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We further develop the theory of root systems, defining the
Dynkin diagram of such systems and showing that the systems
can be recovered from their diagrams. Some of the material
appears in Chapter 9 of the text, but we will go beyond what is
given there.
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Let R ⊂ V be a root system, R+ a positive subsystem, and ∆ the
corresponding simple subsystem. We first claim that (α, β) ≤ 0 for
α, β ∈ ∆. Otherwise Cauchy-Schwarz forces one of (α, β̌), (β, α̌) to
equal 1, whence α− β, β − α are roots (equal to ±sα(β) or
±sβ(α)), one of which must be positive. Then α = α− β + β or
β = β − α+ α is not indecomposable, a contradiction. Next we
claim that the simple roots are linearly independent. Indeed,
there first of all cannot be a nontrivial dependence relation∑

α∈∆ nαα = 0 with the nα ∈ R nonnegative, for then the dot
product of the vector x ∈ V corresponding to R+ and the left
side would be positive. Next, we cannot have a relation∑

α∈∆1⊂∆ nαα =
∑

α∈∆−∆1
mαα with the nα,mα nonnegative and

∆1 a proper subset of ∆, for then the dot product of the left side
and some α ∈ ∆1 would have to be positive, while the dot
product of the right side and α is nonpositive. The claim follows.
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Finally, any positive root β is conjugate by a product of
reflections sα corresponding to simple roots α (simple reflections)
to a simple root. Indeed, writing β =

∑
α∈∆ nαα as a nonnegative

integral combination of simple roots α, we must have (β, α) > 0
for some α ∈ ∆, whence sαβ is a root, which must be positive if
β ̸= α, since it involves a simple root different from α with positive
coefficient. Iterating this process, we find that some product of
simple reflections sends β to a simple root. Similarly, any negative
root, being the negative of a positive root, is also conjugate by a
product of simple reflections to a simple root. Hence all roots are
obtained by repeatedly applying simple reflections to simple
roots, and if we know the ratio 2(β,α)

(α,α) for any simple roots α, β,
then we know how to compute any product of simple reflections
applied to a simple root, and so can recover R completely.
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It is convenient to encode the ratios 2(β,α)
(α,α) as follows. Construct a

graph in which the nodes are indexed by the simple roots. The
nodes corresponding to the roots α, β are then joined by 4(α,β)2

(α,α)(β,β)

edges, with an additional arrow pointing to the shorter of α, β if
these vectors do not have the same length. (From this
information we can compute the roots sα(β), sβ(α).) In this way
we get the Dynkin diagram of R (see p. 168). We now compute
the root systems and Dynkin diagrams corresponding to the
algebraic groups SLn(k), SOn(k), and Sp(2n,k) defined previously
in the course. What we actually do is compute the root spaces
in the Lie algebra, which are easier to describe explicitly; these
are the eigenspaces of the adjoint action of a maximal torus T
on this algebra. In all cases T will consist of diagonal matrices
and the adjoint action is given by conjugation.
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We first take G = SLℓ(k); we choose this group rather than GLℓ(k)
because the latter group is reductive but not semisimple. Here T
is the subgroup of Dn consisting of diagonal matrices of
determinant one. For every index i, the character of T sending a
diagonal matrix t =diag(t1, . . . , tℓ) to ti will be denoted ei , so that
if i ̸= j the character sending t to tit

−1
j is denoted ei − ej . Then T

acts on the root space gij = keij spanned by the matrix unit eij
(having a 1 in the ijth entry and zeroes elsewhere) by the
character ei − ej and the Lie algebra g is spanned by the Lie
algebra t of T together with the gij . Accordingly the
corresponding root system consists of differences ei − ej ∈ Rℓ of
unit coordinate vectors in Rℓ.
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As a set of positive roots we take the differences ei − ej with i < j;
as the corresponding set of simple roots we then have
e1 − e2, . . . ,eℓ−1 − eℓ. The Dynkin diagram thus consists of a single
chain of ℓ− 1 dots, each connected to its neighbors by single
edges. This diagram is said to be of type Aℓ−1; the subscript is
ℓ− 1 rather than ell since the rank is ℓ− 1. The dimension of G is
ℓ2 − 1. The Weyl group W is isomorphic to Sℓ, the group of
permutations of the coordinates of kℓ.
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Next take G = Sp2ℓ(k). Setting s =

