Lecture 11-20: Reductive groups

November 20, 2023

We continue the study of how root data control the structure of the reductive groups that give rise to them. Throughout G is a reductive linear algebraic group with root datum ($X, R, \check{X}, \check{R}$) relative to a maximal torus T and B is a fixed Borel subgroup corresponding to a choice R^{+}of positive subsystem of R. Also fix a realization ($\left.u_{\alpha}: \alpha \in R\right)$ of R in G. First we prove a general result about solvable groups, from which Proposition 8.2.1 (the last result stated last time) follows.

Lemma 8.2.2, p. 137

Let H be a connected solvable algebraic group with maximal torus S. Assume that there is a set of isomorphisms $v_{i}(1 \leq i \leq n)$ of G_{a} onto closed subgroups of H such that there exist nontrivial characters β_{i} of S, no two of them linearly dependent, with $s v_{i}(x) s^{-1}=v_{i}\left(\beta_{i}(s) x\right)$ for $1 \leq i \leq n$ and all $x \in \mathbf{k}$. Also assume that the weight spaces $\mathfrak{h}_{\beta_{i}}$ are one-dimensional and span $\mathfrak{h}_{u}=L\left(H_{u}\right)$. Then the morphism $\psi: G_{a}^{n} \rightarrow H_{u}$ with $\psi\left(x_{1}, \ldots, x_{n}\right)=v_{1}\left(x_{1}\right) \ldots v_{n}\left(x_{n}\right)$ is an isomorphism of varieties.

Proof.

The proof is by induction on n. If $n=1$ then H_{u} equals the image of v_{1} (compute dimensions) and the result is trivial. If $n>1$ let N be a normal subgroup in the center of H_{u} isomorphic to G_{a} (see Lemma 6.3.4, p. 105). Then $L(N)$ is an S-stable one-dimensional subspace of $L\left(H_{u}\right)$, which must be one of the weight spaces $\mathfrak{h}_{\beta_{j}}$. Then Corollary 5.4 .7 shows that the centralizer $Z_{H}\left(\operatorname{ker}\left(\beta_{j}\right)^{0}\right)$ is a group with the properties of H and a one-dimensional unipotent radical (by the linear independence of the β_{j}). Then N is just the image of v_{j}.

Proof.

(continued) For $i \neq j$ let $w_{i}: G_{a} \rightarrow H / N$ be the homomorphism induced by v_{i}. We claim that H / N and the w_{i} satisfy the assumptions of the lemma, relative to the image of S in H / N; this is clear except for the w_{i} being isomorphisms. Since the images of w_{i} and w_{j} overlap trivially (as is easy to check), w_{i} is injective. Since the weight spaces are one-dimensional the differential $d w_{i}$ is also injective. By Corollary 5.3.3 (ii), w_{i} is an isomorphism onto a subgroup of H / N and the claim follows. By induction we may assume that the result holds for H / N; since N is central it easily follows that ψ is bijective. By Lemma 4.4. 12 the tangent map d $\psi_{(0, \ldots, 0)}$ is bijective. By Theorems 4.3.6 and 5.1.6, ψ is birational. Now Lemma 5.3.4 and Theorem 5.2.8 show that ψ is an isomorphism, as desired.

Now fix an ordering of all the roots in R extending the previous ordering of $R^{+}(B)$. It would be natural to expect that an analogue of Proposition 8.2.1 (stated at the end last time) would hold for G and R in place of B and $R^{+}(B)$. This is not the case; instead the image of the morphism corresponding to ϕ in Proposition 8.2.1 is a proper open subset of G. We will see this later when we prove the Bruhat decomposition (Corollary 8.3.9, p. 145). For now we introduce the structure constants that will play a crucial role in presenting a linear algebraic group with specified root datum as an abstract group.

Proposition 8.2.3, p. 138

Fix $\alpha, \beta \in R, \alpha \neq \pm \beta$. There exist constants $\boldsymbol{C}_{\alpha, \beta, i, j} \in \mathbf{k}$ such that the commutator

$$
\left(u_{\alpha}(x), u_{\beta}(y)\right)=\prod_{i \alpha+j \beta \in R, i, j>0} u_{i \alpha+j \beta}\left(c_{\alpha, \beta, i, j} x^{i} y^{j}\right)
$$

for all $x, y \in \mathbf{k}$, where the order of the factors on the right side is the one prescribed by the ordering of R. In particular, if there are no $i, j>0$ such that $i \alpha+j \beta \in R$, then $u_{\alpha}(x)$ commutes with $u_{\beta}(y)$ for all x, y.

Proof.

A simple calculation shows that given α, β there is a positive subsystem of the intersection of R with the subspace W spanned by α and β containing both of these roots, which extends to a positive subsystem of R. Hence we may assume that $\alpha \beta \in R^{+}$. Then $U_{\alpha}, U_{\beta} \in B_{u}$ and $\left(u_{\alpha}(x), u_{\beta}(y)\right)=\prod_{\gamma \in R^{+}} u_{\gamma}\left(P_{\gamma}(x, y)\right)$, where the order of factors in the product is the prescribed one.
Conjugating by $t \in T$ we get $P_{\gamma}(\alpha(t) x, \beta(t) y)=\gamma(t) P_{\gamma}(x, y)$. Using the linear independence of characters we deduce that $P_{\gamma} \neq 0$ if and only if $\gamma=i \alpha+j \beta$ for some $i, j \geq 0$. It remains to show that neither i nor j can be 0 . Suppose for example that there were a nontrivial factor with $j=0$; since $i \alpha$ is not a root if $i>1$ we would have to have $i=1$. Then the commutator $\left(u_{\alpha}(x), u_{\beta}(y)\right)$ would have a factor $u_{\alpha}(c x)$ in the product on the right side. Setting $y=0$ we deduce a contradiction.

