−→V and we have our FG-module. Alternatively, one can think in terms of
the correspondence Homgrp(G,GL(V )) ↔ HomF−alg(FG,EndFV ) described earlier. Then
if ρ : G−→GL(V ) and φ : FG−→EndFV is the corresponding algebra homomorphism,
φ(e0) = fρ. Thus we indeed have one averaging operator e0 that efficiently determines all of
the old-fashioned fρ’s at once.

How can we actually construct representations of a group? One easy way is via permu-
tation representations. If X is any set, we let FX denote the vector space with basis X.
Thus an element of FX is a formal linear combination

∑n
i=1 aixi with ai ∈ F , xi ∈ X. Note

this agrees with our notation FG. If X is a left G-set, then by extending the action map
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G×X−→X linearly over sums, we get a linear G-action on FX: g ·∑ aixi =
∑
aigxi, and

hence an FG-module. Such representations are called permutation representations.
Some examples:

• Take X = G with G acting by left translation. This is called the regular representation.
In terms of modules, it is the left regular module of FG.

• More generally, take X = G/H for some subgroup H, with the left translation action.

• Let G = Sn and X = [n], with the standard action. Then FX = F n with Sn acting
by permuting the standard basis vectors; in other words, via the standard inclusion
Sn ⊂ GLnF . This is also a special case of the previous item, with H = Sn−1.

This construction defines a functor G-Set −→ FG-Mod. As usual this is a lie if taken
literally, since I haven’t defined the map of modules induced by a map of G-sets. Also as
usual, the required definition is obvious, and checking the functor axioms is trivial.

2 Some basic constructions

Submodules. Submodules are defined in the obvious way: N ⊂ M is a submodule if it is a
subgroup and it is closed under scalar multiplication: for all r ∈ R and x ∈ N , rx ∈ N .
For vector spaces this is the same thing as a vector subspace in the linear algebra sense, and
for abelian groups a submodule is just a subgroup. A left ideal I ⊂ R is by definition a
submodule of R (where the latter is regarded as a left module over itself).

Example. Consider the ring of matrices MnF , F a field, regarded as a left module over itself.
For 1 ≤ i ≤ n, let Ci denote the matrices with j-th column zero for j 6= i. Then Ci is a left
ideal and hence an MnF -submodule.

Quotient modules. Suppose N ⊂ M is a submodule. In particular N is a subgroup of the
abelian group M , so we can form the quotient group M/N . We then define a multiplication
by r · (x + N) = rx + N . This is a well-defined R-module structure, and the quotient map
π : M−→M/N is a surjective R-module homomorphism. For example, given any left ideal
I ⊂ R we can form the quotient module R/I. For Z-modules, the quotient module is just
the quotient group.

The quotient for vector spaces usually isn’t discussed in undergraduate linear algebra
courses, but is easy to work with. For example, suppose V is an F -vector space, of finite
dimension n for simplicity, and W a linear subspace (=F -submodule) of dimension k. Choose
a basis v1, ..., vn for V such that v1, ..., vk is a basis for W . Then the images of vk+1, ..., vn in
V/W form a basis for V/W .

Products and direct sums. Let Mα be a collection of R-modules, α ∈ J for some index
set J . Then the product set

∏
αMα has a natural R-module structure, with addition and

scalar multiplication given component-wise; thus each projection πβ :
∏
Mα−→Mβ is an

R-module homomorphism. In fact this is the categorical product: If N is an R-module
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and fα : N−→Mα a collection of R-module homomorphisms, there is a unique R-module
homomorphism f : N−→∏

αMα such that πα ◦ f = fα.
The direct sum or coproduct of the Mα’s is the submodule ⊕αMα of the product consisting

of elements having all but finitely many components equal to zero. This is in fact the
categorical coproduct: If N is an R-module and fα : Mα−→N a collection of R-module
homomorphisms, there is a unique R-module homomorphism f : ⊕αMα−→N such that
f ◦ iβ = fβ for all β ∈ J , where iβ : Mβ−→ ⊕α Mα is the evident inclusion. Indeed, we
just take f({xα}) =