(
0 I
−I 0

)
, where I denotes the

ℓ× ℓ identity matrix, we can identify G with the set of matrices M
such that MtsM = s and then g is identified with the set of

matrices x =

(
m n
p q

)
such that sx = −x ts, or equivalently

nt = n,pt = p,mt = −q, where m,n,p,q are ℓ× ℓ matrices. Here
T consists of all matrices of the form
t =diag(t1, . . . , tℓ, t

−1
1 , . . . , t−1

ℓ ); we have characters ei − ej as
above for all indices i, j with i ̸= j, 1 ≤ i, j ≤ ℓ and in addition 2ei ,
sending t to t2

i , and ei + ej , sending t to titj (again for 1 ≤ i, j ≤ ℓ).
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The Lie algebra is spanned by the diagonal matrices eii − eℓ+i,ℓ+i
in it together with all differences eij − eℓ+j,ℓ+i , units ei,ℓ+i and eℓ+i,i ,
and sums ei,ℓ+j + ej,ℓ+i and eℓ+i,j + eℓ+j,i , for 1 ≤ i ̸= j ≤ ℓ. The
differences, sums, and units all span root spaces in g; the
corresponding roots are ei − ej ,±2ei , and ±(ei + ej) for
1 ≤ i ̸= j ≤ ℓ. These vectors thus form a root system, said to be of
type Cℓ. As positive roots we take the vectors ei + ej , 2ei , and
ei − ej with i < j; the corresponding simple roots are
e1 − e2, . . . ,eℓ−1 − eℓ, 2eℓ. The Dynkin diagram consists of a chain
of ℓ dots arranged as for type Aℓ, except that the rightmost dot is
connected to its neighbor by a double edge together with an
arrow pointing to the left. The dimension of G is 2ℓ2 + ℓ. The Weyl
group is the hyperoctahedral group Hℓ consisting of all
permutations and sign changes of the coordinates of kℓ (or the
symmetry group of the hypercube in kℓ having vertices
(±1, . . . ,±1)).
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Next we take G = SO2ℓ+1(k); this case behaves sufficiently
differently from the case of SO2ℓ(k) to warrant inclusion in a
different category. We need to realize G differently than we did
before; instead of consisting of all matrices M with MtM = I, we

define the matrix s =

1 0 0
0 0 I
0 I 0

 (with I denoting the ℓ× ℓ identity

matrix) and take G to consist of all matrices M with
MtsM = s, detM = 1. We realize G in this way so that we can take
T to be the diagonal matrices in G; in the previous realization
there are only finitely many diagonal matrices in G.
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As in type Cℓ the Lie algebra g consists of all matrices x with

sx = −x ts; writing s as

a b1 b2
c1 m n
c2 p q

, where a ∈ k,b1,b2 are row

vectors, c1,c2 are column vectors, both in kℓ, and m,n,p,q are
ℓ× ℓ matrices, this condition translates to the conditions
a = 0,c1 = −bt

2,c2 = −bt
1,q = −mtnt = −n,pt = −p. The torus T

consists of diagonal matrices of the form
diag(1, t1, . . . , tℓ, t

−1
1 , . . . , t−1

ℓ ); we define characters ±ei and
±(ei ± ej) as in type C.
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In this case the root spaces in g are spanned by the differences
e1,ℓ+i+1 −ei+1,1,e1,i+1 −eℓ+i+1,1(1 ≤ i ≤ ℓ),ei+1,j+1 −eℓ+j+1,ℓ+i+1(1 ≤
i ̸= j ≤ ℓ),ei+1,ℓ+j+1 − ej+1,ℓ+i+1(1 ≤ i < j ≤ ℓ), and
ei+ℓ+1,j+1 − ej+ℓ+1,i+1(1 ≤ j < i ≤ ℓ). The roots are ±ei and
±(ei ±ej), forming a system of type Bℓ; note that these roots differ
from those in type Cℓ only in that 2ei is replaced by ei for all i. As
positive roots we take the ei ,ei − ej , and ei + ej for i < j; as simple
roots we then get e1 − e2, . . . ,eℓ−1 − eℓ,eℓ. The Dynkin diagram
consists of a chain of ℓ dots, with the rightmost dot connected to
its neighbor by a double edge together with an arrow, this time
pointing to the right. The dimension 2ℓ2 + ℓ of G is the same as it
was in type Cℓ. The Weyl group is also the same as it is for type
Cℓ. The groups Sp2ℓ(k) and SO2ℓ+1(k) are dual to each other in
the sense that if (X ,R, X̌ , Ř) is the root datum of one of them,
then (X̌ , Ř,X ,R) is the root datum of the other.
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Finally we take G = SO2ℓ(k). Realizing G as in type Bℓ, but this

