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1 Introduction

In a landmark two-part paper [], Daniel Quillen began a new era in the study of mod p
cohomology rings of finite groups. He determined many commutative algebra invariants of
H∗G in terms of the group structure of G alone: the Krull dimension of H∗G is the maximal
rank of a p-torus (i.e, elementary abelian p-subgroup) in G, the number of minimal primes
is the number of conjugacy classes of maximal p-tori, and the prime ideal spectrum has a
stratification determined in an explicit way by the p-tori. One of the main tools used was to
choose an embedding of G in a unitary group U and a maximal torus in U . Letting S denote
the corresponding maximal p-torus, we get a smooth action of G on U/S and a fibration
EG×G (U/S)−→BG. The induced map on cohomology is faithfully flat, so one can try to
prove the desired results first for H∗G(U/S) := H∗(EG ×G (U/S), and then apply faithfully
flat descent to deduce the results for H∗G = H∗BG. It turns out that this works beautifully.

Another essential feature of Quillen’s method was that rings were considered up to F -
isomorphism. An F -isomorphism is a ring homomorphism φ : R−→R′ such that the kernel
of φ consists of nilpotent elements, and for all a ∈ R′ some pk-th power of a is in the image of
φ. As a result, the method has an inherent limitation: it cannot detect commutative algebra
invariants that aren’t preserved by F -isomorphism, such as depth, associated primes, local
cohomology, and of course the nilradical itself. New methods are needed.

The first steps in this direction were taken by Quillen’s student Jean Duflot [refs]. Duflot
proved that the depth of H∗G is at least the rank of a maximal central p-torus in G, and
that the associated primes are all p-toral, meaning that if p is an associated prime then
p is essentially the kernel of restriction to a p-torus. In addition to descent, Duflot made
use of two new ingredients. First is the observation that H∗G(U/S) ∼= H∗S(G\U). We call
this the exchange isomorphism. Second is a beautiful theorem of independent interest on
the equivariant cohomology of smooth S-manifolds. If M is a smooth S-manifold, it has
a filtration by ranks of isotropy groups. The surprising fact, proved by Duflot, is that
the filtration is very faithfully reflected in equivariant cohomology, and the quotients of
the cohomology filtration are direct sums of modules of a particularly simple form. This
facilitates analysis of H∗SM , in particular for M = G\U . The results obtained are then
transferred back to H∗G by exchange and descent.

Grothendieck’s local cohomology (introduced below in the appendix) is another important
invariant. In particular, one can distill from it an integer-valued invariant called Castenuovo-
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Mumford regularity, or simply “regularity”. David Benson conjectured that the regularity
reg H∗G = 0, and showed that reg H∗G ≥ 0. In 2010 Peter Symonds used Duflot’s methods
to show that reg H∗G ≤ 0, and the conjecture was proved. With the advantage of hindsight,
and without in any way detracting from Symonds beautiful theorem, it is fair to say that the
inequality reg H∗G ≤ 0 is an almost immediate consequence of Duflot’s methods. In principle,
it could have been proved two decades earlier. In a nutshell: The direct summands occuring
in the quotients of the Duflot filtration for the S-manifold G\U are easily seen to have
regularity at most dimU . Hence the same is true for H∗S(G\U), and then by the exchange
isomorphism the same is true for H∗G(U/S). By descent this immediately implies reg H∗G ≤ 0.

Perhaps one lesson to be drawn from Symonds’ proof is that Duflot’s method still has
not been fully exploited. This thought lead the authors to revisit the Duflot filtration and
to consider systematically its applications to group cohomology. Our main purpose here is
to give an exposition of the Duflot method and its applications. Most of the results are not
new, although in some cases the proofs may be new. Any new results are taken from the first
author’s thesis. For example, the “Duflot complex”, although an immediate consequence of
the Duflot filtration, does not seem to have appeared in print before. One major set of
results from the thesis will not be considered here: an axiomatization of the key features of
the Duflot filtration, in the context of general commutative algebras.

In any case, we wish to emphasize that the main ideas behind our paper are due to
Duflot, with many further ideas and/or results taken from Symonds, Jon Carlson, Dave
Benson, Burt Totaro, Nick Kuhn, and others. Most of the results we discuss apply with
suitable modifications to general compact Lie groups, but to simplifty the exposition we will
confine our attention to finite groups.

Outline of the paper.

2 Descent

In the introduction we alluded to the method of faithfully flat descent. For the most part, we
won’t use the full strength of this method; we simply exploit directly the fact that H∗G(U/S)
is a finitely-generated free module over H∗G.

2.1 Descent for EG×G (U/S)−→BG
Choose complex representations V1, ..., Vm ofG such that the representation on⊕Vi is faithful.
Let U =

∏m
i=1 U(Vi) ⊂ U(V ) denote the corresponding product of unitary groups. Let T ⊂ U

be a maximal torus compatible with the product decomposition, and let S = {u ∈ T : up =
1}—a p-torus of rank n =

∑
ni. Then the homogeneous space U/S is a smooth principal

T/S-bundle over the product of complete flag varieties U/T . We obtain smooth, compatible
actions of G on U/T and U/S. Two key properties of the action on U/S are as follows:

Proposition 2.1 The isotropy groups of the G-action on U/S are all p-tori. Moreover, for
every p-torus A ⊂ G, (U/S)A is nonempty.

This is clear. The second property is:
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Proposition 2.2 The Serre spectral sequence of EG ×G (U/S)−→BG collapses. Hence
H∗G(U/S) is a finitely-generated free module over H∗G, non-naturally isomorphic to
H∗G ⊗H∗(U/S).

For the proof it is enough to show collapse in the universal case EU ×U (U/S) =
BS−→BU . This is an easy exercise, because the cohomology ring Poincaré series of BU ,
BS, U/S and so on are all explicitly known and one can force the collapse by a dimension-
counting argument.

In particular, H∗G−→H∗G(U/S) is finite and faithfully flat. As a result, many commutative
algebra properties of H∗G are equivalent to, or at least can be deduced from, corresponding
properties of H∗G(U/S). For example:

1. H∗G and H∗G(U/S) have the same Krull dimension.

2. H∗G and H∗G(U/S) have the same depth.

3. The local cohomologies are related by a non-natural isomorphism

hiH∗G ⊗H∗(U/S) ∼= hiH∗G(U/S).

4. The Castelnuovo-Mumford regularity satisfies reg H∗G + dim (U/S) = reg H∗G(U/S).

5. The induced map SpecH∗G(U/S)−→SpecH∗G induces a surjection on associated primes.
([Matsumura], 9B Corollary).

Remark. Often we will require that the Vi’s are irreducible, so that the center of G is
contained in the center of U . In particular, the maximal central p-torus C of G then acts
trivially on U/S.

