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Roughly speaking, an algebra over a field F is just a ring R with F contained in the
center of R. In particular R is an F -vector space, and this extra structure often simplifies
life. For example, in the next installment we’ll introduce modules over a ring R, and if R is
an F -algebra then every R-module is also an F -vector space, a most pleasant state of affairs.
This is the reason that I’m introducing F -algebras now rather than later. There is also a
direct link to group theory, via the group algebra FG.

1 Definitions and examples

Let F be a field. An F-algebra, or algebra over F, is a ring R together with ring homomor-
phism η : F−→R such that η(F ) is contained in the center of R. As long as R is not the
zero ring, η is automatically injective. Often η is just an inclusion, but the specific η is still
part of the data. Examples:

• the polynomial ring F [x], with F ⊂ F [x] as the constant polynomials.

• the matrix ring MnF with F ⊂ MnF as the scalar matrices a · Id, a ∈ F . Or in
coordinate-free terms, EndFV for a vector space V .

• The quaternions H form an R-algebra, with R ⊂ H as usual. Note that also C ⊂ H, but
C is not contained in the center (=R) and hence H is not a C-algebra.

• If D is a division ring containing F in its center, then MnD is an F -algebra, with
η : F ⊂MnD the scalar matrices with entries in F .

One reason to consider F -algebras is simply the utility of the extra structure. An F -
algebra R is in particular an F -vector space, which means we can often use dimension-
counting arguments. We can also generate R more efficiently. Consider, for example C[x].
To generate it as a ring, we would need an uncountable number of generators (for by a
straightforward argument, any countably generated commutative ring is countable). But as
an F -algebra it is generated by one element, namely x.1

1We leave it to the reader to supply the definition of (a) F -subalgebra, and (b) F -subalgebra generated
by a subset X.
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A homomorphism of F-algebras φ : (R1, η1)−→(R2, η2) is a ring homomorphism such that
φ ◦ η1 = η2. With this definition we have a category F − alg of F -algebras. There are simple
examples of ring homomorphisms of F -algebras that are not F -algebra homomorphisms.
Indeed F itself is an F -algebra with η = Id, and hence the only F -algebra automorphism of
F is the identity. So for example complex conjugation C−→C is a ring homomorphism but
not a C-algebra homomorphism (although it is an R-algebra homomorphism).

An ideal (left, right, or two-sided) in an F -algebra R is just an ideal I of the ring R; note
that I is automatically a vector subspace. The quotient ring R/I then has a unique F -algebra
structure such that the quotient homomorphism R−→R/I is an F -algebra homomorphism.

Example. Take R = F [x] and I the ideal generated by xn. Then F [x]/(xn) is a finite-
dimensional F -algebra called a truncated polynomial algebra.

Example. Let bnF denote the ring of all upper triangular n×n-matrices, and let unF ⊂ bnF
consist of the matrices with all diagonal entries equal to 0. Then bnF is an F -subalgebra of
MnF , and unF is a 2-sided ideal in bnF . The quotient algebra bnF/unF is isomorphic to the
product algebra F n.

Example: product algebras. Suppose R1R2 are F -algebras, with associated homomorphisms
ηi : F−→Ri. In particular they are rings, and we may form the product ring R1 × R2

in the usual way, with coordinate-wise addition and multiplication. In fact R1 × R2 is an
F -algebra, where η = (η1, η2) : F−→R1 × R2. This is the categorical product; in other
words, it has and is characterized by the universal property: Given an F -algebra R and F -
algebra homomorphisms φi : R−→Ri for i = 1, 2, there is a unique F -algebra homomorphism
φ : R−→R1 ×R2 such that πiφ = φi.

Similarly we may form the product of any indexed collection of F -algebras, although we
are mainly interested in finite products R1 × ... × Rn. This is a good place to point out
that for rings in general the projection maps πj :

∏n
i=1Ri−→Rj are ring homomorphisms,

but the inclusion of a factor ιj : Rj−→
∏n
i=1Ri is not a ring homomorphism, since it doesn’t

preserve identities (ιj(1) = (0, ..., 1, ...0), where the 1 is in the j-th position). The same
remark applies to F -algebras.

2 Group algebras

We next turn to one of the most important examples, namely group algebras. Let G be any
group. Then for any field F we define the group algebra FG as follows: Form the vector
space FG with basis G. Temporarily let [g] denote the element g ∈ G regarded as a basis
vector in FG. Thus the elements of FG are formal sums

∑
g∈G ag[g], with ag ∈ F and ag = 0

for all but finitely many g. We define a multiplication in FG by setting [g] · [h] = [gh] and
extending to all of FG by linearity and the distributive law. Finally, define η : F−→FG by
η(a) = a[e], where e ∈ G is the identity. When no confusion can result, we drop the brackets
and simply write g in place of [g], and 1 in place of [e].

Note that G 7→ FG defines a functor Grp−→F − alg: If φ : G−→H is a group homo-
morphism, we extend φ linearly to get Fφ : FG−→FH; it is readily verified that Fφ is an
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F -algebra homomorphism (and trivial that the conditions for a functor are satisfied). For
example, any group admits a unique homomorphism to the trivial group; applying our func-
tor yields a natural F -algebra homomorphism ε : FG−→F , which we call the augmentation.
Explicitly, ε(

∑
agg) =

∑
ag.