Next we need a property of root systems.

Lemma; cf. Exercise 8.1.12 (3b)

Suppose the Dynkin digram D of the root system R has connected components D_{1}, \ldots, D_{r}. Then each D_{i} is the Dynkin diagram of a root system R_{i} and R is the disjoint union of the R_{i}, with every root in R_{i} orthogonal to every root in R_{j} for $i \neq j$. If D is connected, then R is irreducible in the sense that one cannot partition it into two nonempty subsets with every root in the first subset orthogonal to every one in the second.

Proof.

Let Δ_{i} be the subset of simple roots corresponding to the nodes of D_{i}, so that the disjoint union Δ of the Δ_{i} is the set of simple roots corresponding to D. We know that every root is conjugate by a product of simple reflections a root in Δ_{i} for some i and that the reflections corresponding to roots in Δ_{j} fix all linear combinations of roots Δ_{i} for $j \neq i$. It follows at once that the set of conjugates of a root in Δ_{i} is exactly the root subsystem R_{i} of R consisting of roots in the real span V_{i} of Δ_{i} and that R is the orthogonal disjoint union of the R_{i}. If D is connected and R is the orthogonal disjoint union of R_{1} and R_{2}, then either all roots of Δ lie in R_{1} or all lie in R_{2}, by the connectedness. If they all lie in say R_{1}, then R_{2} consists only of roots orthogonal to all roots in Δ; but there are no such roots, so R_{2} is empty.

The consequence of this last result for algebraic groups is

Theorem; cf. Theorem 8. 1.5, p. 133

With notations as above, let G be semisimple and let D_{1}, \ldots, D_{n} be the irreducible components of the Dynkin diagram D of R, with D_{i} corresponding to the root system R_{i} and R the orthogonal disjoint union of the R_{i}. For each i there is a closed connected normal subgroup G_{i} of G with root system R_{i}; we have $\left(G_{i}, G_{j}\right)=1$ for $i \neq j$. G is the product of the G_{i} and the intersection of any G_{i} and the product of the others is finite. The groups G_{i} are also quasi-simple in the sense that they have no normal subgroups of positive dimension.

Proof.

For each i let T_{i} be the subtorus of T generated by the images of the coroots $\check{\alpha}$ for $\alpha \in R_{i}$. We can then take G_{i} to be the subgroup generated by T_{i} and U_{α} as α runs through the roots in R_{i}. If $\alpha \in R_{k}, \beta \in R_{\ell}$ with $k \neq \ell$, then no combination $i \alpha+j \beta$ is a root for any $i, j>0$, whence by the above proposition we have $\left(G_{i}, G_{j}\right)=1$ for $i \neq j$. Hence the G_{i} are closed connected normal subgroups and G is their product. The proof of Theorem 8.1.5 in the text shows that each G_{i} is quasi-simple and each intersects the product of the others in a finite set (since they commute elementwise).

We conclude with some more combinatorics on the Weyl group W of a root system R. Let Δ be a choice of simple roots.

Proposition; cf. Theorem 8.2.8 (i)

The simple reflections s_{α} for $\alpha \in \Delta$ generate W.
Given any $\beta \in R$ we know that there is a product w of simple reflections with $w \beta=\alpha \in \Delta$. Then one easily checks that $W^{-1} s_{\alpha} W=s_{\beta}$; since the reflections s_{β} generate W by definition, so do the simple reflections. Hence given any $w \in W$ there is a unique minimum number h such that w is the product of h simple reflections; we denote h by $\ell(w)$ and call it the length of w (p. 142). Clearly the identity element is the unique one of length 0 , while the simple reflections s_{α} are the only elements of length 1 . If s_{1}, \ldots, s_{h} are simple reflections (not necessarily distinct) and $w=s_{1} \ldots s_{h}, \ell(w)=h$, then we call $s_{1} \ldots s_{h}$ a reduced decomposition of w; note that a fixed w may have many reduced decompositions.

Given w we can compute the quantity $\ell(w)$ without having to consider any reduced decompositions at all. Fixing a system R^{+} of positive roots, set $R(w)=\left\{\alpha \in R^{+}: w . \alpha \in-R^{+}\right\}$. Then we have

Lemma 8.3.2, p. 142

Let $s_{1} \ldots s_{h}$ be a reduced decomposition of w. Write α_{i} for the simple root corresponding to the reflections s_{i}, and recall that the s_{i} need not be distinct. Then $R(w)=\left\{\alpha_{h}, s_{h} \cdot \alpha_{h-1}, \ldots, s_{h} \ldots s_{2} \cdot \alpha_{1}\right\}$, so that in particular $R(w)$ has $h=\ell(w)$ elements.

If $h=1$, then applying s_{h} to a positive root β adds or subtracts a multiple of α_{h} to β, whence $s_{h} \beta$ is still positive if $\beta \neq \alpha_{h}$, while $s_{h}\left(\alpha_{h}\right)=-\alpha_{h}$, so the result holds. The same reasoning shows that $R\left(w s_{\alpha}\right)=s_{\alpha} \cdot R(w) \cup\{\alpha\}$ if $w . \alpha \in R^{+}$, while $R\left(w s_{\alpha}\right)=s_{\alpha}(R(w)-\{\alpha\})$ if $w . \alpha \in-R^{+}$. The result follows at once by induction on h. Next time we will begin with more results along these lines.