∑
fα(xα), which makes sense since only finitely many of the xα’s are

nonzero.
If the index set is finite then direct sum and product coincide. But in the infinite case

they exhibit markedly different behaviour. For example, let ⊕∞i=1M ,
∏∞
i=1M denote the

direct sum and direct product of a countably infinite number of copies of the same module
M . Then if M is nonzero, the product will always have strictly greater cardinality than the
direct sum; e.g. if R = M = Z then the direct sum is countable but the product is not. Or
consider the case of abelian groups. Any direct sum of abelian torsion groups (i.e. groups in
which every element has finite order) is again a torsion group. But this is false for infinite
products; consider

∏∞
i=1 Z/p

i. The element (1, 1, 1, .....) has infinite order.

Generators. Let X be a subset of a module M . The submodule generated by X is the smallest
submodule of M containing X, denoted 〈X〉 or RX. (Caution: The latter notation is also
used for free modules; see below.) Equivalently 〈S〉 is the set of all elements of the form∑
rixi, xi ∈ S and ri ∈ R.
For R = Z this is just the usual notion of generators for abelian groups. For vector

spaces it is the same thing as the “span” of the set in linear algebra. For left ideals it is the
same thing as “left ideal generated by the set X”, a concept that predates the invention of
modules.

Cyclic modules and annihilator ideals. If 〈S〉 = M we say that S generates M . An R-
module is cyclic if it is generated by a single element. If x ∈M is a generator, then the map
η : R−→M given by η(r) = rx is an R-module map whose kernel is a left ideal denoted annx
and called the annihilator ideal of x. Thus annx = {r ∈ R : rx = 0}, and η factors through

an isomorphism R/(annx)
∼=−→ M . If M is any R-module, and x ∈ M , by applying this

construction to the submodule generated by x we get R/(annx) ∼= Rx ⊂ M . For example,
if R = Z and x ∈ M is an element of order n, then annx = (n). (In fact, this is really the
definition of “order n element”.) If R = MnF , M = F n and x = e1, then annx is the left
ideal consisting of all matrices whose first column is zero.

Exact sequences and extensions. By a “sequence” of R-modules we mean any sequence of
R-module homomorphisms

...−→Mk−1
fk−1−→Mk

fk−→Mk+1−→...,

which is allowed to be finite as well as infinite in one or both directions. Such a sequence is
exact if for all k we have Imfk−1 = Ker fk. Note the following special cases:

• 0−→M−→N is exact if and only if M−→N is injective.
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• M−→N−→0 is exact if and only if M−→N is surjective.

• 0−→M−→N−→0 is exact if and only if M−→N is an isomorphism.

• 0−→L i−→M
π−→ N−→0 if and only if i is injective, π is surjective, and Im i = Ker π.

The last case is called a short exact sequence or an extension of modules. It is exactly
analogous to a group extension; indeed L−→M−→N is in particular an extension of abelian
groups (and indeed if R = Z, it is the same thing as such an extension). As with group
extensions, one can, if desired, regard i as the inclusion of a submodule; then N is canonically
isomorphic to M/L. The one notational difference here is that with modules, we prefer to
stick those zero modules at the end and call it a short exact sequence.

A short exact sequence as above is split if there exists a splitting or section s : N−→M ,
i.e. a module homomorphism such that π ◦ s = IdN . In contrast to the situation for groups,
a split extension is automatically a direct product (=direct sum).

Proposition 2.1 Suppose 0−→L i−→ M
π−→ N−→0 is a short exact sequence of R-

modules. If the sequence splits, then M ∼= L ⊕ N (in a particular way to be specified in
the proof).

