Lecture 11-17: Root data

November 17, 2023

There is a more to a root datum $D=(X, R, \check{X}, \check{R})$ than just the root system R; in this lecture we explore the extent to which different algebraic groups can have the same root system. First note that the center C of a reductive group G lies in all maximal tori T and coincides with the intersection of the kernels of α as α runs through the weights of T in G, by an easy argument; in turn C has positive dimension if and only if the rank of the character group X of T is greater than the rank of R (Proposition 8.1.8, p. 135)

Given a root datum ($X, R, \check{X}, \check{R}$), the lattice X must contain at least the root lattice Q (p. 136), that is, the integral span $\mathbb{Z R}$ of R. If X has the same rank as R, then it must in turn also lie in the weight lattice Q, consisting of all $x \in \mathbb{Q} R$ such that $\langle x, \check{R}\rangle \subset \mathbb{Z}$, where $\langle\cdot, \cdot\rangle$ is the canonical pairing between X and \check{X}. Since P and Q are free abelian groups of the same finite rank, the quotient P / Q, called the fundamental group of R, is finite. The upshot is that there are only finitely many semisimple algebraic groups up to isomorphism with a fixed root system; more precisely, the isomorphism classes of such groups are in bijection to the lattices between Q and P. All have isomorphic Lie algebras.

A calculation shows that the fundamental group of R is cyclic of order n if R is of type A_{n-1}; here P consists of all $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$ such that $\sum a_{i}=0$ and $a_{i}-a_{j} \in \mathbb{Z}$ for all i, j, while Q consists of the set of such a with $a_{i} \in \mathbb{Z}$ for all i. A similar calculation shows that the fundamental groups of root systems of types B_{n}, C_{n} are both cyclic of order two. In the case of B_{n} the weight lattice P is the union of \mathbb{Z}^{n} and the translate $\mathbb{Z}^{n}+(1 / 2, \ldots, 1 / 2)$, while Q is just \mathbb{Z}^{n}. In type C_{n}, P is \mathbb{Z}^{n} while Q is the sublattice of \mathbb{Z}^{n} consisting of all vectors whose coordinates sum to an even integer. The case of type D_{n} is the most interesting one; here the fundamental group is cyclic of order 4 if n is odd but the direct product of two cyclic groups of order 2 if n is even. (To remember which is which, recall that the root systems A_{3}, D_{3} are isomorphic, having the same Dynkin diagram.) In the exceptional cases, only types E_{6} and E_{7} have nontrivial fundamental groups; these have order 3 and 2, respectively.

We have seen that tori are exactly the algebraic groups G such that the character group $X^{*}(G)$ is free abelian of rank equal to the dimension of G and whose elements span the coordinate ring $\mathbf{k}[G]$ over \mathbf{k}. More precisely, there is an anti-equivalence of categories between tori and free abelian groups of finite rank. Using this fact and taking for granted that given any abstract root datum D there is a reductive group G with root datum D, unique up to isomorphism, we see that for a fixed root system R the inclusion $Q \subset P$ of lattices corresponds to a pair of tori T, T^{\prime} such that there is a surjective map $T \rightarrow T^{\prime}$ with finite kernel such that $X^{*}(T)=P, X^{*}\left(T^{\prime}\right)=Q$.

Passing to the algebraic groups G, G^{\prime} corresponding to the data $(P, R, \breve{P}, \check{R}),(Q, R, \breve{Q}, \check{R})$, respectively, we deduce that there is a surjective homomorphism from G to \mathcal{G}^{\prime} with finite central kernel. More generally, for any lattice L between Q and P, there is a surjective homomorphism from G to the algebraic group corresponding to ($L, R, \check{L}, \check{R}$) with finite central kernel (whose order equals the index of L in P). The group corresponding to the largest choice P for X is said to be simply connected; the group corresponding to the smallest choice Q is said to be adjoint, or of adjoint type. It is the image $\rho(\mathcal{G}) \subset G L(\mathfrak{g})$ of any G with Lie algebra \mathfrak{g} in the adjoint representation ρ of \mathcal{G} on \mathfrak{g}. Any two such groups G are said to be isogenous; a surjective homomorphism from one of them to another with finite kernel is called an isogeny (p .170).

In type A_{n-1} the simply connected group is $S L(n, \mathbf{k})$; the other groups are quotients of this group by a finite central subgroup, which is necessarily cyclic of order dividing n. In particular, the adjoint group is $P S L_{n}(\mathbf{k})=S L(n, \mathbf{k}) / Z$, where $Z=\left\langle e^{2 \pi i / n}\right\rangle$ is generated by the scalar matrix $e^{2 \pi i / n} l$. In types B and D the adjoint group is $S O_{n}(\mathbf{k})$; the simply connected one is denoted $\operatorname{Spin}(n, \mathbf{k})$. It is a double cover of $S O_{n}(\mathbf{k})$ and is usually mentioned at some point in the manifolds sequence, begin simply connected in the usual topological sense. (There is also a double cover of the real orthogonal group $S O_{n}(\mathbb{R})$, denoted Spin (n, \mathbb{R}).) In type D_{n} one also has the adjoint group $P S O(2 n, \mathbf{k})$. In type C the simply connected group is $\operatorname{Sp}(2 n, \mathbf{k})$ and the adjoint one is $\operatorname{PSp}(2 n, \mathbf{k})$.

