Lecture 11-8: Roots and root systems

November 8, 2023

We continue our discussion of roots from last time. Let G be a connected algebraic group with maximal torus T and let $W=N_{G}(T) / Z_{G}(T)$ be the Weyl group of T. Also let B be a Borel subgroup of G.

Proposition 7.1.5, p 115

Assume that G is non-solvable and $\operatorname{dim} T=1$. Then W has order 2 and $\operatorname{dim} G / B=1$.

Proof.

First note that W has order at most 2 , since it acts faithfully by automorphisms on $X=X^{*}(T) \cong \mathbb{Z}$ and \mathbb{Z} has only two automorphisms. Now fix an isomorphism $\lambda: T \rightarrow \mathrm{G}_{m}$. Let B be a Borel subgroup containing T. Let $\phi: G \rightarrow G L(V), v \in V$ be a representation and a vector in it with the properties of Theorem 5.5.3 for G and B; we may assume that V is spanned by the images $\phi(x) \vee$ as x runs through G. Then ϕ defines an isomorphism from G / B onto a closed subvariety $Y=G . \mathbf{k} v$ of $\mathbb{P} V$; we identify G / B with this closed subvariety. Choose a basis e_{1}, \ldots, e_{n} of V consisting of weight vectors for the induced representation ρ of G_{m} on it, so that we have $\rho(a)=a^{m_{i}} e_{i}$ for $a \in \mathbf{k}^{*}, 1 \leq i \leq n$.

Proof.

(continued) Assume that the indices are arranged so that $m_{1} \geq \ldots \geq m_{n}$. Write a point $x^{*} \in Y$ in homogeneous coordinates as (x_{1}, \ldots, x_{n}). If i, j are respectively the largest and smallest indices with $x_{i}, x_{j} \neq 0$, then an easy argument shows that $\mathbf{k} e_{i}, \mathbf{k} e_{j} \in Y$, where e_{i}, e_{j} are the ith and j th unit coordinate vectors; the morphism $\mathrm{G}_{m} \rightarrow \mathbf{P} V$ arising from the action of T extends in two ways to a map from A^{1} to $\mathbf{P} V$, with the extra point in its image lying in Y in both cases. You can think of $\mathbf{k} e_{i}$ as $\lim _{a \rightarrow \infty} \phi(a)(\mathbf{k} x)$, while $\mathbf{k} e_{j}=\lim _{a \rightarrow 0} \phi(a)(\mathbf{k} x)$. Running over all the points of Y, we conclude that T has at least two fixed points in G / B, and order of W is exactly 2 .

Proof.

(continued) Letting i, j be the indices arising in the last paragraph, so that $\mathbf{k} e_{i}, \mathbf{k} e_{j}$ are fixed points of T in G / B, we find that the points in Y with jth coordinate 0 form a closed T-stable subset Σ which is nonempty. If any component of Σ had dimension at least 1 , then the above argument would show that that component would include at least two fixed points of T, together with the one $\mathbf{k} e_{j}$ that it already has, a contradiction; so Σ is finite. The j th coordinate function f on a suitable open neighborhood of e_{i} takes the value 0 there and $f^{-1}(0)$ is finite. The second assertion now follows from Corollary 5.2.7, since the dimension of G / B cannot be 0 .

Returning now to the general case (so that the rank of G is arbitrary), let $\alpha \in P^{\prime}$; we know that $W_{\alpha}=W\left(G_{\alpha}\right) \subset W$ has order 2 . Choose $n_{\alpha} \in N_{G_{\alpha}}(T), n \notin Z_{G_{\alpha}}(T)$ and let s_{α} be the image of n_{α} in W. Denote by X the group hom (X, \mathbb{Z}) of cocharacters of $X=X^{*} G$; this group is also isomorphic to \mathbb{Z}^{n} and there is a nondegenerate pairing $\langle\cdot, \cdot\rangle$ between X and \check{X}. Identify X, \check{X} with subgroups of $V=\mathbb{R} \otimes X, \check{V}=\mathbb{R} \otimes \check{X}$, with $\langle\cdot, \cdot\rangle$ again denoting the pairing between V and \check{V}. The action of W on X naturally extends to a linear action on V.

Following p .116 in the text, we now introduce a positive definite symmetric bilinear form (\cdot, \cdot) on V that is invariant under W : starting with any symmetric positive definite bilinear form f on V, replace $f(x, y)$ by $(x, y)=\sum_{w \in W} f(w \cdot x, w \cdot y)$. The s_{α} are then reflections in the Euclidean space V : given α, s_{α} fixes the hyperplane orthogonal to α and sends α to its negative, whence $s_{\alpha}(v)=v-\frac{2(v, \alpha)}{(\alpha, \alpha)} \alpha$. Identify \check{V} with the dual of V, or with V itself, using the form (\cdot, \cdot), Using this idenitification set $\check{\alpha}=\frac{2 \alpha}{(\alpha, \alpha)} \in \check{V}$ and call $\check{\alpha}$ the coroot of α. Then $\left.s_{\alpha}(v)=v-\langle v, \check{\alpha}\rangle \alpha,\langle\alpha, \check{\alpha}\rangle=26\right)$. The Weyl group W turns out to be generated by the reflections s_{α} as α runs over P^{\prime} (Theorem 7.1.9, p. 116).