Proof: Let s : N−→M be a splitting. By the universal property of direct sums, there is
a unique homomorphism φ : L ⊕ N−→M such that φ|L = i and φ|N = s; i.e. φ(x, y) =
i(x) + s(y). If φ(x, y) = 0, then applying π to this equation we find that y = 0. Since i is
injective, we then have x = 0. So φ is injective. Now suppose z ∈M , and let w = z− sπ(z).
Then π(w) = 0, so by exactness w = i(x) for a unique x ∈ L. Hence z = φ(x, π(z)) and φ is
surjective.

Here’s another property of splittings for modules that has no analogue for non-abelian
group extensions.

Proposition 2.2 Let 0−→L i−→ M
π−→ N−→0 be a short exact sequence of R-modules.

Then the sequence splits if and only if there is a homomorphism r : M−→L such that
ri = IdL.

Proof: Suppose s is a splitting, and let q = IdM−sπ : M−→M . Then πq = π−πsπ = π−π =
0, so q = ir for a unique r : M−→L by exactness at M . To show that ri = IdL, since i is
injective it suffices to show iri = i(idL), or iri = i. But iri = qi = (IdM − sπ)i = IdM i = i,
as desired.

Conversely suppose given r : M−→L with ri = IdL. Let t = IdM−ir. Then ti = i−iri =
i− i = 0. Hence t = sπ for a unique homomorphism s : N−→M . To check that πs = IdN ,
since π is surjective it suffices to show πsπ = π. But πsπ = πt = π(IdM − ir) = πIdM = π.

Examples. 1. Take R = Z. There are many non-split short exact sequences of abelian
groups, as we’ve already seen. 0−→C2−→C4−→C2−→0 is the smallest, but you can cook
up a million others.

2. If R = F is a field, every short exact sequence splits. This can be proved directly, but
the fastest way is to apply Exercise 3.
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We will see many more examples soon. In particular we will determine for exactly which
fields F and finite groups G it is the case that every short exact sequence of modules over
FG splits. It is always a good thing when this happens, because then the isomorphism type
of the middle term of the short exact sequence is determined by the other two modules; it
is just their direct sum.

3 Free modules

Let X be a set. Then the free R-module on X is the direct sum over the index set X of
copies of R. We denote it RX := ⊕x∈XRx, where Rx is the copy of R indexed by x. For
example, if X = {1, 2, ..., n} then RX = ⊕ni=1Ri. We often identify x ∈ X with 1 ∈ Rx, so
there is an inclusion i : X−→RX. There is the following universal property:

Proposition 3.1 Let M be any R-module, and f : X−→M any map of sets. Then there is
a unique R-module homomorphism φ : RX−→M such that φ ◦ i = f .

Proof: As seen earlier, the left regular module R (that is, R as a left module over itself) has
the universal property: If y ∈ M , there is a unique R-module map ψ : R−→M such that
ψ(1) = y, namely ψ(r) = ry. Combining this with the universal property of direct sums
completes the proof.

As a consequence we see that X 7→ RX defines a functor Set −→ R-mod: Given a map
of sets g : X−→Y , let Rg : RX−→RY be the unique R-module homomorphism such that
x 7→ g(x). We then have our usual interpretations:

Plain English version: If you want to define an R-module homomorphism RX−→M , it’s
enough (indeed equivalent) to “say where X goes”, i.e. define a set map X−→M .

Adjoint functor version: The free module functor Set −→ R-mod given by X 7→ RX
is left adjoint to the forgetful functor R-mod −→ Set. In other words, there is a natural
bijection

HomR−mod(RX,M) ∼= Homset(X,M).

We say that M is a free R-module if there exists a set X such that M is isomorphic to RX.
The image of X in M under such an isomorphism is called a basis for M . The terminology
comes from linear algebra, since a basis of M generates (“spans”) it by definition, and is
linearly independent, i.e. if x1, ..., xn ∈ X are distinct and

∑
rixi = 0, then ri = 0 for

all i. Note that if M is an R-module, and X ⊂ M is a linearly independent generating
(=spanning) set, then RX−→M is an isomorphism.

