Lecture 11-22: Bruhat decomposition

November 22, 2023

We give a uniform decomposition of any reductive group G using a Borel subgroup B and the Weyl group W relative to a torus T contained in B; this will show among other things that there are only finitely many double cosets $B \times B$ in G. We begin with the remaining parts of the lemma partly proved last time. Let R be the root system of G and W its Weyl group, generated by all reflections s_{α} by roots $\alpha \in R$. Let n be the rank of R, so that R lies in the Euclidean space \mathbb{R}^{n}. Finally, let R^{+}be the positive subsystem of R corresponding to B.

Lemma 8.3.2, p. 142, continued

Retain the notation of last time, so that $s_{1} \ldots s_{h}$ is a reduced decomposition of $w \in W$ as a product of simple reflections.

- If α is simple, then $\ell\left(w s_{\alpha}\right)=\ell(w)+1$ if $w . \alpha \in R^{+}$and $\ell\left(w s_{\alpha}\right)=\ell(w)-1$ if $w . \alpha \in-R^{+}$.
- If α is simple and $w . \alpha \in-R^{+}$then there is a reduced decomposition of w ending with s_{α}.
- If $s_{1}^{\prime} \ldots s_{h}^{\prime}$ is another reduced decomposition of w then there is i with $1 \leq i \leq h$ and $s_{1} \ldots s_{i-1} s_{i+1} \ldots s_{h}=s_{1}^{\prime} \ldots s_{h-1}^{\prime}$ (the exchange condition)

Proof.

The first part follows from the formula for $R\left(w s_{\alpha}\right)$ in terms of $R(w)$ given last time. For the next part, observe first that $\ell(w)=\ell\left(w^{-1}\right.$. Using part (i) of Lemma 8.3.2, proved last time, we get $w s_{\alpha}=s_{1} \ldots s_{i-1} s_{i+1} \ldots s_{h}$, whence this part follows. Applying this part to $\alpha=s_{h}^{\prime}$, we get the last part.

If s, t are simple reflections with $s \neq t$ denote by $m(s, t)$ the order of the product st in W; from earlier work with root systems of rank 2 , we know that $m(s, t)=2,3,4$ or 6 . Also note that $m(s, t)=m(t, s)$. It can be shown that the Weyl group W is presented as an abstract group by the generating set S of simple reflections together with the defining relations $s^{2}=1, s t s \ldots=t s t \ldots(m(s, t)$ factors on each side) for $s, t \in S, s \neq t$ (Theorem 8.3.4, p. 143; the proof in the text seems incomplete to me). These last relations are called the braid relations. A consequence of the proof of this presentation of W is that given a map ϕ from S into a monoid M such that the $\phi(\alpha)$ satisfy the braid relations, there is a unique extension of ϕ to W such that $\phi(w)=\phi\left(s_{1}\right) \ldots \phi\left(s_{h}\right)$ for any reduced decomposition $s_{1} \ldots s_{h}$ of $w \in W$.

Recall now that the Weyl chambers are the connected components of \mathbb{R}^{n} with all hyperplanes H_{α} orthogonal to α removed, for all $\alpha \in R$. We have seen that W acts transitively on the Weyl chambers; in addition, any $w \in W$ sending the dominant chamber D to itself (consisting of all $x \in \mathbb{R}^{n}$ with $(x, \alpha)>0$ for all $\alpha \in R^{+}$) necessarily sends roots in R^{+}to roots in R^{+}, so must have length 0 , whence $w=1$. This shows that W acts simply transitively on Weyl chambers, so that given any two such chambers C_{1}, C_{2} there is a unique $W \in W$ sending C_{1} to C_{2}. In particular, there is a unique $w_{0} \in W$ sending D to the antidominant chamber - D; this is the unique element of largest possible length $\left|R^{+}\right|$. We call it the long element of W.

Lemma 8.3.5, p. 144

Let $w \in W$.

- The groups U_{α} introduced earlier with $\alpha \in R(w)$ generate a closed connected subgroup U_{w} of $U=B_{u}$ normalized by T; we have $U_{w}=\prod_{\alpha \in R(w)} U_{\alpha}$ (the product being taken in any order).
- The product morphism $U_{w} \times U_{w_{0} w} \rightarrow U$ is an isomorphism of varieties.
U_{w} is closed and connected Corollary 2.2 .7 (i) (p.27) and is clearly normalized by T. Proposition 8.2.3 (p. 138) shows that the product is a group, which then coincides with U_{w}. Proposition 8.2.1 (p. 137) proves the second part, since $R\left(w_{0} w\right)=R^{+}-R(w)$.

Let $(\dot{W})_{w \in W}$ be a set of representatives in $N_{G}(T)$ of the elements of W; denote by $C(w)$ the double coset $B \dot{w} B$ (which is easily seen not to depend on the choice of \dot{w}). This is an orbit of $B \times B$ acting on G, hence is open in its closure in G.

