Lecture 11-6: More about solvable groups; roots

November 6, 2023

Lecture 11-6: More about solvable groups

Let G be a connected algebraic group.

Theorem 6.4.7, p. 110

Let S be a subtorus of G.

- The centralizer $Z_G(S)$ of S is connected.
- If *B* is a Borel subgroup of *G* containing *S* then $Z_G(S) \cap B$ is a Borel subgroup of $Z_G(S)$; all Borel subgroups of $Z_G(S)$ arise in this way.

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Set $Z = Z_G(S)$. Take $g \in Z$ and let B be a Borel subgroup containing g. Put $X = \{xB \in G/B : x^{-1}gx \in B\}$. Then X is a closed subvariety of G/B, being a fiber of the projection $Y_1 \rightarrow G$ occurring in the proof of Lemma 6.4.4, with H = B. As a closed subvariety of G/B, X is complete. Now S acts on X by left multiplication; by the fixed-point theorem there is $xB \in X$ with $x^{-1}Sx \subset B$. Hence there is a Borel subgroup containing both g and S. Then Theorem 6.3.5 (ii) and Corollary 6.3.6 (ii) show that g lies in the identity component Z^0 and part (i) follows. Now let B be as in part (ii). Then $Z \cap B$ is connected by Corollary 6.3.6 (ii) and solvable. To prove the first part of (ii) it suffices to show that $Z/Z \cap B$ is complete. There is a bijective morphism from $Z/Z \cap B$ onto the the Z-orbit Y = Z.B in G/B. Since the map $G \rightarrow G/B$ is open, it suffices to show that Y is closed; as the image of $Z \times B$ under a morphism the closure \overline{Y} is irreducible and connected.

(continued) If $y \in Y$ we have $y^{-1}Sy \subset B$; this also holds if $y \in \overline{Y}$. Consider the morphism $\phi : \overline{Y} \times S \to B/B_u$ sending (y, s) to $y^{-1}syB_u$. By the rigidity of diagonalizable groups we conclude that for $y \in \overline{Y}$ we have $y^{-1}sy \in sB_u$, so that $y^{-1}Sy$ is a maximal torus of SB_u . By the conjugacy of maximal tori of that group there is $z \in B_u$ with $y^{-1}Sy = z^{-1}Sz$, so that $y \in Z.B = Y$. Hence Y is closed, as desired; the last assertion in part (ii) follows from the conjugacy of Borel subgroups.

イロト イポト イヨト イヨト

By contrast with solvable groups, centralizers of semisimple *elements* in general groups need not be connected; see Exercise 6.4.15 (5).

Corollary 6.4.8

Let *T* be a maximal torus of *G*. Then $C = Z_G(T)$ is a Cartan subgroup of *G* and any Borel subgroup of *G* containing *T* also contains *C*.

This follows at once from the theorem with S = T, recalling that Cartan subgroups are nilpotent.

Theorem 6.4.9, p. 111

Any Borel subgroup B of G has $N_G(B) = B$.

・ロト ・ 同ト ・ ヨト ・ ヨト …

We argue by induction on dim G; the result is trivial if G is solvable. Set $H = N_G(B)$ and let $x \in H$. Fix a maximal torus T of B. Then xTx^{-1} is also a maximal torus of B; by the conjugacy of maximal tori we may assume that $xTx^{-1} = T$. Consider the homomorphism $\psi : t \mapsto xtx^{-1}t^{-1}$ of T onto itself. There are two cases. If the image of ψ is a proper subgroup of T then $S = (\ker \psi)^0$ is a nontrivial torus. Moreover, x lies in $Z = Z_G(S)$ and normalizes the Borel subgroup $Z \cap B$ of Z. If $Z \neq G$ we have $x \in B$ by inductive hypothesis; if Z = G then S lies in the center of G; passing to G/S and again using induction we get $x \in B$.

(continued) Otherwise the image of ψ is all of *T*. Choose ϕ , *V*, and *v* as in the proof of Theorem 5.5.3 for *G*/*B*, realizing *B* as the isotropy subgroup of a line $\mathbf{k}v$ lying inside a rational representation *V* of *G*. Then $\phi(B_u), \phi(T)$ fix *v*, since B_u is unipotent and *T* lies in the commutator subgroup (*H*, *H*), so that ϕ induces a morphism of the complete variety *G*/*B* into the affine one *V*, which must be constant. Then *G* fixes *v*, so that H = G and *B* is normal in *G*. But then *G*/*B*, containing only unipotent elements, is unipotent and *G* is solvable, forcing H = G = B.