The obvious question that arises is: If M is free, do any two bases for it have the same
cardinality? It turns out that the answer is “no” in general. But for most of the rings we
consider, the cardinality of a basis is well-defined. To prove this we first consider the case
R = D is a division ring, where it turns out that every D-module is free.
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Theorem 3.2 Let D be a division ring. Then
Every D-module M is free. In fact
a) every linearly independent subset of M is contained in a basis.
b) every spanning set (=generating set) contains a basis.

Proof: First note that (a) does imply the theorem, since the empty set is a linearly indepen-
dent set. Thus M has an D-basis X and is isomorphic to the free module DX.

a) Let L be a linearly independent set, and consider the partially ordered set S of linearly
independent subsets of M that contain L. It is nonempty, since it contains L. Every totally
ordered subset X ⊂ S has an upper bound B, namely B = ∪A∈XA (note that to check linear
independence one need only consider one finite subset at a time, and any finite subset of B
lies in some A). So by Zorn’s lemma, S has a maximal element S. I claim that S spans M .
For by maximality, for any v ∈ M we have that S ∪ {v} is a linearly dependent set, and
since S is linearly independent there must be a linear relation of the form

c0v +
n∑
i=1

ciwi = 0

with wi ∈ S and c0 6= 0. Since D is a division ring, c0 is a unit and we can solve the displayed
equation for v. Thus v is in the span of S, completing the proof.

b) Let X be a spanning set. A similar Zorn’s lemma argument shows that X contains a
maximal linearly independent subset S. It follows easily that S is also a spanning set, hence
a basis; details are left to the reader.

Theorem 3.3 Let M be a module over a division ring D. Then any two bases of M have
the same cardinality.

A complete proof of the theorem can be found e.g. in [Hungerford]. Our immediate
interest is in the case that M has a finite basis, which can be proved directly by fiddling
around with linear combinations of elements. In the interests of efficiency, I’ll omit this
argument because I’ll give a simpler, more conceptual proof later (after discussing Jordan-
Holder filtrations).

For the next theorem we need the following observation: If M is an R-module and I is
a 2-sided ideal of R, let IM denote the abelian subgroup of M generated by all elements
of the form rx with r ∈ I and x ∈ M . Then IM is an R-submodule and we can form the
quotient module M/IM . Moreover this R-module structure factors through an R/I-module
structure, namely (r + I) · (x + IM) = rx + IM . For example when R = Z and I = (n),
this just says the abelian group M/nM is killed by n and so is a Z/n-module. In general,
we need a 2-sided ideal so that R/I is a ring.

By direct check, this construction commutes with direct sums: (⊕Mα)/I(⊕Mα) ∼= ⊕(Mα/IMα).

Theorem 3.4 Let R be a ring, and suppose R has a 2-sided ideal I such that D := R/I is a
division ring. Then if M is a free R-module, any two bases of M have the same cardinality.
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Proof: Let X be a basis for M , so that M = ⊕x∈XRx. Then M/IM = ⊕x∈XDx. Hence
the cardinality of X is the same as the cardinality of a D-basis for M/IM , and hence is
independent of the choice of X by the previous theorem.

Here is the case we will most frequently use:

Corollary 3.5 Let R be a commutative ring and let M be a free R-module. Then any two
bases for M have the same cardinality.

Proof: Recall that any ring has at least one maximal left ideal I. In a commutative ring I
is automatically a 2-sided ideal, and R/I is a field. Now apply the theorem.

When it is well-defined, the cardinality of a basis is called the rank of the free module.

Remark. Curiously, the cardinality of a basis is always well-defined when there is an infinite
basis (see [Hungerford]). On the other hand when R = EndFV for F a field, V a vector
space of countably infinite dimension, one can show R ∼= R⊕R as left R-modules (exercise,
if you’re curious; it boils down to the usual “Cantor’s hotel” trick of splitting the natural
numbers into evens and odds). So there is no well-defined rank in this case.