2.2 Descent for fixed-points and centralizers

Let A ⊂ G be a p-torus of rank i, and let X be a path-component of (U/S)A. Then as
a representation of A, V has a functorial decomposition into isotypical summands: V =
⊕t

s=1Ws. Let X be a path-component of (U/S)A. Then one can easily check the following:

1. CUA =
∏
U(Ws) is itself a product of unitary groups, and in particular is connected.

2. CUA acts transitively on X, with isotropy groups conjugates of S that are compatible
with the Vi’s and with the isotypical decomposition. Thus X is a T/S-bundle over a
product of complete flag manifolds.

3. The following natural maps are all diffeomorphisms:

U ×CUA X
∼=−→ U G×CGA X

∼=−→ GX NGA×CGA X
∼=−→ (NGA)X.
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In short, if X is a component of the A-fixed points of G-manifold of type U/S, then X is
itself a CGU -manifold of type U/S. In particular the results of the preceeding section apply
to it.

Remarks. 1. The components of (U/S)A are all diffeomorphic, and in particular of
the same dimension. Note also that if π : U/S−→U/T is the natural map, then (U/S)A =
π−1((U/T )A), so that fixed points can be determined by looking at the complete flag manifold
or product of complete flag manifolds.

2. If X is a component of (U/S)A, let XA = {x ∈ X : Gx = A}. Then XA is open
in X and connected, and if it is nonempty it is dense in X. The noteworthy point here is
the connectivity. The complement of XA in X is a finite union of submanifolds of lower
dimension, namely the fixed-point components of various p-tori containing A. But these
fixed-point components are again T/S-bundles over products of complete flag manifolds,
from which it follows easily that the submanifolds in question have codimension at least 2.
This in turn implies that XA is connected.

3 Exchange

3.1 The exchange isomorphism for U/S and G\U
Suppose H,K are topological groups, and W is a space with a free left H-action and a free
right K-action, such that the two actions commute and the projections W−→H\W and
W−→W/K are principal bundles.

Proposition 3.1 There is a natural weak equivalence EH ×H (W/K) ∼= (H\W )×K EK.

Proof: Consider EH ×H W ×K EK. Since K acts freely on W , the natural map EK ×K

W−→W/K is a fibration with contractible fiber, hence a homotopy equivalence. Applying
the functor EH ×H (−) to this map yields an equivalence

EH ×H W ×K EK = EH ×H (W ×K EK)−→EH ×H (W/K).

Similarly, EH ×H W ×K EK ∼= (H\W )×K EK.

Corollary 3.2 H∗H(W/K) ∼= H∗K(H\W ).

Applying this to the case H = G, K = S, W = U , we obtain an isomorphism of algebras

H∗G(U/S) ∼= H∗S(G\U).

We call this the exchange isomorphism. It exchanges an action of a complicated group
G on a simple space U/S for an action of a p-torus S on a more complicated space G\U .

The general exchange isomorphism has the following naturality property. Suppose H0 ⊂
H, K0 ⊂ K are subgroups, and W0 ⊂ W is a subspace invariant under H0, K0 and such that
the principal bundle condition is satisfied. Then there is a commutative square
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H∗H(W/K) H∗K(H\W )

H∗H0
(W0/K0) H∗K0

(H0\W0)

-
∼=

? ?
-
∼=

where the horizontal maps are exchange isomorphisms and the entire diagram is induced by
an evident commutative diagram of spaces.

3.2 The exchange isomorphism for fixed-point sets and centraliz-
ers

Let A ⊂ G be a p-torus, X a component of (U/S)A, and choose x ∈ X. We have xS ∈ (U/S)A

if and only if x−1Ax ⊂ S. Let Bx−1Ax. Note that since X is connected, B is independent
of the choice of x. Then {u ∈ U : u−1Au = B} is a compact (G × S)-submanifold. Let
Z denote a component of this submanifold. Then X := Z/S is a component of (U/S)A

and Y := G\(GZ) = CGA\Z is a component of (G\U)B. Recalling that H∗G(G×CGA X) =
H∗CGAX, we then have exchange on the level of fixed-point components in the form

H∗CGAX
∼= H∗SY.

3.3 Duflot’s theorem on depth

The following theorem is due to Duflot. Recall that cpG denote the rank of a maximal central
p-torus Cp of G.

Theorem 3.3 depthH∗G ≥ cpG.

Proof: We first show that depth is preserved under descent. The depth of H∗G is the smallest i
such that the local cohomology hiH∗G is nonzero, and similarly for H∗G(U/S). (For us, the local
cohomology of a connected graded algebra is always at the ideal m of positive dimensional
elements; hence m is omitted from the notation. See the appendix.) Since H∗G−→H∗G(U/S) is
a finite algebra homomorphism, by a corollary of the Independence Theorem h∗H∗G(U/S) =
h∗H∗G

H∗G(U/S). But H∗G(U/S) is a free H∗G-module, so depthH∗G = depthH∗G(U/S) as claimed.

Depth is clearly preserved under exchange, since H∗G(U/S) ∼= H∗S(G\U) as rings. Next
observe the general fact:

Lemma 3.4 If M is a smooth S-manifold, and K is the kernel of the action, then depthH∗SM ≥
rankK. In fact

depthH∗SM = rankK + depthH∗S/KM.

Proof: There is a natural isomorphism H∗SM
∼= H∗K⊗H∗S/KM . The lemma then follows from

the Kunneth theorem in local cohomology.
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By our convention on the choice of representation G ⊂ U , we have Cp ⊂ Cp(U) ⊂ S.
Then Cp acts trivially on U/S and on G\U , so depthH∗G ≥ rankK ≥ cp. This completes
the proof of Duflot’s theorem.

Example. It is shown in [Carlson-Henn] that depth for wreath products satisfies depth (H
∫
Z/p) =

depthH + 1. In particular, depth (
∫ n Z/p) = n.

But the center of (
∫ n Z/p) is just Z/p for all n. This shows that the depth can exceed the

Duflot bound by an arbitrarily large number.

Example. The semidihedral group of order 16 has c = 1 and depth = 1, so the Duflot
bound is sharp in this case. But as far as we know, the only way to compute the depth here
is by explicitly calculating the cohomology ring. [reference]

3.4 Exchange notation and conventions

Notation: The following notation will be fixed throughout the remainder of the paper:

1. A is a p-torus in G and X is a component of (U/S)A.

2. B is the corresponding p-torus in S and Y the corresponding component of (G\U)B.
(“Corresponding” according to the recipe of §3.2.)

Note that the roles of A,X and B, Y could be reversed here; we could just as well start
with B, Y and obtain the corresponding A,X.