ヘロン 人間 とくほ とくほ とう

As immediate corollaries we get that if *P* is parabolic in *G* then *P* is connected and $N_G(P) = P$ and if *P*, *Q* are conjugate parabolic subgroups of *G* whose intersection contains a Borel subgroup *B*, then P = Q (Corollaries 6.4.10 and 6.4.11, p. 111). Indeed, *P* contains a Borel subgroup *B*, which lies in P^0 ; if $x \in N_G(P)$ then xBx^{-1} is also a Borel subgroup of P^0 , which must be conjugate in P^0 to *B*, say by *y*; then $y^{-1}x \in B$ and $x \in P^0$. For Corollary 6.4.11, let $P = xQx^{-1}$. Then *B*, xBx^{-1} are two Borel subgroups of *P*, which must be conjugate in *P*, forcing *yx* for some $y \in P$ to lie in $N_G(B) = B$ and $x \in P$, so that P = Q. We also get

Corollary 6.4.12, p. 111

Let *T* be a maximal torus of *G* and *B* a Borel subgroup containing *T*. The map $x \mapsto xBx^{-1}$ induces a bijection of $N_G(T)/Z_G(T)$ onto the set of Borel subgroups containing *T*.

Surjectivity follows from the conjugacy of maximal tori in *B*; injectivity follows since Borel subgroups are self-normalizing and the normalizer of a torus in a Borel subgroup coincides with its centralizer (Corollary 6.3.6).

イロト イポト イヨト イヨト

We now give a couple of important definitions. The set \mathcal{B} of all Borel subgroups of an algebraic group G is called, naturally enough, its variety of Borel subgroups; it may be identified with the homogeneous projective space G/B, where B is any fixed Borel subgroup. Similarly, we have the projective variety $\mathcal{P} = G/P$ of conjugates of a fixed parabolic subgroup P.

If N, N' are normal subgroups of G then N.N' is also normal. Hence there is a unique maximal closed connected normal solvable subgroup of G, called its (solvable) *radical* and denoted R(G). Similarly, there is a unique maximal closed connected normal unipotent subgroup of G, called its *unipotent radical* and denoted $R_u(G)$; we have $R_u(G) = R(G)_u$. We say that G is semisimple if R(G) = e and *reductive* if $R_u(G) = e$. The rest of the course will be primarily devoted to the study of reductive algebraic groups.

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

3

We now change gears, introducing some combinatorial data attached to a maximal torus T in a connected algebraic group G which play a crucial role in the classification of reductive groups. The dimension n of T is called the rank of G (p. 117). This dimension is independent of the choice of T since any two maximal tori are conjugate; the character group X of T is then isomorphic to \mathbb{Z}^n . We know that the Lie algebra \mathfrak{g} of G is a rational representation of T via the restriction of the adjoint representation; as such \mathfrak{g} is a direct sum of one-dimensional T-stable subspaces \mathfrak{g}_{α} called *root spaces*, each corresponding to a character α of T. The nontrivial characters α arising in this way are called *roots* (of T in \mathfrak{g}). Denote by P the set of roots. An easy calculation shows that for any subtorus S of T, the centralizer $Z_G(S) = Z_G(T)$ if and only if S is not contained in any of the subgroups ker α as α runs over P (Lemma 7.1.2, p. 114).

ヘロン ヘ週ン ヘヨン ヘヨン

For $\alpha \in P$ we denote by G_{α} the centralizer of the subtorus ker α of T; this is a closed connected subgroup.

Lemma 7.1.3, p. 114

The G_{α} generate G as α runs over P; if all G_{α} are solvable then so is G.

By Corollary 2.2.7 the subgroup H generated by the G_{α} is closed and connected. Its Lie algebra contains the Lie algebra $\mathfrak{c} = \mathfrak{g}_0$ of the centralizer of T and all root spaces \mathfrak{g}_{α} , whence all of \mathfrak{g} , forcing H = G. If G_{α} is solvable then by Theorem 6.4.7 (ii) it lies in some Borel subgroup and thus every Borel subgroup of G; if this holds for all roots α then we have G is a Borel subgroup of itself, so that G is solvable.

・ロト ・ 同ト ・ ヨト ・ ヨト …

We denote by P' the set of roots α such that G_{α} is non-solvable and by W the quotient $N_G(T)/Z_G(T)$, called the Weyl group of G(p. 115). We have seen that W is finite; it acts faithfully as a group of automorphisms of X permuting P and P'. By Corollary 6.4.12 there is a bijection between W and the set of Borel subgroups of G containing T; if B is one such subgroup there is also a bijection between W and the set of T-fixed points in G/B. Fixing $\alpha \in P'$, we note that the group G_{α} contains $S = \ker \alpha$ in its center and the Weyl group of G_{α} relative to T coincides with that of G_{α}/S relative to T/S, where $T/S \cong G_m$ is a one-dimensional torus.