Group algebras have a handy universal property. Note that the inclusion i : G ⊂ FG
satisfies i(G) ⊂ (FG)×, and hence if φ : FG−→R is an F -algebra homomorphism, φ restricts
to a group homomorphism G−→R×.

Proposition 2.1 Let R be an F -algebra. If ψ : G−→R× is a group homomorphism, there
is a unique F -algebra homomorphism φ : FG−→R whose restriction to G is ψ. Diagramat-
ically:

G R×

FG R

-ψ

?

i

?
-

∃!φ

(The right vertical arrow is just inclusion.)

Proof: It is clear that there is a unique F -linear map φ that commutes in the diagram, since
G is a basis for FG: φ(

∑
agg) =

∑
agψ(g). Since ψ is a group homomorphism, it follows

immediately that φ is an F -algebra homomorphism.

As is our custom, we will reformulate this proposition in two ways:

Plain English version: If you want to define an F -algebra homomorphism FG−→R, it is
enough (indeed equivalent) to define a group homomorphism G−→R×.

Adjoint functor version: For a given field F , the group algebra functor G 7→ FG is left
adjoint to the group of units functor R−→R×. That is, there is a natural bijection

HomF−alg(FG,R) ∼= Homgrp(G,R
×).

The universal property yields a third way to think about representations. Recall that we
defined a representation of G over F as a linear action of G on an F -vector space V , and
then observed that this is the same thing as a group homomorphism G−→GL(V ). Since
GL(V ) is the group of units of the F -algebra EndFV , we can think of a representation as
an F -algebra homomorphism FG−→EndFV . If dimFV = n, we can choose a basis to get a
homomorphism FG−→MnF .

In particular, one-dimensional representations correspond to (i) group homomorphisms
χ : G−→F× and (ii) F -algebra homomorphisms ξ : FG−→F . The group homomorphisms
χ are often called “characters” in the literature. Note that since F× is abelian, χ factors
uniquely through Gab and ξ factors uniquely through F (Gab).
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3 Monoid algebras, polynomial algebras and Laurent

polynomial algebras

Note that the definition of the group algebra makes no use of inverses. Thus if M is a
monoid, we can define the monoid algebra FM in exactly the same way. The monoid ring
has a universal property analogous to that of a group ring. The difference is that now we
only need a monoid homomorphism M−→R, where R is a monoid under multiplication.
Thus the commutative diagram in Proposition 2.1 can be written as a triangle (in fact we
could have done this for group algebras too)

M R

FM

-ψ

?

i p p p p p
p p p�
∃!φ

Here ψ is a monoid homomorphism and φ is an F -algebra homomorphism. Although
we won’t make much use of this more general construction, there is at least one case worth
knowing. Let N1 denote the monoid Z≥0 of non-negative integers, written multiplicatively:
the identity is 1, the (unique) generator is x and N1 = {xn : n ≥ 0}. Then FN1 is none
other than the polynomial ring F [x], and indeed this is really the definition of F [x]. The
polynomial ring has the following universal property:

Proposition 3.1 Let R be an F -algebra. Then for every y ∈ R there is a unique F -algebra
homomorphism φ : F [x]−→R such that φ[x] = y.

Proof: Version 1: F [x] has F -basis xi, i ≥ 0. So there is a unique F -linear map φ : F [x]−→R
such that φ(xi) = yi for all i. This map is the desired F -algebra homomorphism, as one can
readily check.

Version 2 (which shows what you’re really doing): Note that N1 has a universal property
among all monoids: Given any monoid M and any y ∈M , there is a unique monoid homo-
morphism λ : N1−→M such that λ(x) = y. Applying the universal property of monoid rings
to λ yields the desired φ.

More generally we could take Nn = (Z≥0)n. Writing x1, ..., xn for the evident generators of
Nn, we see that FNn is none other than the multi-variable polynomial ring F [x1, ..., xn], and
once again this is really the definition of F [x1, ..., xn] (even in undergraduate texts, although
the word “monoid” might not be explicitly mentioned). More generally still, one can define
a polynomial ring in any infinite set of variables as a suitable monoid ring, but we will stick
to the finite case for now.

Polynomial rings in more than one variable also have a universal property, but only in
the category of commutative F -algebras:

Proposition 3.2 Let R be a commutative F -algebra, and let y1, ..., yn ∈ R. Then there is a
unique F -algebra homomorphism φ : F [x1, ..., xn]−→R such that φ(xi) = yi.
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Proof: It is clear that Nn itself has a universal property among abelian monoids: Given
an abelian monoid M for any y1, ..., yn ∈ M , there is a unique monoid homomorphism
λ : Nn−→M such that λ(xi) = yi (namely, λ(xi11 ...x

in
n ) = yi11 ...y

in
n ). Take M = R under

multiplication and apply the universal property of monoid algebras. (Or if you prefer, rewrite
this argument without ever mentioning monoids.)

