## Lecture 10-20: The Lie algebra and differentials

October 20, 2023

Last time we gave the definition of the Lie algebra of an algebraic group $G$; now we discuss Lie algebras in more detail. We first show that the module $\Omega_{G}$ of differentials is completely controlled by the tangent space $T_{e} G$.

## Proposition 4.4.2, p. 70

There is an isomorphism of $\mathbf{k}[G]$-modules $\Phi: \Omega_{G} \rightarrow \mathbf{k}[G] \otimes_{\mathbf{k}}\left(T_{e} G\right)^{*}$ such that $\Phi \circ \lambda(x) \circ \Phi^{-1}=\lambda(x) \otimes 1, \Phi \circ \rho(x) \circ \Phi^{-1}=\rho(x) \otimes(\mathrm{Ad} x)^{*}$. If $f \in \mathbf{k}[G]$ and $\Delta f=\sum_{i} f_{i} \otimes g_{i}$ then $\Phi(d f)=-\sum_{i} f_{i} \otimes \delta g_{i}$. Here $\Delta$ is the comultiplication map $\mathbf{k}[G] \rightarrow \mathbf{k}[G] \otimes \mathbf{k}[G]$, so that $\Delta f(x, y)=f(x y)$, and $\delta f=f-f(e)+M_{e}^{2}$, as defined last time.

## Proof.

The map sending $(x, y)$ to $(x, x y)$ is an automorphism of $G \times G$; the corresponding algebra automorphism $\psi$ of $A=\mathbf{k}[G]$ has $(\psi F)(x, y)=F(x, x y)$. Hence $\psi /$ is the ideal of functions vanishing on $\mathcal{G} \times\{e\}$, which is $A \otimes M_{e}$, whence $\left.\psi\right|^{2}=A \otimes M_{e}^{2}$ and $\psi$ induces a bijection of $\Omega_{G}$ onto $A \otimes\left(M_{e} / M_{e}^{2}\right)$. Let $\phi$ be the composite of this bijection and the earlier isomorphism observed between $T_{e} G$ and $\left(M_{e} / M_{e}^{2}\right)^{*}$. From the definition of $\psi$ it follows that $(\lambda(x) \otimes 1) \circ \psi=\psi \circ(\lambda(x), \lambda(x)),(\rho(x) \otimes c(x)) \circ \psi=\psi \circ(\rho(x) \otimes \rho(x))$, implying the first assertion. We also have $\psi(f \otimes 1-1 \otimes f)(x, y)=\sum_{i} f_{i}(x)\left(g_{x}(e)-g_{i}(y)\right)$, from which the second assertion follows.

Recalling the notation $\mathcal{D}=\mathcal{D}_{G}$ for the $\mathbf{k}$-derlvations of $A=\mathbf{k}[G]$ introduced last time, it follows at once that

## Corollary 4.4.4, p. 71

There is an isomorphism $\psi: \mathcal{D}_{G} \rightarrow \mathbf{k}[G] \otimes_{\mathbf{k}} T_{e} G$ of $\mathbf{k}[G]$-modules such that $\psi \circ \lambda(x) \circ \Psi^{-1}=\lambda(x) \otimes 1, \Psi \circ \rho(x) \circ \psi^{-1}=\rho(x) \otimes \mathrm{Ad} x$ for $x \in G$ and $\Psi^{-1}(1 \otimes X)(f)=-\sum_{i} f_{i}\left(X g_{i}\right)$ for $X \in T_{e} G$.

Now we can apply these results to the Lie algebra $L(G)$. Let $\alpha_{G}=\alpha: \mathcal{D}_{G} \rightarrow T_{e} G$ be the map with $\left(\alpha_{G} D\right)(f)=(D f)(e)$.

## Proposition 4.4.5, p. 71

$\alpha$ induces an isomorphism of vector space $L(G) \cong T_{e} G$ and if $x \in G$ we have $\alpha \circ \rho(x) \circ \alpha^{-1}=$ Ad $x$. In particular $\operatorname{dim}_{\mathbf{k}} L(G)=\operatorname{dim} G$.

Letting $\psi$ be as above we see that $\Psi\left(L(G)=1 \otimes T_{e} G\right.$ and $\left(\alpha \otimes \psi^{-1}\right)(1 \otimes X)(f)=-\sum_{i} f_{i}(e)\left(X g_{i}\right)=-X f$ since $f=\sum_{i} f_{i}(e) g_{i}$. The proposition follows at once.