Conventions: The S-manifold G\U has a number of special properties not shared by general
S-manifolds. We point out in particular the following:

1. If B ⊂ S and Y is a component of (G\U), then YB is connected (if it is nonempty, its
complement has codimension 2, as discussed earlier).

2. With the notation of the previous item, S preserves each such component Y . In a
general S-manifold M , S would permute the components, but here the S-action is restricted
from a T -action that also permutes the components, and since T is connected the permutation
is trivial.

Purely as a matter of convenience, we make the convention that all of our S-manifolds
have these two properties. This simplifies the notation below significantly.

4 The Duflot filtration

4.1 An example and an outline

Let S be the group of p-th roots of unity, p odd. Regard S3 as the unit sphere in C2, and
let S act on S3 by ξ · (z1, z2) = (ξz1, z2). The fixed-point set is the circle defined by z1 = 0.
The local coefficient system of the fibration S3−→ES×S S

3−→BG is trivial, so the E2-term
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of the Serre spectral sequence is H∗BS ⊗H∗S3. Since the fibration has a section given by
choosing a fixed point (in fact this section is unique up to fiber homotopy, since the fixed-
point set is connected) there can be no differentials; the spectral sequence collapses. Since
p is odd there are no multiplicative extension issues in this case, and we conclude that as
algebras

H∗SS
3 ∼= H∗S ⊗H∗S3.

But there is another way of analyzing H∗SS
3, by stratifying S3 by p-ranks of isotropy

groups. In this case there are just two strata: the closed set of rank 1 points, i.e. our
fixed-point set S1, and the open set S3 − S1 of free points. We will examine the long exact
sequence in equivariant cohomology

...−→H∗S(S3, S3 − S1)−→H∗SS3−→H∗S(S3 − S1)−→...

Noting that S acts on CP 1 in a similar way, so that the natural map π : S3−→CP 1 is
S-equivariant, we see that X − S1 is the inverse image of the complement of a point. It
follows easily that X − S1 is S-diffeomorphic to S1 × C, with S acting in the usual way on
S1 and trivially on C. Since the action is free, we obtain

H∗S(S3 − S1) ∼= H∗((S3 − S1)/S) ∼= H∗(S1).

Now let E denote the total space of the normal bundle to S1 in S3, which is a S-vector
bundle. By excision H∗S(S3, S3 − S1) ∼= H∗S(E , E − S1), so we are in a position to apply the
Thom isomorphism. For this, however, we need to know that the normal bundle is orientable.
But the normal bundle is pulled back from the tangent space of [0, 1] ∈ CP 1, so E in fact
has a complex structure and hence the bundle ν = ES ×S E−→ES ×S S

1 = BS × S1 has
a complex structure. Moreover the Euler class e(ν) = z ⊗ 1 ∈ H∗BS × S1 and hence is a
non-zerodivisor. Using the general fact that the Thom isomorphism followed by restriction
to the zero section gives multiplication by the Euler class, we find that the above long exact
sequence reduces to a short exact sequence

0−→H∗S(S3, S3 − S1)−→H∗SS3−→H∗S(S3 − S1)−→0,

or

0−→Σ2(H∗(BS × S1))−→H∗SS3−→H∗S1−→0.

4.2 Equivariant characteristic classes for certain G×H-spaces

This section contains a preliminary result needed for the Duflot filtration.

Let X be a (G×H)-space such that H acts trivially and G acts freely on X. Then

(EG× EH)×G×H X = EG×G (BH ×X) ∼= (BH ×X)/G = BH × (X/G).

In particular we have:
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Proposition 4.1 H∗G×HX
∼= H∗BH ⊗H∗(X/G).

Now consider an equivariant real vector bundle E ↓ X. We do not assume H acts
trivially on E. Let W1, ...,Wr denote the irreducible representations of H over R. Then for
any representation V of H we have the isotypical decomposition (cf. Brocker-tom Dieck, p.
70)

⊕r
i=1HomH(Wi, V )⊗R Wi

∼=−→ V.

This decomposition is natural in V and consequently extends to vector bundles, where now
Wi is regarded as the H-vector bundle X ×Wi. Since the G and H actions commute, the
action of G preserves the isotypical summands and the tensor product decomposition of the
summands. In particular HomH(Wi, V ) is a G-vector bundle over X, and since the action is
free we know that it is pulled back from an ordinary vector bundle Vi over X/G (cf. Atiyah).
Summing up, we have:

Proposition 4.2 As (G×H)-vector bundles there is a natural decomposition

E ∼= ⊕r
i=1Wi ⊗ π∗Vi

where the Wi’s are the irreducible representations of H, G acts trivially on Wi, π : X−→X/G
is the quotient map and Vi ↓ X/G is a vector bundle on the orbit space (so π∗Vi is a G-vector
bundle over X).

We next observe that if E is a complex vector bundle, F a real vector bundle, then E⊗RF
receives a complex structure from E, and there is a natural isomorphism of complex vector
bundles

E ⊗R F = E ⊗C (C⊗R F ).

In particular, when E is a complex line bundle and dimF = n, setting z = c1E we get

e(E ⊗R F ) = cn(E ⊗C FC) = zn + c1(FC)zn−1 + ...+ cn(FC).

Note that if we take mod p coefficients with p odd, the Chern classes of FC are the Pontrjagin
classes of F (up to sign, if one uses Milnor’s convention for Pontrjagin classes).

We next apply this observation to equivariant characteristic classes. Note that any
oriented real 2-plane bundle has a canonical complex structure; similarly, any oriented 2-
dimensional representation of a compact Lie group has a canonical complex structure. If H
is a finite abelian group of odd order (or a torus), then every non-trivial irreducible real rep-
resentation W has dimension 2. In the next proposition the notation is as in Proposition 4.2,
and coefficients are in Fp.

Proposition 4.3 Suppose p is odd and H is a non-trivial finite abelian p-group, or a torus,
and Wi is non-trivial. Then Wi⊗π∗Vi is complex (in particular oriented), and if z ∈ H2BH
is the equivariant c1 of Wi, and n = dimVi, then in the notation of Proposition 4.1 the
(G×H)-equivariant Euler class is given by
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e(Wi ⊗ π∗Vi) = zn ⊗ 1 + zn−1 ⊗ c1 ⊗ (π∗(Vi)C) + ...1⊗ cn(π∗(Vi)C).

In particular this Euler class is a nonzerodivisor in H∗G×HX, and if all of the Wi’s are
non-trivial then e(E) is a nonzerodivisor.

For the statement about nonzerodivisors, it is only necessary to observe that z is a
nonzerodivisor in H∗BH.