Lemma 8.3.6, p. 144

Let $w=s_{1} \ldots s_{h}$ be a reduced decomposition of $w \in W$; for each index i let α_{i} be the simple root corresponding to s_{i}. The morphism $\phi: \mathbb{A}^{h} \times B \rightarrow G$ with $\phi\left(x_{1}, \ldots, x_{h}, b\right)=u_{\alpha_{1}}\left(x_{1}\right) \dot{s}_{1} u_{\alpha_{2}}\left(x_{2}\right) \dot{s}_{2} \ldots u_{\alpha_{h}}\left(x_{h}\right) \dot{s}_{h} b$ defines an isomorphism $\mathbb{A}^{h} \times B \cong C(w)$. The map $(u, b) \mapsto u \dot{w} b$ is an isomorphism of varieties from $U_{w^{-1}} \times B$ to $C(w)$.

Proof.

We have $C(w)=B \dot{w} B=U \dot{w} B$. Since elements of W conjugate one-parameter subgroups $\left(u_{i}(x)\right)$ of G to one-parameter subgroups we have $\dot{w}^{-1} U_{w_{0} s^{-1}} \dot{W} \subset B$, whence $C(w)=U_{w^{-1}} \dot{W} B$. By Lemma 8.3.2 (i) we have $R\left(w^{-1}\right)=\left\{\alpha_{1}, s_{1} \alpha_{2}, \ldots, s_{1} \ldots s_{h-1} \alpha_{h}\right\}$, whence $U_{w^{-1}}=U_{\alpha_{1}}\left(\dot{s}_{1} U_{w^{-1} s_{1}} \dot{s}_{1}^{-1}\right)$ and $C(w)=U_{\alpha_{1}} \dot{s}_{1} C\left(s_{1} w\right)$. By induction on h we may assume that the assertion of the lemma holds for $s_{1} w=s_{2} \ldots s_{h}$. It follows from the last formula that ϕ is surjective. Then ϕ is the composite of the isomorphism $\mathbb{A}^{h} \times B \rightarrow U_{w^{-1}} \times B$ of the previous result and the morphism $(u, b) \mapsto u \dot{w} b$. That the last morphism is an isomorphism is easily checked by viewing both spaces as homogeneous spaces for $U_{w^{-1}} \times B$ and applying Theorem 5.3 .2 (iii) (p. 87).

One more lemma before we deduce our main result.
Lemma 8.3.7, p. 145
Let $w \in W, s \in S$, where S is the set of simple reflections (relative to a fixed choice of positive roots) Then

- $C(s) \cdot C(w)=C(s w)$ if $\ell(s w)=\ell(w)+1$,
- $C(s) \cdot C(w)=C(w) \cup C(s w)$ if $\ell(s w)=\ell(w)-1$.

Proof.

Let $s=s_{\alpha}, \alpha$ the corresponding simple root. By part (ii) of Lemma 8.3.5 we have $C(s)=U_{\alpha} \dot{s} B$, whence $C(s) . C(w)=U_{\alpha} \dot{s} C(w)$. For $\ell(s w)=\ell(w)+1$ the assertion follows from part (i) of this lemma. If $\ell(s w)=\ell(w)-1$ we have $C(s) \cdot C(w)=C(s) \cdot C(s) \cdot C(s w)$. The lemma follows if we can show that $C(s) . C(s)=C(e) \cup C(s)$ Using Lemma 7.2.2 (i) we see that $C(s) \cup C(e)$ is the group G_{a} of Lemma 7.1.3. By Theorem 7.2.4 the quotient of this group by its radical is isomorphic to $S L_{2}$ or $P S L_{2}$. The lemma then follows by a direct calculation for these two groups.

We finally deduce the decomposition we are after.
Theorem 8.3.8, p. 145: Bruhat's lemma
G is the disjoint union of the double cosets $C(w)$ for $w \in W$.

Proof.

Set $G_{1}=\cup_{w \in W} C(w)$. From the preceding lemma we deduce that $C(s) \cdot G_{1}=G_{1}$ for all $s \in S$. The subgroup of G generated by the maximal torus T and the $U_{ \pm \alpha}$ as α runs through S then contains all such $U_{ \pm \alpha}$ together with all U_{β} as β runs through the W-conjugates of simple roots. As these conjugates fill out all of R, it follows from Proposition 8.1.1 that T and the $U_{ \pm \alpha}$ generate all of G, whence $G_{1}=G$. Now let $w, w^{\prime} \in W$ and assume that $C(w) \cap C\left(w^{\prime}\right) \neq \emptyset$. Since the $C(w)$ are double cosets of B we get $C(w)=C\left(w^{\prime}\right)$. Since by Lemma 8.3.6 (i) we have $\operatorname{dim} C(w)=\ell(w)+\operatorname{dim} B$ it follows that $\ell(w)=\ell\left(w^{\prime}\right)$; we may assume that $\ell(w)>0$. By Lemma 8.3.2 there is $s \in S$ with $\ell(s w)=\ell(w)-1$; by Lemma 8.3.7 we have $C(s w) \subset C(s) . C\left(w^{\prime}\right) \subset C\left(w^{\prime}\right) \cup C\left(s w^{\prime}\right)$, whence $C(s w)=C\left(w^{\prime}\right)$ or $C(s w)=C\left(s w^{\prime}\right)$ since the $C(v)$ are irreducible. Arguing by induction on $\ell(w)$ we get that either $s w=w^{\prime}$ or $s w=s w^{\prime}$. The first case is impossible since $\ell(s w) \neq \ell\left(w^{\prime}\right)$, whence $w=w^{\prime}$ and the $C(w)$ are exactly the double cosets of B in G, as desired.