A simple extension of this result shows that for fixed $a \in G$ the the differential $d \psi_{e}$ at e of $\psi(x)=a x a^{-1} x^{-1}$ is Ad $a$ - 1 (Lemma 4.4.13, p. 74)

Next let $H$ be a closed subgroup of $G$. Denote by $J$ the ideal of functions vanishing on $H$, so that $\mathbf{k}[H]=\mathbf{k}[G] / J$. Put $\mathcal{D}_{G, H}=\left\{D \in \mathcal{D}_{g}: D J \subset J\right\}$. Then $\mathcal{D}_{G, H}$ is a Lie subalgebra of $\mathcal{D}_{G}$ and there is an obvious homomorphism of Lie algebras $\phi: \mathcal{D}_{G, H} \rightarrow \mathcal{D}_{H}$. We also have $T_{e} H=\left\{X \in T_{e} G: X J=0\right\}$. Then we get

## Lemma 4.4.7, p. 72

$\phi$ defines an isomorphism of $\mathcal{D}_{G, H} \cap L(G)$ onto $L(H)$

## Proof.

It follows from the definitions that $\alpha_{H} \circ \phi$ is the restriction of $\alpha_{G}$ to $\mathcal{D}_{G, H}$, whence $\phi$ is injective. To conclude it is enough to show that if $X \in T_{e}(H)$ then $D=\psi^{-1}(1 \otimes X) \in \mathcal{D}_{G, H}$ with $\psi$ as above. if $f \in J$ and $\Delta f=\sum_{i} f_{i} \otimes g_{i}$ then we may assume for each $i$ that one of the elements $f_{i}$ or $g_{i}$ lies in $J$. Then $D f \in J$, as required.

Henceforth we identify the Lie algebra $L(G)$ with the tangent space $T_{e} G$, transferring the Lie algebra structure to the latter. We sometimes use German letters $\mathfrak{g}, \mathfrak{h}$, ... for the Lie algebras of $G, H, \ldots$ Given a homomorphism $\phi: G \rightarrow G^{\prime}$ of algebraic groups its differential $d \phi$ is easily seen to be a homomorphism of Lie algebras $L(G) \rightarrow L\left(G^{\prime}\right)$ (Proposition 4.4.9, p. 72).

## Example

This is Example 4.4.10 on p. 73. First let $G=G_{a}, \mathbf{k}[G]=\mathbf{k}[T]$. The derivations of $G$ commuting with translations $T \rightarrow T+a$ are just the multiples of $X=\frac{d}{d T}$. If $p>0$ we have $X^{p}=0$. So $\mathfrak{g}$ is the one-dimensional Lie algebra $\mathbf{k} X$ with trivial bracket and trivial $p$ th power operation if $p>0$. Next let $G=G_{m}$; here $\mathbf{k}[\mathrm{G}]=\mathbf{k}\left[T, T^{-1}\right]$. Now the derivations commuting with the translations $T \rightarrow$ Ta are the multiples of $Y=T \frac{d}{d T}$. Once again $\mathfrak{g}$ is one-dimensional, with trivial bracket, but now $Y^{p}=Y$, so that the $p$ th power operation is different, if $p>0$.

## Example

Continuing with Example 4.4.10, let $G=G L_{n}, \mathbf{k}[G]=\mathbf{k}\left[T_{i j}, D^{-1}\right]$ for $1 \leq i, j \leq n$, where $D$ is the determinant. Here $G$ is an open subset of $\mathfrak{g l} l_{n}$, the set of $n \times n$ matrices, so that $\mathfrak{g}=\mathfrak{g l}_{n}$ as a vector space. If $X=\left(T_{i j}\right) \in \mathfrak{g}$, then $D_{X} T_{i j}=\sum_{h=1}^{n} T_{i h} X_{h j}$ defines a derivation of $\mathbf{k}[G]$ commuting with left translations, which thus lies in $\mathfrak{g}$. Hence $\mathfrak{g}$ consists exactly of the $D_{x}$; the bracket operation is given by commutation of matrices. The pth power operation sends a matrix to its $p$ th power in the ordinary sense, if $p>0$. We have $\operatorname{Ad}(x) X=x X x^{-1}$ for $x \in G, X \in \mathfrak{g}$. Finally, if $H$ is a closed subgroup of $G$, then $\mathfrak{h}$ is a subalgebra of $\mathfrak{g}$.