4 Simple modules

A nonzero R-module M is simple or irreducible (the terms are synonymous) if M has no
proper nonzero submodules. A simple module is necessarily cyclic; indeed more is true:

Proposition 4.1 The following are equivalent:
a) M is simple;
b) every nonzero element of M generates M ;
c) M ∼= R/I where I is a maximal left ideal.

Proof: Exercise.

Examples. 1. If R is a field, a module (=vector space) over R is simple if and only if it has
dimension 1. In particular, up to isomorphism there is only one simple module. The same
assertion holds for any division ring.

2. If R is an F -algebra, any module of F -dimension 1 is simple. For example, any
1-dimensional representation of G over F is a simple FG-module.

3. If R is a principal ideal domain that is not a field, the simple modules are those of
the form R/(p) with p irreducible. This is by part (c) of the preceding proposition, since
in a principal ideal domain the maximal ideals are precisely those of the form (p), with p
irreducible. For example if f(x) ∈ F [x] is an irreducible polynomial, F [x]/(f(x)) is a simple
F [x]-module.

4. If F is a field, F n is simple as a module over MnF . (Exercise.)

The next result is known as Schur’s lemma. It is completely trivial, yet amazingly
powerful.
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Proposition 4.2 If M,N are simple modules and φ : M−→N is a homomorphism, then φ
is either an isomorphism or zero. Hence:

a) If M,N are nonisomorphic, HomR(M,N) = 0.
b) If M is simple, EndR(M,M) is a division ring.

Proof: The kernel of φ is either all of M , or zero. In the former case φ = 0 and in the latter
φ is injective, in which case Imφ must be all of N and φ is an isomorphism. This proves the
first statement, and (a) follows immediately. Part (b) also follows immediately, since every
nonzero homomorphism M−→M is invertible.

Remark: Later we will see some interesting examples where the division ring in (b) is the ring
of quaternions H. For the time being, however, our examples will have EndRM commutative,
i.e. a field. For example, if R is commutative and M = R/I for a maximal ideal I, then R/I
is itself a field, and EndR(R/I) ∼= R/I.

Simple modules serve as building blocks for more general modules. A Jordan-Holder
filtration of a module is a finite filtration

0 = M0 ⊂M1 ⊂ ... ⊂Mn = M

such that each quotient Mi/Mi−1 is a simple module, 1 ≤ i ≤ n. These quotients are called
composition factors. Note that the zero module is not a simple module in our definition, but
by convention we regard the zero module as having the “empty” Jordan-Holder filtration
0 = M0 = M .

Proposition 4.3 The class of modules admitting a Jordan-Holder filtration is closed under
taking submodules, quotient modules, finite direct sums, and extensions.

Proof: Exercise. “Closed under extensions” means that if the two end terms of a short exact
sequence admit Jordan-Holder filtrations, so does the middle term.

There are many interesting classes of modules that admit Jordan-Holder filtrations:

Examples. 1. Suppose F is a field and R is an F -algebra. Then every finite dimensional
R-module M admits a Jordan-Holder filtration: Any nonzero submodule M1 of minimal
dimension is simple, and by induction on dimension we can assume M/M1 has a Jordan-
Holder filtration N2 ⊂ ... ⊂ Nn = M/M1. Let Mi be the inverse image of Ni in M ; then
M1 ⊂M2... ⊂Mn = M is the desired filtration.

2. Any finite R-module M has a Jordan-Holder filtration. The proof is exactly as in the
previous example, using cardinality in place of dimension. For example, any finite abelian
group has a finite filtration with quotients of the form Z/p, p ranging over some finite set of
primes.

3. Let R be a principal ideal domain. Then any finitely-generated torsion module M
admits a Jordan-Holder filtration. Here we are not assuming the classification theorem for
such modules, which we have not yet proved. So we proceed as follows: First, the assertion
is true for cyclic modules R/(a) (a 6= 0). This is easily seen by induction on the number
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of factors in a prime factorization of a. So by Proposition 4.3, the assertion is true for any
quotient of a direct sum of cyclic modules. But any finitely-generated torsion module is such
a quotient: for if x1, ..., xn is a generating set, then the evident homomorphism ⊕Rxi−→M
is surjective.

