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Last time we gave the definition of the Lie algebra of an
algebraic group G; now we discuss Lie algebras in more detail.
We first show that the module ΩG of differentials is completely
controlled by the tangent space TeG.
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Proposition 4.4.2, p. 70
There is an isomorphism of k[G]-modules Φ : ΩG → k[G]⊗k (TeG)∗

such that Φ ◦ λ(x) ◦Φ−1 = λ(x)⊗ 1,Φ ◦ ρ(x) ◦Φ−1 = ρ(x)⊗ (Adx)∗. If
f ∈ k[G] and ∆f =

∑
i fi ⊗ gi then Φ(df ) = −

∑
i fi ⊗ δgi . Here ∆ is

the comultiplication map k[G] → k[G]⊗ k[G], so that
∆f (x , y) = f (xy), and δf = f − f (e) + M2

e, as defined last time.
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Proof.
The map sending (x , y) to (x , xy) is an automorphism of G × G;
the corresponding algebra automorphism Ψ of A = k[G] has
(ψF)(x , y) = F(x , xy). Hence ψI is the ideal of functions vanishing
on G ×{e}, which is A⊗Me, whence ψI2 = A⊗M2

e and ψ induces
a bijection of ΩG onto A ⊗ (Me/M2

e). Let Φ be the composite of
this bijection and the earlier isomorphism observed between TeG
and (Me/M2

e)
∗. From the definition of ψ it follows that

(λ(x)⊗ 1) ◦ ψ = ψ ◦ (λ(x), λ(x)), (ρ(x)⊗ c(x)) ◦ ψ = ψ ◦ (ρ(x)⊗ ρ(x)),
implying the first assertion. We also have
ψ(f ⊗ 1 − 1 ⊗ f )(x , y) =

∑
i fi(x)(gx(e)− gi(y)), from which the

second assertion follows.
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Recalling the notation D = DG for the k-derIvations of A = k[G]
introduced last time, it follows at once that

Corollary 4.4.4, p. 71
There is an isomorphism Ψ : DG → k[G]⊗k TeG of k[G]-modules
such that Ψ ◦ λ(x) ◦Ψ−1 = λ(x)⊗ 1,Ψ ◦ ρ(x) ◦Ψ−1 = ρ(x)⊗Ad x for
x ∈ G and Ψ−1(1 ⊗ X)(f ) = −

∑
i fi(Xgi) for X ∈ TeG.

Lecture 10-20: The Lie algebra and differentials October 20, 2023 5 / 1



Now we can apply these results to the Lie algebra L(G). Let
αG = α : DG → TeG be the map with (αGD)(f ) = (Df )(e).

Proposition 4.4.5, p. 71
α induces an isomorphism of vector space L(G) ∼= TeG and if
x ∈ G we have α ◦ ρ(x) ◦ α−1 =Ad x . In particular
dimk L(G) = dimG.

Letting Ψ be as above we see that Ψ(L(G) = 1 ⊗ TeG and
(α⊗Ψ−1)(1 ⊗ X)(f ) = −

∑
i fi(e)(Xgi) = −Xf since f =

∑
i fi(e)gi .

The proposition follows at once.

A simple extension of this result shows that for fixed a ∈ G the the
differential dψe at e of ψ(x) = axa−1x−1 is Ad a-1 (Lemma 4.4.13,
p. 74)
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Next let H be a closed subgroup of G. Denote by J the ideal of
functions vanishing on H, so that k[H] = k[G]/J. Put
DG,H = {D ∈ Dg : DJ ⊂ J}. Then DG,H is a Lie subalgebra of DG
and there is an obvious homomorphism of Lie algebras
ϕ : DG,H → DH . We also have TeH = {X ∈ TeG : XJ = 0}. Then we
get

Lemma 4.4.7, p. 72
ϕ defines an isomorphism of DG,H ∩ L(G) onto L(H)

.
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Proof.
It follows from the definitions that αH ◦ ϕ is the restriction of αG to
DG,H , whence ϕ is injective. To conclude it is enough to show
that if X ∈ Te(H) then D = Ψ−1(1 ⊗ X) ∈ DG,H with Ψ as above. if
f ∈ J and ∆f =

∑
i fi ⊗ gi then we may assume for each i that

one of the elements fi or gi lies in J. Then Df ∈ J, as required.