In the theory of Lie groups, one establishes a bijection between connected subgroups of a (real or complex) Lie group and subalgebras of its Lie algebra; one also shows that closed subgroups of a Lie group are Lie subgroups, but not conversely. Neither of these results holds for linear algebraic groups. First of all, we consider only closed subgroups of a given algebraic group, each one having a Lie algebra that is a subalgebra of the ambient Lie algebra, but not all Lie subalgebras arise in this way. (The ones that do are called algebraic and it is still not completely settled what the algebraic subalgebras of $\mathfrak{g l}(n)$ are.) In particular, there is no algebraic group analogue of the exponential map in manifold theory.

I conclude with some simple differentiation formulas. Let $G$ be an algebraic group with Lie algebra $\mathfrak{g}$. Let $\mu: G \times G \rightarrow G$ and $i: G \rightarrow G$ be the multiplication and inverse maps, respectively, on $G$.

Lemma 4.4.12, p. 74
We have $(d \mu)_{(e, e)}(X, Y)=X+Y,(d i)_{e}(X)=-X$ for $X, Y \in \mathfrak{g}$.

The multiplication map $\mu$ defines a linear map
$\tilde{\mu}: \Omega_{G} \rightarrow \Omega_{G \times G}=\left(\Omega_{G} \otimes \mathbf{k}[G]\right) \oplus\left(\mathbf{k}[G] \otimes \Omega_{G}\right)$. If
$f \in \mathbf{k}[G], \Delta f=\sum_{i} f_{i} \otimes g_{i}$, then $\tilde{\mu}(d f)=\sum\left(d f_{i} \otimes g_{i}+f_{i} \otimes d g_{i}\right.$. Since $f=\sum f_{i}(e) g_{i}=\sum g_{i}(e) f_{i}$ we have that $\tilde{\mu}(d f)-d f \otimes 1-1 \otimes d f \in M_{e, e} \Omega_{G \times G}$. Hence the linear map of $\Omega_{G}(e)$ to $\Omega_{G \times G}(e, e)=,\omega_{G}(e) \oplus \Omega_{G}(e)$ induced by $\tilde{\mu}$ sends $u$ to $(u, u)$. As $(d \mu)_{e, e}$ is the dual of this map, the first assertion follows. The second follows from the fact that $\mu \circ$ (id, $i$ ) is the trivial map sending $G$ to $\{e\}$.

Finally, let $G_{1}, G_{2}$ be two linear algebraic groups acting linearly on the vector spaces $V_{1}, V_{2}$. Then the tensor product $V_{1} \otimes_{\mathbf{k}} V_{2}$ carries a natural $G_{1} \times G_{2}$ action, for which $\left(g_{1}, g_{2}\right) \cdot\left(v_{1} \otimes v_{2}\right)=g_{1} \cdot v_{1} \otimes g_{2} \cdot v_{2}$. The differentiated action on $L\left(G_{1} \times G_{2}\right)=L\left(G_{1} \oplus L\left(G_{2}\right)\right.$ has $\left(X_{1}, X_{2}\right) \cdot(v \otimes w)=X_{1} \cdot v \otimes w+v \otimes X_{2}$.w. If the $V_{i}$ are finite-dimensional and each $G_{i}$ acts irreducibly on $V_{i}$ (so that no proper subspace of $V_{i}$ is stable under $G_{i}$ ), then $V_{1} \otimes V_{2}$ is irreducible under the $G_{1} \times G_{2}$ action and every finite-dimensional irreducible representation of $G_{1} \times G_{2}$ arises in this way.

Taking $G=G_{1}=G_{2}$ and specializing to the diagonal subgroup of $G \times G$, we get for any rational representations $V, W$ of $G$ a representation of $G$ on $V \otimes W$, but this time this representation is not necessarily irreducible even if $V$ and $W$ are. The differentiated action of the representation of $L(G)$ on $V \otimes W$ has $X .(v \otimes w)=X . v \otimes w+v \otimes X . w$. In particular, we get natural actions of $G$ and $L(G)$ on the $n$th tensor power $T^{n} V=v^{\otimes n}$ as well as on its quotients the $n$th symmetric power $S^{n} V$ and the $n$th exterior power $\wedge^{n} V$.

