Lecture 10-16: Tangent spaces: heuristic motivation, formal definition, and properties

October 16, 2023

Lecture 10-16: Tangent spaces: heuristic m

Like differentiable manifolds, algebraic varieties have tangent spaces at every point; but unlike manifolds, varieties can have singular points at which the tangent space has dimension larger than that of the variety. Following Chapter 4 in the text, I will give the formal definition of tangent spaces and develop some of their properties I begin with some motivation. Let $X \subset \mathbf{k}^n$ be an affine variety whose ideal *I* of definition is generated by f_1, \ldots, f_s . Let $x \in X$ and let $L = \{x + tv : t \in \mathbf{k}\}$ be a line through x in \mathbf{k}^n , where $v = (v_1, \ldots, v_n)$ is a direction vector for *L*. Writing out the Taylor series of each $f_i(x + tv)$ we get

 $f_i(x + tv) = t \sum_{i=1}^n v_i(D_i f_i)(x) + t^2(\ldots)$, where D_i denotes partial differentiation with respect to the *j*th variable x_i , whence t = 0 is a multiple root of the equations $f_i(x + tv) = 0$ if and only if $\sum_{i=1}^{n} v_i(D_i f_i)(x) = 0$. If so we call L a tangent line and v a tangent vector to X at x. The tangent space of X at x is the set of all tangent vectors of X at x. This definition will be reformulated slightly when we make it more formal; the tangent space at a point will be a quotient rather than a subspace of a \mathbf{k} -vector space. We will also attach a kind of tangent object to all of X_{i} though it will be too large to regard as a tangent space to it. If X = G is an algebraic group we will shrink this tangent object to a genuine tangent space to X.

ヘロン 人間 とくほ とくほ とう

Note that in the special case n = 3, taking $\mathbf{k} = \mathbb{R}$, and replacing f_1, \ldots, f_s by a single differentiable function f of three variables, this is just the Math 126 definition of the tangent space to the level surface defined by f = 0 in \mathbb{R}^3 ; but note that a key difference from the situation in Math 126 is that if $\nabla f(x) = 0$ then rather than saying that the tangent space of f = 0 is undefined at x we now say that it is all of \mathbb{R}^3 there. The operator $D' = \sum v_i D_i$ is then a *derivation* from the polynomial algebra $T = \mathbf{k}[x_1, \dots, x_n]$ into itself; that is, it is a **k**-linear map such that D(fg) = (Df)g + (D(g)f). The requirement above on the v_i that $\sum_{i=1}^{n} v_i D_i(f_i)(x) = 0$ for every generator f_i of l translates to the requirement that $DI \subset M_x$, where $M_x \subset \mathbf{k}[X]$ is the maximal ideal of functions vanishing at x.

(D) (A) (A) (A) (A) (A)

Evaluating all functions at x, we see that D can be regarded as a function from $\mathbf{k}[X]$ to k (rather than to $\mathbf{k}[X]$) such that D(fg) = (Df)g(x) + (Dg)f(x). We all such a map a **k**-derivation of $\mathbf{k}[X]$ in \mathbf{k}_x ; here the range $\mathbf{k}_x = \mathbf{k}$ is regarded as a $\mathbf{k}[X]$ -module via f.k = f(x)k for $f \in \mathbf{k}[X], k \in \mathbf{k}_x$. Conversely, any **k**-derivation of $\mathbf{k}[X]$ in \mathbf{k}_{x} arises in this way, since any such map D sends all constants to 0, is completely determined by the images $v_i = Dx_i$ of the variables x_i , and the requirement on the v_i is exactly that $\sum_{i=1}^{n} v_i(D_i f_i)(x) = 0$ for all generators f_i of I (or equivalently for all elements of I). Clearly this definition does not depend on the choice of the generators f_i . We thus define $T_X X$ to be the set $\text{Der}_{\mathbf{k}}(\mathbf{k}[X], \mathbf{k}_{X})$ of such derivations. (p. 58)

イロン イロン イヨン イヨン 三日

In general (4.1.1, p. 57), given a commutative ring R, an R-algebra A, and a left A-module M, an R-derivation D of A in M is an R-linear map $D : A \to M$ satisfying D(ab) = a.Db + b.Da (the Leibniz rule). If A, B are two R-algebras and M is an $A \otimes_R B$ -module, and thus also an A-module and a B-module, there is a natural isomorphism $(\text{Der}_R(A, M) \otimes B) \oplus (A \otimes \text{Der}_R(B, M) \cong \text{Der}_R(A \otimes_R B, M)).$

