Lecture 11-17: Root data

November 17, 2023

Lecture 11-17: Root data

November 17, 2023 1 / 1

æ

イロト イポト イヨト イヨト

There is a more to a root datum $D = (X, R, \check{X}, \check{R})$ than just the root system R; in this lecture we explore the extent to which different algebraic groups can have the same root system. First note that the center C of a reductive group G lies in all maximal tori T and coincides with the intersection of the kernels of α as α runs through the weights of T in G, by an easy argument; in turn C has positive dimension if and only if the rank of the character group X of T is greater than the rank of R (Proposition 8.1.8, p. 135) Given a root datum $(X, R, \check{X}, \check{R})$, the lattice X must contain at least the root lattice Q (p. 136), that is, the integral span $\mathbb{Z}R$ of R. If X has the same rank as R, then it must in turn also lie in the weight lattice Q, consisting of all $x \in \mathbb{O}R$ such that $\langle x, \mathring{R} \rangle \subset \mathbb{Z}$, where $\langle \cdot, \cdot \rangle$ is the canonical pairing between X and \check{X} . Since P and Q are free abelian groups of the same finite rank, the quotient P/Q, called the fundamental group of R, is finite. The upshot is that there are only finitely many semisimple algebraic groups up to isomorphism with a fixed root system; more precisely, the isomorphism classes of such groups are in bijection to the lattices between Q and P. All have isomorphic Lie algebras.

ヘロン ヘ回 とくほ とく ヨン

A calculation shows that the fundamental group of *R* is cyclic of order *n* if *R* is of type A_{n-1} ; here *P* consists of all

 $a = (a_1, \ldots, a_n) \in \mathbb{R}^n$ such that $\sum a_i = 0$ and $a_i - a_i \in \mathbb{Z}$ for all i, j, while Q consists of the set of such a with $a_i \in \mathbb{Z}$ for all *i*. A similar calculation shows that the fundamental groups of root systems of types B_n , C_n are both cyclic of order two. In the case of B_n the weight lattice P is the union of \mathbb{Z}^n and the translate $\mathbb{Z}^n + (1/2, \dots, 1/2)$, while Q is just \mathbb{Z}^n . In type C_n , P is \mathbb{Z}^n while Q is the sublattice of \mathbb{Z}^n consisting of all vectors whose coordinates sum to an even integer. The case of type D_n is the most interesting one; here the fundamental group is cyclic of order 4 if *n* is odd but the direct product of two cyclic groups of order 2 if *n* is even. (To remember which is which, recall that the root systems A_3, D_3 are isomorphic, having the same Dynkin diagram.) In the exceptional cases, only types E_6 and E_7 have nontrivial fundamental groups; these have order 3 and 2, respectively.

イロン イロン イヨン イヨン 三日

We have seen that tori are exactly the algebraic groups G such that the character group $X^*(G)$ is free abelian of rank equal to the dimension of G and whose elements span the coordinate ring $\mathbf{k}[G]$ over \mathbf{k} . More precisely, there is an anti-equivalence of categories between tori and free abelian groups of finite rank. Using this fact and taking for granted that given any abstract root datum D there is a reductive group G with root datum D, unique up to isomorphism, we see that for a fixed root system Rthe inclusion $Q \subset P$ of lattices corresponds to a pair of tori T. T' such that there is a surjective map $T \rightarrow T'$ with finite kernel such that $X^{*}(T) = P, X^{*}(T') = Q$.

ヘロン 人間 とくほ とくほ とう

Passing to the algebraic groups G, G' corresponding to the data $(P, R, \check{P}, \check{R}), (Q, R, \check{Q}, \check{R}),$ respectively, we deduce that there is a surjective homomorphism from G to G' with finite central kernel. More generally, for any lattice L between Q and P, there is a surjective homomorphism from G to the algebraic group corresponding to $(L, R, \check{L}, \check{R})$ with finite central kernel (whose order equals the index of L in P). The group corresponding to the largest choice P for X is said to be simply connected; the group corresponding to the smallest choice Q is said to be adjoint, or of adjoint type. It is the image $\rho(G) \subset GL(\mathfrak{g})$ of any G with Lie algebra g in the adjoint representation ρ of G on g. Any two such groups G are said to be *isogenous*; a surjective homomorphism from one of them to another with finite kernel is called an *isogeny* (p. 170).

イロン イロン イヨン イヨン 三日

In type A_{n-1} the simply connected group is $SL(n, \mathbf{k})$; the other groups are quotients of this group by a finite central subgroup, which is necessarily cyclic of order dividing n. In particular, the adjoint group is $PSL_n(\mathbf{k}) = SL(n, \mathbf{k})/Z$, where $Z = \langle e^{2\pi i/n} \rangle$ is generated by the scalar matrix $e^{2\pi i/n}$. In types B and D the adjoint group is $SO_n(\mathbf{k})$; the simply connected one is denoted Spin (n, \mathbf{k}) . It is a double cover of $SO_n(\mathbf{k})$ and is usually mentioned at some point in the manifolds sequence, begin simply connected in the usual topological sense. (There is also a double cover of the real orthogonal group $SO_n(\mathbb{R})$, denoted Spin (n, \mathbb{R}) .) In type D_n one also has the adjoint group $PSO(2n, \mathbf{k})$. In type C the simply connected group is $Sp(2n, \mathbf{k})$ and the adjoint one is $PSp(2n, \mathbf{k})$.