We now return to the text, taking up Chapter 8. Let G be a reductive group with root datum $(X, R, \check{X}, \check{R}), T$ the maximal torus of G giving rise to this datum. Then the radical $R(G)$ is a central torus (Proposition 7.3.1, p. 120) and the commutator subgroup (G, G) is semisimple, as we will see shortly (Corollary 8.1.6, p. 134).

Proposition 8.1.1, p. 132

- For $\alpha \in R$ there exists an isomorphism u_{α} from the additive group G_{a} onto a unique closed subgroup U_{α} of G such that $t u_{\alpha}(x) t^{-1}=u_{\alpha}(\alpha(t) x)$ for $t \in T, x \in \mathbf{k}$. We have Im $d u_{\alpha}=\mathfrak{g}_{\alpha}$, the α-weight space of T in the Lie algebra \mathfrak{g}.
- T and the U_{α} for $\alpha \in R$ generate G.

If $\alpha \in R$ the group G_{α} defined previously is reductive and has semisimple rank one, whence the commutator subgroup $\left(G_{\alpha}, G_{\alpha}\right)$ is semisimple with rank one, and so isomorphic to $S L_{2}(\mathbf{k})$ or $P S L_{2}(\mathbf{k})$. A simple calculation in $S L_{2}(\mathbf{k})$ then gives the first assertion (see also Lemma 7.2.3 (ii)). The second assertion follows since the groups G_{α} generate G by Lemma 7.1.3.

Corollary 8.1.2, p. 132

The roots of R are the nonzero weights of T in \mathfrak{g}; the root spaces \mathfrak{g}_{α} have dimension one.

Corollary 8.1.3, p. 132

Let B be a Borel subgroup of G containing T and $\alpha \in R$.

- The following are equivalent: (a) $\alpha \in R^{+}(B)$, the positive subsystem of R corresponding to B; (b) $U_{\alpha} \subset B$; (c) $\mathfrak{g}_{\alpha} \subset \mathfrak{b}$.
- $\operatorname{dim} B=r+\frac{1}{2}|R|, r$ the rank of G, and $\operatorname{dim} G=r+|R|$

This is a simple calculation, using the previous result.

Lemma 8.1.4, p. 133

- The u_{α} of Proposition 8.1.1 may be chosen so that for all $\alpha \in R$ the element $n_{\alpha}=u_{\alpha}(1) u_{-\alpha}(-1) u_{\alpha}(1)$ lies in the normalizer N of T and has image the reflection s_{α} in the Weyl group W.
- $n_{\alpha}^{2}=\check{\alpha}(-1)$ and $n_{-\alpha}=n_{\alpha}^{-1}$.
- If $u \in U_{\alpha}-\{1\}$ there is a unique $u^{\prime} \in U_{-\alpha}-\{1\}$ such that $u u^{\prime} u \in N$.
- If ($u_{\alpha}^{\prime}: \alpha \in R$) is a second family with the properties of Proposition 8.1.1 (i) and part (i) above then there are $c_{\alpha} \in \mathbf{k}^{*}$ for $\alpha \in R$ with $u_{\alpha}^{\prime}(x)=u_{\alpha}\left(c_{\alpha} x\right), c_{\alpha} c_{-\alpha}=1$, for $x \in \mathbf{k}$.

Proof.

We have $U_{\alpha} \subset\left(G_{\alpha}, G_{\alpha}\right)$ and $\left(G_{\alpha}, \mathcal{G}_{\alpha}\right) \cong S L_{2}(\mathbf{k})$ or $P S L_{2}(\mathbf{k})$ by Theorem 7.2.4. In this way we reduce the proof of part (i) to the case where $G=S L_{2}(\mathbf{k})$ and T is the diagonal torus. Define the character α of T via $\alpha\left(\begin{array}{cc}x & 0 \\ 0 & x^{-1}\end{array}\right)=x^{2}$. Then a straightforward check shows that we may take $u_{\alpha}=u_{1}$, where
$u_{1}(x)=\left(\begin{array}{cc}1 & x \\ 0 & 1\end{array}\right), u_{-\alpha}(x)=n_{1} u_{\alpha}(-x) n_{1}^{-1}=\left(\begin{array}{ll}1 & 0 \\ x & 1\end{array}\right), n_{1}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.
The first formula of (ii) follows with $n_{\alpha}=n_{1}$. The existence of u^{\prime} as in part (iii) follows from part (i); part (iv) also follows easily.

We call a family ($u_{\alpha}: \alpha \in R$) with the properties of Proposition 8.1.1 (i) and Lemma 8.1.4 (i) a realization of the root system $R=R(G, T)$ in G. Note that the realization determines the coroots $\check{\alpha}$.

Finally we show that the variety structure of a Borel subgroup is as simple as one could hope for. Fix an ordering $\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ of the positive subsystem $R^{+}(B)$ corresponding to a Borel subgroup B and a realization (u_{α}) of $R= \pm R^{+}(B)$,

Proposition 8.2.1, p. 137

The morphism $\phi: G_{a}^{m} \rightarrow B_{u}$ with $\phi\left(x_{1}, \ldots, x_{m}\right)=u_{\alpha_{1}}\left(x_{1}\right) \ldots u_{\alpha_{m}}\left(x_{m}\right)$ is an isomorphism of varieties; in particular, B_{u} is generated by the groups U_{α} with $\alpha \in R^{+}(B)$.

This follows from a more general result, to be proved next time.