Henceforth we identify the Lie algebra L(G) with the tangent
space TeG, transferring the Lie algebra structure to the latter. We
sometimes use German letters g, h, . . . for the Lie algebras of
G,H, . . .. Given a homomorphism ϕ : G → G′ of algebraic groups
its differential dϕ is easily seen to be a homomorphism of Lie
algebras L(G) → L(G′) (Proposition 4.4.9, p. 72).
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Example
This is Example 4.4.10 on p. 73. First let G = Ga,k[G] = k[T ]. The
derivations of G commuting with translations T → T + a are just
the multiples of X = d

dT . If p > 0 we have Xp = 0. So g is the
one-dimensional Lie algebra kX with trivial bracket and trivial
pth power operation if p > 0. Next let G = Gm; here
k[G] = k[T , T−1]. Now the derivations commuting with the
translations T → Ta are the multiples of Y = T d

dT . Once again g is
one-dimensional, with trivial bracket, but now Y p = Y , so that the
pth power operation is different, if p > 0.

Lecture 10-20: The Lie algebra and differentials October 20, 2023 9 / 1



Example

Continuing with Example 4.4.10, let G = GLn,k[G] = k[Tij ,D−1] for
1 ≤ i, j ≤ n, where D is the determinant. Here G is an open subset
of gln, the set of n × n matrices, so that g = gln as a vector space.
If X = (Tij) ∈ g, then DX Tij =

∑n
h=1 Tihxhj defines a derivation of k[G]

commuting with left translations, which thus lies in g. Hence g
consists exactly of the DX ; the bracket operation is given by
commutation of matrices. The pth power operation sends a
matrix to its pth power in the ordinary sense, if p > 0. We have
Ad(x)X = xXx−1 for x ∈ G,X ∈ g. Finally, if H is a closed subgroup
of G, then h is a subalgebra of g.
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In the theory of Lie groups, one establishes a bijection between
connected subgroups of a (real or complex) Lie group and
subalgebras of its Lie algebra; one also shows that closed
subgroups of a Lie group are Lie subgroups, but not conversely.
Neither of these results holds for linear algebraic groups. First of
all, we consider only closed subgroups of a given algebraic
group, each one having a Lie algebra that is a subalgebra of
the ambient Lie algebra, but not all Lie subalgebras arise in this
way. (The ones that do are called algebraic and it is still not
completely settled what the algebraic subalgebras of gl(n) are.)
In particular, there is no algebraic group analogue of the
exponential map in manifold theory.
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I conclude with some simple differentiation formulas. Let G be
an algebraic group with Lie algebra g. Let µ : G × G → G and
i : G → G be the multiplication and inverse maps, respectively,
on G.

Lemma 4.4.12, p. 74
We have (dµ)(e,e)(X ,Y ) = X + Y , (di)e(X) = −X for X ,Y ∈ g.
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The multiplication map µ defines a linear map
µ̃ : ΩG → ΩG×G = (ΩG ⊗ k[G])⊕ (k[G]⊗ ΩG). If
f ∈ k[G],∆f =

∑
i fi ⊗ gi , then µ̃(df ) =

∑
(dfi ⊗ gi + fi ⊗ dgi . Since

f =
∑

fi(e)gi =
∑

gi(e)fi we have that
µ̃(df )− df ⊗ 1 − 1 ⊗ df ∈ Me,eΩG×G. Hence the linear map of
ΩG(e) to ΩG×G(e,e, ) = ωG(e)⊕ ΩG(e) induced by µ̃ sends u to
(u,u). As (dµ)e,e is the dual of this map, the first assertion follows.
The second follows from the fact that µ ◦ (id, i) is the trivial map
sending G to {e}.

Lecture 10-20: The Lie algebra and differentials October 20, 2023 13 / 1



Finally, let G1,G2 be two linear algebraic groups acting linearly
on the vector spaces V1,V2. Then the tensor product V1 ⊗k V2
carries a natural G1 × G2 action, for which
(g1,g2).(v1 ⊗ v2) = g1.v1 ⊗ g2.v2. The differentiated action on
L(G1 × G2) = L(G1 ⊕ L(G2) has
(X1,X2).(v ⊗ w) = X1 · v ⊗ w + v ⊗ X2.w . If the Vi are
finite-dimensional and each Gi acts irreducibly on Vi (so that no
proper subspace of Vi is stable under Gi), then V1 ⊗ V2 is
irreducible under the G1 × G2 action and every
finite-dimensional irreducible representation of G1 × G2 arises in
this way.
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Taking G = G1 = G2 and specializing to the diagonal subgroup
of G × G, we get for any rational representations V ,W of G a
representation of G on V ⊗ W , but this time this representation is
not necessarily irreducible even if V and W are. The
differentiated action of the representation of L(G) on V ⊗ W has
X .(v ⊗ w) = X .v ⊗ w + v ⊗ X .w . In particular, we get natural
actions of G and L(G) on the nth tensor power T nV = v⊗n as well
as on its quotients the nth symmetric power SnV and the nth
exterior power ∧nV .
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