time taking s =

(
0 I
i 0

)
, we find by a computation almost

identical to that in type Bℓ, but without the extra complication of
the first row and column, that the roots are ±(ei ± ej) for
1 ≤ i < j ≤ ℓ. As positive roots we take ei − ej ,ei + ej for i < j; then
the simple roots become e1 − e2, . . . ,eℓ−2 − eℓ−1,eℓ−1 ± eℓ. The
Dynkin diagram consists of a chain of ℓ− 2 dots together with
two additional unconnected neighbors of the rightmost dot,
each connected to it by a single edge. The dimension of G is
2ℓ2 − ℓ; the type of the root system, or of G, is (can you guess?)
Dℓ. The Weyl group does not have a name, but it is the subgroup
of Hℓ of index 2 consisting of the coordinate permutations and
sign changes involving evenly many signs. The types Aℓ through
Dℓ, together with the corresponding groups and Lie algebras,
are called classical; the remaining types are called exceptional.
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It turns out that just five additional connected Dynkin diagrams
arise, having the labels E6, E7, E8, F4, and G2; note that we have
already constructed the root system G2 this week. We can
construct all five root systems in a uniform manner, as follows. In
each case, we start with a specified lattice (Z-span of an R-basis
of a real vector space) and then take the vectors in it of one or
two specified lengths. The axioms of a root system are then easy
to verify in all cases.
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To construct the systems of type E, start with the lattice L ⊂ R8

consisting of all a1, . . . ,a8) such that either all ai ∈ Z or all
ai ∈ Z+ 1

2 and in addition
∑

ai ∈ 2Z. To construct E8 we take the
set of all vectors of square length 2 in L; it turns out that there are
exactly 240 such vectors. They consist of all ±ei ± ej with i > j
together with {(1/2)(s1, . . . , s8) : si = ±1,

∏
si = 1}. As positive roots

we take ei ± ej with i > j (note the different convention in this
case) together with the (1/2)(s1, . . . , s8) with s8 = 1. The simple
roots are then
(1/2)(1,−1, . . . ,−1, 1),e2 − e1,e2 + e1,e3 − e2,e4 − e3, . . . ,e7 − e6.
The Dynkin diagram, depicted on p. 168, consists of a chain of
seven dots together with an additional neighbor of the third dot,
counting from the left end. To construct E7, take the roots in E8
orthogonal to e7 + e8; to construct E6, take the roots in E8
orthogonal to both e7 + e8 and e6 + e8. Their diagrams are
obtained from that of E8 by chopping off the one or two
rightmost dots.
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For F4 take L to be the lattice in R4 spanned by the unit
coordinate vectors ei together with the vector (1/2)(1, 1, 1, 1). To
get the root system, take all vectors of square length 1 or 2 in L,
obtaining thereby all ±ei ,±ei ± ej , and all (1/2)(s1, s2, s3, s4),
where the signs si may be chosen arbitrarily. As positive roots we
take the ei ,ei + ej ,ei − ej for i < j, and the (1/2)(s1, s2, s3, s4) with
s1 = 1. The simple roots are then e2 − e3,e3 − e4,e4, and
(1/2)(1,−1,−1,−1); the diagram consists of a chain of four dots
whose middle link is a double edge, with the arrow pointing in
either direction. Finally, for G2, as noted previously, start with the
lattice L spanned by e1 − e2 and e2 − e3 in R3 and take all
vectors of square length 2 or 6 in L. The simple roots may be
taken to be (−2, 1, 1), (0, 1,−1); the diagram is a pair of dots
connected by a triple edge, with the arrow again pointing in
either direction. The Weyl group of type G2 is the direct product
S3 × Z2; here the cyclic factor Z2 acts on k3 by the scalar −1.
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