There are also many interesting classes of modules which do not admit a Jordan-Holder
filtration. In fact, if M has a Jordan-Holder filtration then M is finitely-generated (an easy
exercise). So non-finitely-generated modules have no such filtration. More interesting is the
following:

Example: Suppose R is a principal ideal domain that is not a field. Then R is not simple,
and any nonzero submodule of R is isomorphic to R (as a module). So R has no simple
submodules whatsoever, and hence certainly has no Jordan-Holder filtration .

If M admits a Jordan-Holder filtration, then the composition factors which occur are
unique up to ordering, in the following sense:

Proposition 4.4 Suppose M has two Jordan-Holder filtrations, M1 ⊂ ...Mm and N1 ⊂ ... ⊂
Nn. Then m = n, and up to re-ordering and isomorphism, the two sequences of composition
factors M1,M2/M1, ...,M/Mm−1, N1, N2/N1, ...,M/Nn−1 are identical.

Proof: By induction on m. If m = 1, then M = M1 itself is a simple module, forcing n = 1
and N1 = M . At the inductive step, let k be minimal such that M1 ⊂ Nk. Let f denote the
composite M1−→Nk−→Nk/Nk−1. Then f is nonzero by the minimality of k, and therefore
is an isomorphism by Schur’s lemma. Thus M1

∼= Nk/Nk−1 and Nk = Nk−1 ⊕M1. We then
define a new Jordan-Holder filtration N ′i of M by

N ′i =

{
M1 ⊕Ni−1 if i ≤ k
Ni if i > k

Note that up to isomorphism, the N ′ filtration has the same composition factors as the N
filtration, up to a cyclic permutation of the factors in the first k positions. We have therefore
reduced to the case where the M and N filtrations have the same initial term M1 = N1.
So we have two Jordan-Holder filtrations on the quotient M/M1, to which the inductive
hypothesis can be applied, completing the proof.

As a corollary we see that the length n of a Jordan-Holder filtration is independent of the
choice of filtration. Hence we may define the length of a Jordan-Holder module by `(M) = n.
This is a useful concept in itself, as it provides a substitute for dimension (in the case of
finite dimensional modules over F -algebras) that can be used in inductive arguments. Note
also:

Proposition 4.5 Let 0−→L−→M−→N−→0 be a short exact sequence of R-modules. Then
M has a Jordan-Holder filtration if and only if L,N have Jordan-Holder filtrations, in which
case

`(M) = `(L) + `(N).
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The proof is an easy exercise, following a pattern we’ve already used for filtrations of
groups. As a consequence we obtain a variant of dimension-counting:

Proposition 4.6 Suppose φ : M−→N is a homomorphism of R-modules of finite length,
and `(M) = `(N). Then φ is an isomorphism⇔ φ is injective⇔ if and only if φ is surjective.

Proof: Suppose φ is surjective. Then since `(M) = `(Ker φ) + `(N), we have `(Kerφ) = 0
and hence Ker φ = 0. The case φ injective is similar.

Finally, here is the promised proof that the dimension of a finite-dimensional vector space
over a division ring is well-defined. To be precise, what we will prove is that if V is a vector
space (=module) over a division ring D, and V has a finite basis v1, ..., vn, then every basis
of V has cardinality n. Note first that every cyclic D-module M is simple: If x generates M ,
then for all r ∈ D, rx also generates M since x = r−1rx. Filtering V by the ordered basis
vi, i.e. 0 ⊂ 〈v1〉 ⊂ 〈v1, v2〉 ⊂ ..., the quotients of the filtration are cyclic (and nonzero) and
hence simple. So n = `(V ) and hence all finite bases have the same cardinality. In fact what
this argument shows is that no linearly independent subset of V has more than n elements
(otherwise `(V ) > n), thereby ruling out infinite bases as well.

For the complete result, see the next section.

