Lecture 9-27: Linear algebraic groups

September 27, 2023

Lecture 9-27: Linear algebraic groups

September 27, 2023 1 / 14

- ▲ 프 ▶ - ▲ 프

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

I will cut right to the chase, beginning with an informal definition of linear algebraic groups, the main objects of study in this course, together with a number of examples. Shortly I will give a more formal definition and develop the concepts that logically preceded this definition. Throughout I will work over an algebraically closed field **k**; I should mention that the second half of the Springer text together with many remarks in the first half are devoted to groups over arbitrary fields, but I will not need that level of generality here. All page references are to the Springer text "Linear algebraic groups", 2d edition.

イロン イ理 とくほ とくほ とう

Definition 2.1.1, p. 21

A linear algebraic group, often just called an algebraic group, over **k** is an affine variety $G \subset \mathbf{k}^n$ for some *n* (that is, the set of common zeros of some set *T* of polynomials in *n* variables over **k**) which also has a group structure, such that multiplication and inversion on *G* are given by polynomial functions on it.

There is a clear similarity between this notion and that of Lie group (differentiable manifold with a group structure such that multiplication and inversion are given by smooth maps), but linear algebraic groups are more restricted than Lie groups, in three important ways.

- We are working with level sets (common zeros of a set of functions) rather than more general kinds of manifolds.
- We are restricting attention to polynomial functions rather than general smooth ones.
- We are not working over non-algebraically closed fields like $\ensuremath{\mathbb{R}}.$
- Linear algebraic groups are given to us by definition as subsets of kⁿ for some n; Lie groups are not given to us as subsets of Euclidean space.

イロン イ理 とくほ とくほ とう

э

Thus for example any linear algebraic group over the complex numbers \mathbb{C} turns out to be a Lie group, but not conversely. Most of the standard examples of complex Lie groups that one sees in a first course on smooth manifolds do however turn out to be linear algebraic groups. A *nonexample* is $T = \{z \in \mathbb{C} : ||z|| = 1\}$; here the problem is that the condition ||z|| = 1 for $z \in \mathbb{C}$ to lie in Tis polynomial in the real and imaginary parts of z, but not in zitself.

In topology or geometry, T would be called a torus; but for this course the closest thing to T that is an algebraic group is \mathbb{C}^* , the multiplicative group of all nonzero complex numbers. This is what I will call a complex torus (or more generally any product of copies of \mathbb{C}^*).

ヘロン ヘ回 とくほ とく ヨン

Example

For any *n* the group $G = GL_n = GL_n(\mathbf{k})$ of $n \times n$ invertible matrices over **k** is linear algebraic. At first glance, this example does not seem to fit the definition, since although we can regard the elements of *G* as n^2 -tuples $x = (x_1, \ldots, x_{n^2})$ over **k**, the condition for such a tuple to lie in *G* is given by an inequality (nonvanishing of the determinant) rather than an equation.

イロン イ理 とくほ とくほ とう

Example

I get around this by adding a new variable y, defined to be the multiplicative inverse of the determinant det M of the matrix M corresponding to x whenever this determinant is nonzero. Then I can define G as the set of $(n^2 + 1)$ -tuples $(x_1, \ldots, x_{n^2}, y)$ such that $(\det M)y = 1$. Then the condition to lie in G is polynomial. Moreover, the formula for the inverse of an invertible matrix, though not quite polynomial in its entries, *is* polynomial in these entries together with the inverse of its determinant, so the group operations on G are indeed polynomial in the coordinates.

Example

We also have $SL(n, \mathbf{k})$, the special linear group of $n \times n$ matrices over \mathbf{k} of determinant 1; here we do not need any variables beyond the entries of the matrix. We further have the orthogonal group $O(n, \mathbf{k})$, consisting of all matrices M with $M^{t} = M^{-1}$ (where M^{t} is the transpose of M) and the special orthogonal group $SO(n, \mathbf{k}) = O(n, \mathbf{k}) \cap SL(n, \mathbf{k})$. If n = 2m is even then we also have the symplectic group $Sp(n, \mathbf{k})$, defined by the equation $M^{t} = JM^{-1}J^{-1} = -JM^{-1}J$, where $J = \begin{pmatrix} 0 & -l \\ l & 0 \end{pmatrix}$ and l is the $m \times m$ identity matrix; one checks easily that $Sp(n, \mathbf{k})$ is indeed closed under products, inverses, and transposes. For more examples see p. 23.

ヘロン ヘアン ヘビン ヘビン

More generally, any closed subgroup of $GL(n, \mathbf{k})$, that is, one defined by polynomial equations, is a linear algebraic group. We have in particular the group D_n of invertible diagonal matrices, the group T_p of upper triangular invertible matrices, and the group U_n of unipotent upper triangular matrices (having ones on the main diagonal). Note that U_p is a normal subgroup of T_p ; the quotient group T_n/U_n is naturally isomorphic to D_n . It turns out that in fact all linear algebraic groups arise as closed subgroups of $GL(n, \mathbf{k})$ for some n; this is why they are called linear. Thus for example k itself, regarded as an additive group, is linear

algebraic; it is isomorphic to the matrix group $\left\{ \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix} : k \in \mathbf{k} \right\}$.

We also denote this group by G_a and call ti the additive group. Similarly $D_1 = GL_1$, consisting of the nonzero elements of **k**, is an algebraic group under multiplication, often denoted G_m and called the multiplicative group.

イロン イ理 とくほ とくほ とう

ъ

Having exhibited some examples, it is now time to return to the beginning and proceed more formally.

Definition

As already mentioned above, an affine variety $V \subset \mathbf{k}^n$ is the set of $\mathcal{V}(T)$ of common zeros of some subset T of the polynomial ring $S = \mathbf{k}[x_1, \ldots, x_n]$. The Zariski topology on V is the one for which the closed sets are the sets of common zeros in V of some subset Tof S. In particular, \mathbf{k}^n itself is an affine variety, often denoted \mathbf{A}^n .

イロト イポト イヨト イヨト

Hilbert Nullstellensatz; Proposition 1.1.2, p. 1

There is a one-to-one inclusion-reversing correspondence from radical ideals *I* of *S* to affine varieties $V \subset \mathbf{k}^n$, sending the ideal *I* of *S* to $\mathcal{V}(I)$ and the variety *V* to the ideal $\mathcal{I}(V)$ of polynomials in *S* vanishing on *V*.

Image: A matrix

Definitions

Given an affine variety $V \subset \mathbf{k}^n$ its coordinate ring $\mathbf{k}[V]$ is the quotient $S/\mathcal{I}(V)$ of the polynomial ring S by the ideal of functions vanishing on V. If $W \subset \mathbf{k}^m$ is another affine variety with coordinate ring $\mathbf{k}[W]$ then a morphism ϕ from V to W is a the restriction to V of a polynomial map from \mathbf{k}^n to \mathbf{k}^m mapping V to W, where we identify any two such maps if they have the same restriction to V.

イロン イ理 とくほ とくほ とう

A morphism $\phi: V \to W$ identifies naturally with a **k**-algebra homomorphism $\phi^*: k[W] \to k[V]$, since any such **k**-algebra homomorphism is determined by where it sends the generators of $\mathbf{k}[x_1, \ldots, x_m]$. I will develop the many connections between ϕ and ϕ^* later.

イロト イポト イヨト イヨト 二日