For the analogous statement for abelian 2-groups, we of course take coefficients F2 and
use Stiefel-Whitney classes. But we also need to restrict to elementary abelian 2-groups,
since otherwise the w1’s occuring could have square zero.

Proposition 4.4 Suppose H is an elementary abelian 2-group, and Wi is non-trivial (and
1-dimensional, since irreducible). Then if z = w1(Wi) ∈ H1H,

e(Wi ⊗ π∗Vi) = zn ⊗ 1 + zn−1 ⊗ w1 ⊗ (π∗(Vi)C) + ...1⊗ wn(π∗(Vi)C).

In particular this Euler class is a nonzerodivisor in H∗G×HX, and if all of the Wi’s are
non-trivial then e(E) is a nonzerodivisor.

5 The Duflot filtration

Note: don’t want M compact, but do want finitely many fixed-point components. Best
assumption?

Throughout this section, S is a p-torus of rank n and M is a smooth S-manifold. The
rank rank x of a point x ∈M is the rank of its isotropy group. We set

M j
i = {x ∈M : i ≤ rank x ≤ j}.

Thus M j
0 is the set of points with rank ≤ j, while M j

j is the set of points of rank exactly j.
Then

M0
0 ⊂M1

0 ⊂ ... ⊂Mn
0

is an increasing filtration of M by open submanifolds. We obtain a corresponding filtration
on H∗SM

0 = Fn ⊂ Fn−1 ⊂ ... ⊂ F0 = H∗SM

by taking

F i = Ker (H∗SM−→H∗SM i−1
0 ).

Of course, the true length of the filtration may be shorter. Setting r = max {rank x :
x ∈M}, and c equal to the rank of the kernel of the action, we can and usually will rewrite
it as

0 = F r ⊂ F r−1 ⊂ ... ⊂ F c = H∗SM.
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5.1 The localization tower and the main theorem

Since the M j
0 ’s are open submanifolds, and M j

j is a closed submanifold of M j
0 with comple-

ment M j−1
0 , there is a localization sequence in equivariant cohomology

...−→Hm
S (M j

0 |M
j
j )−→Hm

S M
j
0−→Hm

S M
j−1
0 −→...

Here H∗S(M j
0 |M

j
j ) is just H∗S(M j

0 ,M
j
0 −M

j
j ); we think of it as “cohomology localized at the

submanifold M j
j ”. There are natural isomorphisms

H∗S(M j
0 |M

j
j ) ∼= ⊕WH

∗
S(M j

0 |W )

where W ranges over the path-components of M j
j . Moreover, by a combination of excision

and the Thom isomorphism for the normal bundle of W , we have isomorphisms

H∗S(M j
0 |W ) ∼= Σcd(W )H∗SW.

We can assemble these exact sequences into an exact couple, which we display as a tower
...tower here...
However, the tower breaks up into short exact sequences:

Proposition 5.1 The pushforward maps H∗S(M j
0 |M

j
j )−→H∗SM

j
0 are injective.

Proof: Consider two path-components W1,W2 of M j
j . Thus Wi is a path-component of

(M j
0 )Bi for i = 1, 2, where Bi ⊂ S has rank j. If W1 6= W2, then pushforward followed by

restriction

H
∗−cd(W1)
S W1

∼= H∗S(M j
0 |W1)−→H∗S(M j

0 )−→H∗SW2)

is the zero map. If W1 = W2 we get multiplication by the Euler class e(νW1), which is a
nonzerodivisor by ?. Hence the pushforward followed by restriction

⊕WH
∗−cd(W )
S W ∼= ⊕WH

∗
S(M j

0 |W )−→⊕W H∗SW

is just ⊕W · e(νW ) and so is injective.

Corollary 5.2 The restriction maps H∗SM−→H∗SM
j
0 are surjective.

Note that each W occuring in the decomposition if a component of (M j
0 )B for a unique

rank j p-torus B, namely the common isotropy group of the points of W . With this notation
we have the main theorem:

Theorem 5.3
F j/F j+1

∼= ⊕WΣcd(W )H∗SW )

as H∗SM-modules, where W ranges over the path-components of M j
j .

Moreover, as algebras H∗SW
∼= H∗B ⊗H∗(W/S), with W/S a smooth manifold.
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Proof: The first statement is immediate from the preceeding proposition, except perhaps for
the module statement. But this follows from the fact that the pushforward Σcd(W )H∗SW−→H∗SM

j
0

is a map of H∗SM
j
0 -modules.

For the second statement, choose a complement B′ to B, so that S = B × B′. Then B′

acts freely on W and W/S = W/B′, so W/S is a smooth manifold. Moreover

ES ×S W = BB × EB′ ×B′ W ∼= BB × (W/B′),

and the Kunneth theorem completes the proof.

Remark. If p = 2, then the theorem exhibits H∗SW as the tensor product of a polynomial
algebra and a finite-dimensional algebra. If p is odd, it is still true that H∗SW is the tensor
product of a polynomial algebra and a finite dimensional algebra: one only has to shift the
exterior part of H∗B into the second factor of the tensor product.

5.2 Another description of the filtration

Suppose B has rank s and Y is a component of MB. Then (recall that we are assuming, for
convenience, that all such Y are invariant under the S-action) Y has its own Duflot filtration.
Moreover, the Duflot filtration of Y is just the intersection of Y with the Duflot filtration of
M . It is then easy to show:

Proposition 5.4 The pushforward i∗ : Σcd(Y )H∗SY−→H∗SM associated to i : Y ⊂ M is
injective, preserves Duflot filtrations, and is compatible with the canonical direct sum decom-
positions of the layers.

The fact that i∗ preserves Duflot filtrations follows from naturality of the pushforward.
The compatibility with the direct sum decompositions follows from functoriality of the push-
forward. More precisely, suppose B ⊂ B′ and Y ′ is a component of Y B′ with W := YB′ 6= ∅.
Then the summand H∗SW occuring in the appropriate Duflot layer of H∗SY maps by the
identity to the corresponding summand of the corresponding Duflot layer of H∗SM . Thus i∗
is injective on each layer and hence injective.

Now let Js =
∑

Y i∗H
∗
SY ⊂ H∗SM , where the sum is over all fixed-point components of all

subtori B ⊂ S of rank ≥ s. Note that Js is an ideal, by the ? property of the pushforward.

Proposition 5.5 Js = F s.

Proof: We have already seen that Js ⊂ F s. This is clear anyway from naturality of the
pushforward, since each Y occuring in the proposition is disjoint from the open submanifold
M s−1

0 . The reverse inclusion follows by downward induction on s.