・ロト ・同ト ・ヨト ・ヨト … ヨ

We now return to the text, taking up Chapter 8. Let G be a reductive group with root datum $(X, R, \check{X}, \check{R}), I$ the maximal torus of G giving rise to this datum. Then the radical R(G) is a central torus (Proposition 7.3.1, p. 120) and the commutator subgroup (G, G) is semisimple, as we will see shortly (Corollary 8.1.6, p. 134).

Proposition 8.1.1, p. 132

- For $\alpha \in R$ there exists an isomorphism u_{α} from the additive group G_{α} onto a unique closed subgroup U_{α} of G such that $tu_{\alpha}(x)t^{-1} = u_{\alpha}(\alpha(t)x)$ for $t \in T, x \in \mathbf{k}$. We have Im $du_{\alpha} = \mathfrak{g}_{\alpha}$, the α -weight space of T in the Lie algebra \mathfrak{g} .
- T and the U_{α} for $\alpha \in R$ generate G.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト - -

If $\alpha \in R$ the group G_{α} defined previously is reductive and has semisimple rank one, whence the commutator subgroup (G_{α}, G_{α}) is semisimple with rank one, and so isomorphic to $SL_2(\mathbf{k})$ or $PSL_2(\mathbf{k})$. A simple calculation in $SL_2(\mathbf{k})$ then gives the first assertion (see also Lemma 7.2.3 (ii)). The second assertion follows since the groups G_{α} generate G by Lemma 7.1.3.

Corollary 8.1.2, p. 132

The roots of *R* are the nonzero weights of *T* in \mathfrak{g} ; the root spaces \mathfrak{g}_{α} have dimension one.

Corollary 8.1.3, p. 132

Let *B* be a Borel subgroup of *G* containing *T* and $\alpha \in R$.

- The following are equivalent: (a) α ∈ R⁺(B), the positive subsystem of R corresponding to B; (b) U_α ⊂ B; (c) g_α ⊂ b.
- dim $B = r + \frac{1}{2}|R|$, r the rank of G, and dim G = r + |R|

This is a simple calculation, using the previous result.

Lemma 8.1.4, p. 133

• The u_{α} of Proposition 8.1.1 may be chosen so that for all $\alpha \in R$ the element $n_{\alpha} = u_{\alpha}(1)u_{-\alpha}(-1)u_{\alpha}(1)$ lies in the normalizer Nof T and has image the reflection s_{α} in the Weyl group W.

•
$$n_{\alpha}^2 = \check{\alpha}(-1)$$
 and $n_{-\alpha} = n_{\alpha}^{-1}$.

- If $u \in U_{\alpha} \{1\}$ there is a unique $u' \in U_{-\alpha} \{1\}$ such that $uu'u \in N$.
- If $(u'_{\alpha} : \alpha \in R)$ is a second family with the properties of Proposition 8.1.1 (i) and part (i) above then there are $c_{\alpha} \in \mathbf{k}^*$ for $\alpha \in R$ with $u'_{\alpha}(x) = u_{\alpha}(c_{\alpha}x), c_{\alpha}c_{-\alpha} = 1$, for $x \in \mathbf{k}$.

イロト イポト イヨト イヨト 二日

Proof.

We have $U_{\alpha} \subset (G_{\alpha}, G_{\alpha})$ and $(G_{\alpha}, G_{\alpha}) \cong SL_2(\mathbf{k})$ or $PSL_2(\mathbf{k})$ by Theorem 7.2.4. In this way we reduce the proof of part (i) to the case where $G = SL_2(\mathbf{k})$ and T is the diagonal torus. Define the character α of T via $\alpha \begin{pmatrix} x & 0 \\ 0 & x^{-1} \end{pmatrix} = x^2$. Then a straightforward check shows that we may take $u_{\alpha} = u_1$, where $u_1(x) = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}, u_{-\alpha}(x) = n_1 u_{\alpha}(-x) n_1^{-1} = \begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix}, n_1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. The first formula of (ii) follows with $n_{\alpha} = n_1$. The existence of u' as in part (iii) follows from part (i); part (iv) also follows easily.

We call a family $(u_{\alpha} : \alpha \in R)$ with the properties of Proposition 8.1.1 (i) and Lemma 8.1.4 (i) a *realization* of the root system R = R(G, T) in G. Note that the realization determines the coroots $\check{\alpha}$.

12/1

<ロ> (四) (四) (三) (三) (三)

Finally we show that the variety structure of a Borel subgroup is as simple as one could hope for. Fix an ordering $(\alpha_1, \ldots, \alpha_m)$ of the positive subsystem $R^+(B)$ corresponding to a Borel subgroup *B* and a realization (u_{α}) of $R = \pm R^+(B)$,

Proposition 8.2.1, p. 137

The morphism $\phi: G_a^m \to B_u$ with $\phi(x_1, \ldots, x_m) = u_{\alpha_1}(x_1) \ldots u_{\alpha_m}(x_m)$ is an isomorphism of varieties; in particular, B_u is generated by the groups U_{α} with $\alpha \in R^+(B)$.

イロト イポト イヨト イヨト 二日

This follows from a more general result, to be proved next time.

Image: A matrix