Remark: We’ve deliberately omitted the diagrammatic and adjoint functor versions of
these universal properties, as the set-up is so simple as it stands. A more systematic adjoint
functor treatment should and will await the more “coordinate-free” version of polynomial
algebras we’ll encounter later.

Finally, the Laurent polynomial algebra F [x1, x
−1
1 , ..., xn, x

−1
n ] is obtained from the or-

dinary polynomial algebra by “formally adjoining inverses” of the xi’s. In our present
context it is no work at all to make this precise: The Laurent polynomial algebra is
just the group algebra FZn, where of course Z has to be written multiplicatively. The
monoid inclusion Nn ⊂ Zn then induces a map of monoid algebras that is just the inclusion
F [x1, ..., xn] ⊂ F [x1, x

−1
1 , ..., xn, x

−1
n ]. The Laurent polynomials in one (resp. more than one)

variable have a universal property identical to that of ordinary polynomials in one (resp.
more than one) variable, except that the elements y (resp. yi) must be taken to be units in
R.

4 Algebras over a commutative ring

Our definition of F -algebra only used the fact that F is commutative, not that F is a field.
Hence for any commutative ring S we define an S-algebra to be a ring R equipped with a ring
homomorphism η : S−→R whose image is contained in the center of R. For example, the
polynomial ring S[x] and the matrix ring MnS are S-algebras. The group algebra SG can
be defined similarly to FG, but we will wait for the chapter on modules before elaborating
on this case.

The one new phenomenon to note is that η need not be injective. For example, if R is
commutative then any quotient ring R/I is an R-algebra, with η : R−→R/I the quotient
homomorphism. Note also that every ring R has a unique Z-algebra structure, given by the
unique ring homomorphism η : Z−→R.

5 Exercises

The point of these exercises is to get used to computing in a group algebra, and at the same
time prove some very useful formulas, as well as an interesting theorem 3b.

Let G be a finite group, F a field. For any subset S ⊂ G, we let S =
∑
g∈S g ∈ FG.

1. Let C be a conjugacy class in G. Show that the elements C, C ranging over all
conjugacy classes, form a basis for the center of FG. (Recall that the center C(R) of a ring
R is exactly analogous to the center of a group: C(R) = {x ∈ R : rx = xr ∀ r ∈ R}. It is a
subring of R, and in the case of an F -algebra it is a subalgebra.)
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2. Idempotents. First some definitions: An element of a ring satisfying e2 = e is called
an idempotent. Any ring has the idempotents 0 and 1, and in a field or division ring these
are the only idempotents (why?). On the other hand, a product ring R1 × R2 has also the
idempotents e1 = (1, 0) and e2 = (0, 1). A central idempotent is an idempotent e ∈ C(R).
Idempotents e1, e2 are orthogonal if e1e2 = 0 = e2e1. In the product ring example, e1, e2 are
central orthogonal idempotents.

NOTICE: From here on we assume char F doesn’t divide |G|, so that |G|−1 ∈ F . This
is a fundamental dichotomy in the subject; the so-called “modular” case when char F = p
for a prime p dividing |G| is much harder.

a) Set e0 = 1
|G|G. Then e0 is a central idempotent in FG (known as the “averaging

operator”).
Note: If you prefer, you could go straight to part (b), which is more general. But I do

recommend (a) as a warm-up and as the most important case.

b) Let χ : G−→F× be a group homomorphism, and set

eχ =
1

|G|
∑
g∈G

χ(g−1)g.

Show that heχ = χ(h)eχ for all h ∈ G, and that eχ is a central idempotent. (Note that
e0 in part (a) is the special case when χ is the trivial homomorphism.)

c) Suppose χ, ψ : G−→F× are distinct homomorphisms. Show that eχ, eψ are orthogonal.
Suggestion: Don’t expand out the sums all over again. Make use of formulas you already

have to keep it clean and simple.

d) In any F -algebra R, any set of pairwise orthogonal nonzero idempotents e1, ..., em is
linearly independent over F . In particular this is true for the idempotents of part (c).

3. Let G be a finite abelian group. In this exercise you may assume the following fact (we,
meaning you, will prove it later after we’ve done the classification of finite abelian groups):
Homgrp(G,C×) ∼= G as groups. All you actually need below is that the orders are the same.

a) Conclude from the “fact” that the idempotents eχ form a C-basis for CG, where χ
ranges over Hom (G,C×).

b) Show that CG ∼= Cn as C-algebras, where n = |G| and Cn is the n-fold product of
copies of C.

This is an especially important exercise because part (b) is the prototype of a vastly more
general result, to be considered later, that will be a cornerstone of the representation theory
of finite groups.

4. This exercise gives a first illustration of how the “modular” case differs from the
non-modular case.
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Suppose char F = p, and let G be cyclic of order pn. Show that FG is isomorphic as an
F -algebra to the truncated polynomial algebra F [x]/xp

n
.

(This should be contrasted with the previous problem, where CG is a product of copies
of C. Note that a product of fields has no nilpotent elements.)
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