It’s interesting to see how two theorems on transfer of Carlson and Totaro, respectively,
are reflected in the S-manifold setting. In its simplest form, Carlson’s theorem on transfer
says that for a finite p-group, the ideal generated by the images of transfers from all proper
subgroups has the same radical as the kernel of restriction to the maximal central p-torus.
To state an analogous theorem for S-manifolds, let E denote the kernel of the S-action
on M , rank E = e. Since M is connected, there is a unique S-homotopy class of maps
φ : S/E−→M . Let K denote the kernel of φ∗ : H∗SM−→H∗S(S/E) = H∗E.

11



Proposition 5.6 Let I ⊂ H∗SM denote the ideal generated by all i∗H
Y
S , Y ranging over

fixed-point components of p-subtori B such that Y 6= M and YB 6= ∅. Then rad I = radK.

Proof: First of all, I is none other than Je+1, which by the preceeding proposition is F e+1 =
Ker (H∗SM−→H∗SM e

e . Hence I ⊂ K and rad I ⊂ radK. For the reverse inclusion, it suffices
to show that if α ∈ K, then α restricted to M e

e is nilpotent. But H∗SM
e
e
∼= H∗E ⊗ N for a

finite dimensional algebra N , and since α ∈ K it restricts to an element of the nilpotent
ideal H∗E ⊗N>0.

In its simplest form, Totaro’s theorem on transfer says that for a finite p-group G, the
quotient of H∗G by Carlson’s ideal above is Cohen-Macaulay of dimension c (here c as usual
is the rank of a maximal central p-torus). An analogue for S-manifolds reads as follows,
keeping the notation of Proposition 5.6:

Proposition 5.7 H∗SM/I is Cohen-Macaulay of dimension e.

Proof: Since I = Jc+1, by Proposition 5.5 we have

H∗SM/I = H∗SM/F e+1 = H∗SM
e
e = H∗E ⊗N.

Clearly dim (H∗E ⊗N) = e = depth (H∗E ⊗N), and the result follows.

The theorems of Carlson and Totaro are actually stronger in two ways: (i) they are
stated and proved for general finite groups; and (ii) they show that analogous statements
hold using only transfers from proper centralizers of p-tori. It appears to be difficult to deduce
the Carlson and Totaro theorems from the S-manifold versions using exchange-descent. Of
course, what is needed first is an analysis of how exchange and descent interact with the
transfer. This could be an interesting topic for further investigation.

We conclude this section by showing that in the case M = G\U , the injectivity in
Proposition 5.4 holds in a stronger form. The notation is as above.

Proposition 5.8 Suppose K := Y − YB has even codimension in Y . Then the normal
bundle νY of Y in M is orientable, and its Euler class e(νY ) is a non-zerodivisor in H∗SY .

Proof: To show that νY is orientable, consider the first Stiefel-Whitney class w1(νY ) ∈
H1(Y ; F2). We have seen that νYB

is orientable; hence w1(νY ) restricts to zero on YB. From
the localization sequence H1(Y |K; F2)−→H1(Y ; F2)−→H1(YB; F2) we see that it is enough
to show H1(Y |K; F2) = 0. This should follow from a duality isomorphism H1(Y |K) ∼=
Hn−1K = 0, assuming the pair (Y,K) satisfies the appropriate hypotheses. Alternatively,
elements of H1(Y |K) are represented by sums of smooth relative 1-cycles of the form
α : [0, 1]−→Y whose endpoints lie in YB. Since by assumption all fixed-point components
of all p-tori properly containing B have codimension at least 2, by transversality we can
find a sequence of smooth homotopies rel endpoints moving α away from each fixed-point
component successively. Hence H1(Y |K; F2) ∼= H1(Y |K; F2) = 0.

The set of zerodivisors in H∗SY is the union of the associated primes, which all have the
form pD,N for some p-torus D with B ⊂ D ⊂ S and component N of Y D. Since pD,N ⊂ pB,Y ,
if e(νY ) is a zerodivisor then it lies in pB,Y , i.e. restricts to zero along any equivariant map
S/B−→Y . But this is false; we saw in ...

12



6 Associated primes

It is an open problem to determine the associated primes of H∗G. The first result in this
direction is the theorem of Duflot, which says that all associated primes are p-toral:

Theorem 6.1 Let p be an associated prime of H∗G. Then p = pA for some p-torus A ⊂ G.

To see this, we first prove the analogous statement for S-manifolds (subject to the finite-
ness condition stated in the introduction).

Theorem 6.2 Let M be a smooth S-manifold, p an associated prime of H∗SM . Then p =
pB,Y for some B ⊂ S and Y a component of MB.

Proof: Recall that if R is a commutative ring and 0−→N1−→N−→N2−→0 is a short exact
sequence of R-modules, then AssRM ⊂ AssRM1 ∪ AssRM2. Hence in the notation of
Theorem 5.3, p is an associated prime of the H∗SM -module H∗SW for some W , where W = YB
for some B, Y . Since H∗SW is the tensor product of the polynomial part of H∗SB and a finite-
dimensional algebra, as a module over itself its only associated prime is pB,W . It follows that
p = pB,Y .

Proof of Theorem6.1: Under exchange, p-toral primes correspond to p-toral primes; i.e.,
the primes pB,Y of H∗SG\U correspond to the primes pX,A of H∗GU/S. Hence by Theo-
rem 6.1, all associated primes of H∗GU/S are p-toral. Since H∗G−→H∗GU/S is faithfully
flat, the induced map on Spec preserves associated primes and in fact induces a surjection
AssH∗GU/S−→AssH∗G.(ref). Hence if p ∈ AssH∗G, there is a p-toral prime pA,X lying over
it in H∗GU/S. It follows that p = pA, as desired.

There is a further restriction on which p-tori can occur.

Theorem 6.3 If pA is an associated prime of H∗G, then A is the maximal central p-torus of
its centralizer CGA. In particular, A contains the maximal central p-torus of G.

The S-manifold analogue of this result follows immediately from the Duflot filtration.
The point is that associated primes in H∗SM are associated primes of direct summands of
the Duflot layers, and so have the form pB,Y with YB nonempty. Moreover, YB 6= ∅ ⇔ B is
the kernel of the S-action on Y , hence:

Theorem 6.4 If pB,Y is an associated prime of H∗SM , then B is the kernel of the S-action
on Y .

We could at this point deduce Theorem 6.3 from Theorem 6.4 by descent and exchange,
but we will prove a stronger result. If A is a p-torus in G, then it is also one in CGA. The
corresponding prime ideals will be denoted pA ⊂ H∗G and p′A ⊂ H∗CGA.

Theorem 6.5 The following are equivalent:

a) pA ∈ AssH∗G;
b) p′A ∈ AssH∗CGA;
c) depthH∗CGA = rank A.