5 Appendix: Invariance of infinite rank

The goal of this section is to prove:

Theorem 5.1 Let R be any ring, and let M be a free R-module admitting an infinite basis.
Then any two bases of M have the same cardinality.

Note this completely settles the division ring case, since we just proved the analogous
statement for modules admitting a finite basis.

For the proof of the theorem, we will need (unsurprisingly) the Schroder-Bernstein theo-
rem, which says that if X and Y are sets such that |X| ≤ |Y | and |Y | ≤ |X|, then |X| = |Y |.
The proof of the Schroder-Bernstein theorem is more interesting than you might think, and
can be found in one of our standard undergraduate texts (for Mathematical Reasoning, Math
300): Mathematical Thinking, by D’Angelo and West. Now, on to the proof of the theorem.

Let X, Y be bases for M , with Y infinite. For every x ∈ X there is a finite subset Yx ⊂ Y
such that x ∈ Span(Yx). Set

Y ′ = ∪x∈XYx.

Then X ⊂ Span(Y ′) and hence Span(Y ′) = M . But Y ′ ⊂ Y and Y is a basis, so no proper
subset of Y can span M . Hence Y ′ = Y . From this we conclude two things: First, X is
infinite (otherwise Y ′ would be finite). Second, |Y | ≤ |X|. This is because |Y | = |Y ′| and
whenever one has a collection of finite sets Aα indexed by an infinite set J (J = X, Aα = Yx
here), | ∪α∈J Aα| ≤ |J |. Since we now know that X is infinite, the same argument shows
|X| ≤ |Y | and we are done by Schroder-Bernstein.
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6 Exercises

1. An example of a ring not isomorphic to its opposite. Consider the ring b2R of upper
triangular 2× 2 matrices over R: (

a b
0 c

)
Let R ⊂ b2R denote the set of matrices with a ∈ Q. Check that R is a subring (you don’t
need to write it up). Then use the following method to show R is not isomorphic to Rop:

1. Show that every right ideal of R is finitely-generated (as right R-module), whereas
there is a left ideal that is not finitely-generated.

2. Explain briefly why (1) implies the result.

Remark. Our only interest in this ring is as a counterexample. We will recycle it later as
a counterexample to various overly optimistic assertions. On the other hand, the exercise is
also intended as practice in working with left/right ideals, and with generators of an ideal
(a special case of generators of a module).

2. Show that the only non-trivial group with no non-identity automorphisms is C2.
(Bases of vector spaces will enter at one step, hence, contrary to appearances, the exercise
does belong in this section!)

3. Let 0−→L−→M−→N−→0 be a short exact sequence of R-modules. Show that if N
is a free module, then the short exact sequence splits.

Comment. Criteria guaranteeing that certain short exact sequences split are very helpful,
since then we know M completely as M ∼= L⊕N . The fact that short exact sequences need
not split in general marks the beginning of an entire subject known as “homological algebra”.
We will make occasional excursions into homological algebra throughout the year.

4. Let F be a field, and regard F n as a left FSn-module via permutation of coordinates
(this example is discussed in the notes above). Thinking of FSn-modules as representations
of Sn, this corresponds to the inclusion Sn ⊂ GLnF as the permutation matrices. Assume
n ≥ 2.

Define ε : F n−→F by ε(a1, ..., an) =
∑
ai, and note that ε is an FSn-module map, where

Sn acts trivially on F . Let V = Ker ε, so there is a short exact sequence of FSn-modules

0−→V−→F n ε−→ F−→0.

a) Show that this sequence splits if and only if char F doesn’t divide n.
b) For n ≥ 3, show that V is a simple module if and only if char F doesn’t divide n. (For

n = 2 it is automatically simple, by virtue of being 1-dimensional.)

5. Regard F n as a left MnF -module as usual, thinking of elements of F n as column
vectors. Prove the following:

a) F n is a simple module.
b) As a left module over itself, MnF = ⊕ni=1F

n (the direct sum of n copies of F n).
c) Up to isomorphism, F n is the only simple MnF -module.
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