The upshot is that we can attach to G a root datum (7.4.1, p. 124). This consists of the quadruple $(X, R, \check{X}, \check{R})$, where X, \check{X} are free abelian groups of finite rank, in duality by a pairing $\langle\cdot, \cdot\rangle$ taking values in \mathbb{Z}, R (denoted earlier by P^{\prime}) and \check{R} are finite subsets of X and \check{X}, respectively, equipped with a bijection $\alpha \mapsto \check{\alpha}$ from R to \check{R}. Defining $s_{\alpha}(x)=x-\langle x, \check{\alpha}\rangle \alpha, s_{\check{\alpha}}(y)=y-\langle\alpha, y\rangle \check{\alpha}$ for $\alpha \in R, x \in X, y \in \check{X}$, we have the key properties that $\langle\alpha, \check{\alpha}\rangle=2$ for $\alpha \in R$ and $s_{\alpha} R=R, s_{\check{\alpha}} \check{R}=\check{R}$ (properties (RD1) and (RD2) on p. 124). Here of course X is the character group of a maximal torus of G, R the set of its roots, \check{X} the cocharacter group, and the remaining notations are as defined above. The root datum is independent of the choice of maximal torus T since any two such are conjugate.

We identify the root data $(X, R, \check{X}, \check{R}),(Y, S, \check{Y}, \check{S})$ whenever there is a linear isomorphism $\phi: X \rightarrow Y$ such that ϕ maps \check{X} onto \check{Y}, R onto S, \check{R} onto \check{S}, and $\check{\alpha}(\beta)=(\phi \alpha)(\phi \beta)$ for all $\alpha, \beta \in R$; notice that we are not requiring that the positive definite form (\cdot, \cdot) introduced above on $\mathbb{R} \otimes X$ be preserved by ϕ. The root data $(X, R, \check{X}, \check{R})$ arising from algebraic groups have the further property of being reduced (see p. 125), meaning that $c \alpha \notin R$ whenever $\alpha \in R$ and $c \in \mathbf{k}$ is different from ± 1; we will prove this later. If for example X and \check{X} both have rank one, so that each of these identifies with \mathbb{Z}, then it is easy to check that there are just two reduced root data up to isomorphism, one with roots ± 2 and coroots ± 1, the other with roots ± 1 and coroots ± 2. These data correspond to the groups $S L_{2}(\mathbf{k})$ and $P S L_{2}(\mathbf{k})$, respectively.

Letting Q be the subgroup of X generated by R and denoting $\mathbb{R} \otimes Q$ by V, regarded as a Euclidean space equipped with the usual dot product, we see that R satisfies the axioms of a root system; that is, (RS1) R is finite, does not contain 0 , and spans V; (RS2) if $\alpha \in R$ then the reflection s_{α} stabilizes R, where $s_{\alpha}(\beta)=\beta-\frac{2(\beta, \alpha)}{(\alpha, \alpha)} \alpha$; (RS3) If $\alpha \in R$ then $\frac{2(\beta, \alpha)}{(\alpha, \alpha)} \in \mathbb{Z}$. (The last condition is sometimes called the crystallographic condition.). Root systems arising from reduced root data are also called reduced. The coroot $\check{\alpha}$ is defined to be $\frac{2 \alpha}{(\alpha, \alpha)}$ for $\alpha \in R$.

We now return to the salt mines for little longer, proving two more facts about non-solvable groups of rank one; we will then go beyond the text by sketching the classification of root systems and root data, which is purely combinatorial. For now let G be non-solvable of rank one. Fix a Borel subgroup B containing a maximal torus T, let $U=B_{u}$ be its unipotent radical and let $n \in N_{G}(T)$ represent the nontrivial element of the Weyl group W, so that $n t n^{-1}=t^{-1}$ for $t \in T$ and $n^{2} \in Z_{G}(T)$.

Lemma 7.2.2, p. 117

- G is the disjoint union of B and UnB.
- $R(G)=\left(U \cap n U n^{-1}\right)^{0}$, where $R(G)$ is the solvable radical of G. - $\operatorname{dim} U / U \cap n U n^{-1}=1$.

Proof.

Let $x \in G / B$ be the coset B. Then $n . x, x$ are the two distinct fixed points of T in G / B; since $n^{-1} B n \neq B$ we have Un. $x \neq\{n . x\}$. We have seen that $\operatorname{dim} G / B=1$; it follows that the complement of Un.x is a finite set S. Since the torus T normalizes U, it must permute this set S, whence it fixes all of its points. It follows that $S \subset\{x, n . x\}$. Since $x \notin U n . x, n . x \in U n . x$ we conclude that Un. $x=G / B-\{x\}$; the first assertion follows.

Proof.

(continued) Since $U \cap n U n^{-1}$ is the isotropy group of $n . x$ in U, part (iii) follows from part (i) and Theorem 5.3.2 (ii). Since the normalizer of a proper closed connected subgroup of a unipotent group always has larger dimension than the subgroup, it must be that $\left(U \cap n U n^{-1}\right)^{0}$ is normal in U; since this group is also normalized by T and n, it is normal in G. Part (ii) follows, since $R(G)$ cannot contain a torus.