13



Assuming Theorem 6.5, we prove Theorem 6.3: Suppose pA is an associated prime of H∗G.
If A is the not the maximal central p-torus of CGA, then by Duflot’s theorem depthH∗CGA >
rank A, contradicting Theorem 6.5.

As usual, we first prove the S-manifold analogue and then deduce Theorem 6.5 by ex-
change and descent.

Theorem 6.6 The following are equivalent:

a) pB,Y ∈ AssH∗SM ;
b) p′B,Y ∈ AssH∗SY ;
c) depthH∗SY = rank B.

Proof: (a) ⇔ (b): Consider the short exact sequence of H∗SM -modules

0−→Σcd(Y )H∗SY−→H∗SM−→N−→0,

where the first map is the pushforward and N is its cokernel. Since distinct pairs (B, Y )
define distinct prime ideals [ref], pB,Y is not an associated prime of N (see Prop 6.4...).
Hence pB,Y ∈ AssH∗SM ⇔ pB,Y ∈ AssH∗SMH

∗
SY . Next, by commutative algebra there is a

surjection

AssH∗SY−→AssH∗SMH
∗
SY.

Putting these facts together, the equivalence of (a) and (b) follows easily.

(b)⇔ (c): The depth of a ring is always ≤ the minimal dimension of an associated prime.
So if (b) holds, then depthH∗SY ≤ rank B. Since B acts trivially on Y , depthH∗SY ≥ rank B.
Thus (b) ⇒ (c).

Conversely, suppose depthH∗SY = rank B, and write S = B×B′. Then by the Kunneth
formula for local cohomology we have depthH∗B′Y = 0; in other words, the maximal graded
ideal m is an associated prime of H∗B′Y . Thus m = annα for some α ∈ H∗B′Y . If p = 2,
we conclude that pB,Y = ann (1⊗ α) and so is associated; a similar argument works at odd
primes.

Proof of Theorem 6.5: We show (b) ⇔ (c) and leave the rest to the reader. Suppose p′A
is associated. Then by commutative algebra, rank A = dim p′A ≥ depthH∗CGA. By Duflot’s
theorem depthH∗CGA ≥ rank A, so we have equality.

Conversely, suppose depthH∗CGA = rank A. Choosing the maximal torus so that A ⊂ S
(alternatively, we can forget about G at this point and just start from a suitable represen-
tation of CGA), let X be any component of (U/S)A. Then depthH∗CGAX = depthH∗CGA =
rank A. Under exchange we then have depthH∗SY = rank B and hence p′B is associated by
Theorem 6.6. Then by exchange and descent p′A is associated, as desired.
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7 Carlson’s theorem and Carlson’s depth conjecture

Theorem 7.1 Let depthH∗G = s. Then H∗G is detected on {CGA : rank A = s}.

Note that the theorem has no content when s = c is the Duflot minimum, since then G
itself is one of the detecting subgroups. Note also the equivalent form: If depthH∗G ≥ s, then
H∗G is detected on {CGA : rank A ≥ s}.

The S-manifold version of this theorem is:

Theorem 7.2 Let depthH∗SM = s. Then H∗SM is detected on {H∗SY : rank Y = s} (i.e.
on fixed-point components of rank s subgroups).

Proof: Suppose there is a nonzero element a ∈ H∗SM such that for all B of rank s and all
components Y of MB, i∗Y a = 0. By the ? property of the pushforward, (i∗H

∗
SY )a = 0. Hence

Jsa = 0 (recall ...). Then there is an associate prime p with Js ⊂ p. By ? dim p ≤ dimJs < s.
Hence depthH∗SM < s.

Proof of Theorem 7.1: There is a commutative diagram

H∗G ⊕H∗CGA

H∗G(U/S) ⊕H∗CGAX

-

? ?
-

where A ranges over rank s p-tori and X ranges over fixed-point components of such tori in
U/S. The bottom arrow is injective by exchange and the previous theorem, while the left
arrow is always injective. Hence the top arrow is injective, as desired.

Carlson conjectured that the converse of Theorem 7.1 is true: If H∗G is detected on
{CGA : rank A ≥ s}, then depthH∗G ≥ s. He also made the related conjecture that there is
always an associated prime p with dim p = depthH∗G. As Carlson notes, this does not hold
for general rings.

The following special case of Carlson’s conjecture was proved by Green for p-groups, and
by Kuhn in the general case. Recall that c is the rank of the maximal central p-torus C.

Theorem 7.3 If H∗G is detected on {CGA : rank A ≥ c+ 1}, then depthH∗G ≥ c+ 1.

Proof: Suppose depthH∗G < c+1. Then by Duflot’s theorem, depthH∗G = c. By Theorem 6.5,
it follows that pC is an associated prime, say pC = annx. We will show that x restricts to
zero on CGA with rank A ≥ c+ 1.

Let A have rank c+ 1 and let i : CGA−→G denote the inclusion. Suppose i∗x 6= 0. Since
pCi
∗x = 0, there exists q ∈ AssH∗GH

∗
CGA with pC ⊂ q. By commutative algebra there exists

q′ ∈ AssH∗CGA mapping to q under the induced map SpecH∗CGA−→H∗G. We then have

dim q′ = dim q ≤ dim pC = c,
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where the first equality holds since i∗ is a finite morphism. But depthH∗CGA > c by Duflot’s
theorem, so this is a contradiction (an associated prime cannot have dimension less than the
depth).

8 Castelnuovo-Mumford regularity

If A is a 2-torus of rank r, then H∗A
∼= F2[x1, ..., xr] with xi = 1 for all i. Hence reg A = 0 as

shown in the appendix. If A is a p-torus with p-odd, then H∗A
∼= Fp[y1, ..., yi]⊗ Fp〈x1, ..., xr〉

with |yi| = 2 and |xi| = 1 for all i. Then the polynomial part has regularity −n and the
exterior part has regularity n, so by the tensor product formula reg H∗A = −n + n = 0.
Again, see the appendix for background.

The following striking result was conjectured by Dave Benson:

Theorem 8.1 If G is any finite group, reg H∗G = 0.

Benson himself proved that reg H∗G ≥ 0, using a spectral sequence of Greenlees. Symonds
proved the reverse inequality by descent and exchange, as follows:

Let n = dimU = dimU/S = dimG\U . Then

reg H∗G + n = reg H∗G(U/S) = reg H∗S(G\U).

To see the first equality, first note that by the Independence Theorem we can compute the
local cohomology of H∗G(U/S) by regarding it as an H∗G-module. This yields the first equality
because H∗G(U/S) is free over H∗G with top generator in degree n. The second equality is
immediate by the exchange isomorphism. Thus it suffices to show that for a smooth S-
manifold M of dimension n, we have reg H∗SM ≤ n.

Again by the Independence Theorem, we can compute local cohomology of H∗SM by
regarding it as an H∗S-module. From the Duflot filtration, taking into account the dimension
shifts occuring in the Duflot layers, we have at once that

reg H∗SM ≤ reg H∗SYB + cd(Y )

for all subtori B and all components Y of MB with YB 6= ∅. Moreover, choosing B′ so that
S = B ×B′ and hence H∗S = H∗B ⊗H∗B′ , we know that B′ acts freely on YB and

H∗SYB
∼= H∗B ⊗H∗(YB/B′).

Since YB/B
′ is a smooth manifold of dimension d(Y ), its cohomology vanishes above dimen-

sion d(Y ). Hence

reg H∗SY = reg H∗B + reg H∗(YB/B
′) ≤ d(Y )

and therefore reg H∗SM ≤ d(Y ) + cd(Y ) = n as desired.

Remark. The Duflot summand Σcd(Y )H∗SYB achieves the maximal possible regularity n pre-
cisely when YB/B

′ has non-vanishing cohomology in dimension d(Y ). This is possible only
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when YB is compact, and hence Y = YB. Thus (Y,B) is maximal in the poset of fixed-point
components. In a general S-manifold this need not imply that B is maximal in the poset of
all isotropy groups. But in the case M = G\U , B is maximal and hence the corresponding
p-torus A is a maximal p-torus of G.

Symonds’ theorem on regularity yields upper bounds on the dimensions of minimal gen-
erating sets for H∗G as an algebra, and on the relations between these generators. Previously,
no upper bounds were known. In particular, he shows that H∗G is generated as an algebra
by elements of grade ≤ |G| − 1, and the relations between these generators are generated by
elements of grade ≤ 2(|G| − 1). See [Symonds].

One last remark: Symonds gives an example due to Jean Lannes of a finite 1-dimensional
(Z/2× Z/2)-complex X whose equivariant cohomology has regularity three. Thus the regu-
larity theorem for S-manifolds does not extend to general complexes.

9 Local cohomology and the Duflot complex

By the Independence Theorem (Appendix A), we can compute the local cohomology of H∗SM
by regarding it as an H∗S-module, or even as a PS-module, where PS is the polynomial part
of H∗S. Applying local cohomology to the tower

(display)
we get a spectral sequence going from the local cohomology of the layers to the local co-
homology of H∗SM . However, the local cohomology of the i-th layer is concentrated in
cohomological degree i, so this spectral sequence degenerates to a cochain complex:

h0H∗SM
0
0−→h1H∗SM

1
1−→...−→hrH∗SM

r
r .

The i-th cochain module is a direct sum of modules of the form hiH∗SYB, where rank B = i.
The latter module in turn has the form

hi(PB)⊗N = Σ−dP ∗B ⊗N

for a certain finite dimensional module N , with d = 2i for p odd and d = i for p = 2.
Taking linear duals we get a corresponding Duflot chain complex whose homology is

the local homology of H∗SM . Now the summands of the i-th chain group have the form
ΣdPB ⊗N∗. Thus we have a finitely-generated free PB-module, regarded as a PS-module by
via the restriction homomorphism PS−→PB. In particular, the i-th chain group has Krull
dimension i as a PS-module.

It is interesting to note that certain general theorems of commutative algebra can be
proved directly for H∗G using the Duflot complex. For example, Grothendieck’s Theorem
asserts that the Krull dimension dimQ of a finitely-generated module Q is the largest i
for which hiQ 6= 0. Here the vanishing for i > dimH∗SM = r is immediate, since the
Duflot complex is zero above dimension r. Moreover hrH

∗
SM is nonzero and in fact of Krull

dimension r, because it is the kernel of a homomorphism from an r-dimensional module to
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an (r − 1)-dimensional module. A trivial application of exchange and descent yields the
result for H∗G.

Another example is a theorem of [Sharp], asserting (under suitable hypotheses that apply
here) that if a module has an associated prime p of dimension i, then its i-th local cohomology
is nonzero [and in fact the i-th homology has p as an associated prime]. Before either of us
was aware of Sharp’s theorem, the first author proved this result for H∗G as follows:

By the usual exchange and descent argument, we reduce to the analogous result for H∗SM .
Suppose pB,Y is an associated prime of dimension i. Then in the notation of Theorem 6.6,
p′B,Y is associated in H∗SY , and depthH∗SY = rank B. Hence hiH∗SY is nonzero, and by the
Kunneth theorem for local cohomology we have

hiH∗SY
∼= hiH∗B ⊗ h0H∗S/BY

with an analogous isomorphism in local homology. In particular, the H∗S-module hiH
∗
SY has

Krull dimension i. By Theorem 5.4, there is a short exact sequence

0−→Σcd(Y )H∗SY−→H∗SM−→N−→0,

compatible with the Duflot filtration and the direct sum decomposition of the layers. Ap-
plying local homology yields an exact sequence

hiH
∗
SM−→hiΣ

cd(Y )H∗SY
∂−→ hi−1N.

As shown earlier (ref), hi−1N has Krull dimension at most i−1. Hence Ker ∂ has dimension
i and therefore hiH

∗
SM has dimension i.

10 Appendix A: Local cohomology

For more information on local cohomology, see [Iyengar et. al.] or [Brodmann-Sharp]. Here
we will just give the definition and a few basic properties that we need. For an introduction
to Castelnuovo-Mumford regularity, with some history, see [Eisenbud].

Let R be a commutative ring, I an ideal in R. If M is an R-module, the I-torsion ΓI(M)
is defined by

ΓI(M) = {x ∈M : Inx = 0 for some n}.

ΓI is a left exact functor, whose right derived functors h∗IM are called local cohomology with
respect to I.

We will work in the graded setting. In fact for us, R is always a connected graded
noetherian algebra over a field κ, and I is always the maximal graded ideal m of positive
dimensional elements. So we will drop the subscript and write h∗M for hmM . Note also
that each functor hi is a graded R-module. We write hi,j for the j-th grade of hi, and call
this the internal grading of hi. If necessary for clarity, we write h∗RM to indicate that we are
regarding M as an R-module.

A simple but very helpful example is to take R = M = κ[x], where |x| = d. As graded
modules there is a length one injective resolution
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κ[x]−→κ[x, x−1]−→κ[x]/x∞,

where κ[x]/x∞ is just the cokernel of the first map. Hence h1κ[x] = κ[x]/x∞, and all other
local cohomology groups are zero. Note that h1 is negatively graded, with its highest nonzero
grade h1,−d. It is an m-torsion module and is not finitely-generated. Many of the properties
discussed below are already illustrated in this simple example.

Proposition 10.1 a) hiM is an m-torsion module.
b) If M is m-torsion, then hiM = 0 for i > 0.

Here (a) is obvious, while for (b) one shows that a torsion module admits an injective
resolution by torsion modules. Note that any M that is bounded above is m-torsion.

Now suppose M1,M2 are modules over R1, R2. Then we can form the (R1 ⊗R2)-module
M1 ⊗M2, and there is a Kunneth theorem:

Proposition 10.2

h
m,n
R1⊗R2

(M1 ⊗M2) ∼= ⊕i+j=m,r+s=nh
i,r
R1
M1 ⊗ h

j,s
R2
M2

Example. Consider a polynomial algebra R = κ[x1, ..., xn] = ⊗n
i=1κ[xi], where |xi| = di.

Then h∗R = 0 for i 6= n and

hnR ∼= κ[x1]/x
∞
1 ⊗ ...⊗ κ[xn]/x∞n .

In particular the highest nonzero grade is hn,−d, where d =
∑
di.

The next result is known as the “Independence Theorem”, since it shows that local
cohomology in a certain sense independent of the base ring used to compute it. In fact the
version we give here is only one corollary of the Independence Theorem, but it is the version
we will use.

Proposition 10.3 Let φ : R−→R′ be a finite ring homomorphism (of connected graded
noetherian algebras), and let M be an R′-module. Then there is a natural isomorphism

h∗RM
∼= h∗R′M.

For example, we can compute h∗R′M by taking a polynomial subalgebra R ⊂ R′ over
which R′ is finite (Noether normalization) and doing the computation over R. In topological
applications we often have a fibration E−→X with H∗E finite over H∗X; then we can
compute the local cohomology of H∗E as a module over itself by computing it as a module
over H∗X.

Theorem 10.4 Suppose M is finitely-generated.
a) i = depthM is minimal such that hi 6= 0.
b) i = dimM is maximal such that hi 6= 0.
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Part (b) is Grothendieck’s vanishing theorem. Note the theorem is not just saying that
hi vanishes below the depth and above the dimension; it says also that hi is always nonzero
for i = depthM , i = dimM .

The next result is a version of Grothendieck’s duality theorem. We don’t use duality
in this paper, but according to [Iyengar] one of the main motivations for local cohomology
was the possibility of proving such duality theorems. Let N∗ denote the graded linear dual
Hom (N, κ) of a graded R-module N . In the applications N is finitely-generated and hence
finite dimensional in each grade.

Theorem 10.5 Let R be a polynomial ring κ[x1, ..., xn], M a finitely-generated R-module.
Then hiM ∼= (Extn−iR (M,ΣdR))∗.

One can also define local homology h∗M as the linear dual of cohomology: hiM =
(hiM)∗ = Hom (h−iM,κ). For example, if R is a polynomial ring on n variables then
hnR ∼= Σd(R)R∗.

10.1 Castelnuovo-Mumford regularity

It is easy to show that if M is a finitely-generated R-module, then for each i, hiM is bounded
above. Let ai(M) denote the maximal grade in which M is nonzero. Since only finitely many
of the groups hiM are nonzero, we can define an integer regM , the Castelnuovo-Mumford
regularity of M , by

regM = max {ai(M) + i}.

Although rather obscure at first encounter, regM turns out to be useful e.g. for studying
the dimensions of generators in minimal free resolutions. See Symonds’ Theorem? above for
an application to algebra generators of group cohomology rings.

Example. If M is bounded above (with our hypotheses, this is equivalent to finite-
dimensional), then h0M = M and the higher hi’s are zero. Hence regM = 0.

Example. If R = κ[x1, ..., xn], with |xi| = di, then as a module over itself, hi 6= 0 only for
i = n, as shown above. The calculation also shows that reg R = −d+ n, where d =

∑
di.

The following properties of regularity follow immediately from corresponding properties
of local cohomology:

1. Regularity is “independent of the base ring” in the sense of Proposition 10.3.

2. In the situation of Proposition 10.2 (the Kunneth theorem),

reg (M1 ⊗M2) = regM1 + regM2.

3. If 0−→M1−→M2−→M3−→0 is exact, then regM2 ≤ max (regM1, regM3).

20



11 Appendix B: Localization at a submanifold and the

pushforward in equivariant cohomology

Let Z be a smooth S-manifold, i = iY,Z : Y ⊂ Z a closed S-submanifold of codimension
d = d(Y, Z). Borrowing a notation from Hatcher, we write H∗S(Z|Y ) := H∗S(Z,Z − Y ) for
cohomology localized at Y . Note H∗SZ = H∗S(Z|Z). It has various variances:

1. It is covariant with respect to inclusions in Y : X ⊂ Y induces H∗S(Z|X)−→H∗S(Z|Y ).
This is a map of H∗SZ-modules.

2. It is contravariant with respect to inclusions in Z: Z ′ ⊂ Z inducesH∗S(Z|Y )−→H∗S(Z ′|Y ),
again a map of H∗SZ-modules.

3. More generally, it is contravariant with respect to pair inclusions (Z ′, Y ′) ⊂ (Y, Z)
provided that Y ′ = Y ∩ Z ′. Since we are limiting our attention to closed submanifolds, we
need to also assume the intersection is transverse if we want to stay in that context.

If Y1, Y2 are closed S-submanifolds that intersect transversally (again the transversality
is just to stay in the manifold context), there is a cup product

H∗S(Z|Y1)⊗H∗S(Z|Y2)−→H∗S(Z|(Y1 ∩ Y2)).

Next we have the usual Gysin/push-forward/transfer map i∗ : ΣdH∗SY−→H∗SZ, defined
as the composite

ΣdH∗SY
∼=−→ H∗S(Z|Y )

p∗−→ H∗SZ,

where the first map is Thom isomorphism plus excision and the second the natural map for
the pair. Among the properties satisfied by i∗, we mention the following: First, note that
i∗1 is the class obtained by pulling back the Thom class of the normal bundle in the usual
way.

Proposition 11.1 a) i∗i∗1 = e(νY ), where e is the Euler class and νY is the normal bundle.
b) i∗((i

∗a)b) = ai∗b (this is just the module map property restated).

Proposition 11.2 Naturality.
Suppose U is an S-invariant subset of Zthat is either open or a closed submanifold trans-

verse to Y , and consider the commutative diagram of inclusions:

U ∩ Y Y

U Z

-j′

?

i′

?

i

-
j

Then j∗i∗ = i′∗j
′∗.
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Proof: This follows from naturality of the Thom isomorphism and of the maps p associated
to the pairs.

Note the trivial special case: If U ∩ Y = ∅, j∗i∗ = 0.

Proposition 11.3 Functoriality

Given inclusions X
j−→ Y

i−→ Z of closed S-submanifolds, (i ◦ j)∗ = i∗ ◦ j∗.
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