Given a commutative ring R, a map $\phi : A \rightarrow B$ of R-modules, and a *B*-module *N*, the map ϕ induces an *R*-module homomorphism ϕ_{\Box} : Der_R(B, N) \rightarrow Der_R(A, N) whose kernel is Der_A(B, N), regarding B as an A-module in the obvious way. Thus we get an exact sequence of A-modules $0 \rightarrow \text{Der}_A(B, N) \rightarrow \text{Der}_B(B, N) \rightarrow \text{Der}_B(A, N)$ of A modules. In particular, given a morphism $\phi: X \to Y$ of affine varieties, we have its differential $d\phi_X : T_X(X) \to T_{\phi_X}(Y)$, a linear map on **k**-vector spaces, for each $x \in X$; given another morphism of varieties $\psi: Y \to Z$ one has the chain rule $d(\psi \circ \phi)_x = d\psi_{\phi x} \circ d\phi_x$; if ϕ is an isomorphism, so is $d\phi_x$ for any x, and the differential of the identity morphism is the identity map (p. 58). As a special case, if G is an algebraic group and X is a G-variety, then the action of any $g \in G$ defines an isomorphism from the tangent space $T_x X$ of X at any point x to the tangent space $T_{q,x}X$ of X at g.x.

ヘロン 人間 とくほ とくほ とう

It is immediate from the definition that any **k**-derivation D of $\mathbf{k}[X]$ in \mathbf{k}_x sends any constant function or function in M_x^2 to 0. Hence it induces and is completely determined by a **k**-linear map $\lambda(D)$ from the quotient M_x/M_x^2 to **k**; conversely, any such map $\lambda(D)$ corresponds to a unique derivation D (Lemma 4.1.4, p. 58). We can also extend derivations uniquely to certain rings of regular functions: given a **k**-derivation D of $\mathbf{k}[X]$ in \mathbf{k}_x , it extends uniquely to a regular function in \mathcal{O}_{x} (that is, function on X regular at x) via the quotient rule $D(g/h) = (h.Dg - g.Dh)/h^2$; note also that the quotient $\mathcal{O}_X/\mathcal{M}_X$ by its unique maximal ideal \mathcal{M}_X of regular functions vanishing at x is also isomorphic to $\mathbf{k} = \mathbf{k}_{x}$. We also see that if ϕ is an isomorphism from X onto an affine open subvariety of Y, then $d\phi_x$ is an isomorphism from $T_x(X)$ onto $T_{dx}(Y)$ for any $x \in X$ (Lemma 4.1.6, p. 59). Hence we can extend the definition of tangent space to an arbitrary variety X: if U, V are two affine open neighborhoods of $x \in X$ with $V \subset U$ then there is a canonical identification $T_X U \cong T_X V$, so that we can take $T_x X$ to be $T_x U$ for any open affine neighborhood U of x.

ヘロン 人間 とくほ とくほ とう

Definition 4.1.7, p. 59

We say that $x \in X$ is simple, or nonsingular, or X is smooth at x, if the dimension dim $T_x X = \dim X$. X is smooth, or nonsingular, if all of its points are smooth.

- < ⊒ → --

There is a handy way to reformulate the notion of derivation. Given as usual a commutative ring R and an R-module A we have the multiplication map $m : A \otimes_R A$ defined by $m(a \otimes b) = ab$. Letting I be the kernel of m we note that the quotient $(A \otimes A)/I$ is naturally isomorphic to A.

Definition 4.2.1, p. 60

The module of differentials $\Omega_{A/R}$ is the quotient I/I^2 , viewed as an A-module thanks to the identification $A \otimes A/I \cong A$. The image of $a \otimes 1 - 1 \otimes a$ in $\Omega_{A/R}$ is denoted da or $d_{A/R}a$.

ヘロン 人間 とくほ とくほ とう

October 16, 2023

Theorem 4.2.2, p. 61

For every A-module M the map Φ : hom_A($\Omega_{A/R}, M$) \rightarrow Der_A(M) sending ϕ to $\phi \circ d$ is an A-module isomorphism.

Proof.

Clearly Φ is an A-module map, which is injective since the da generate $\Omega_{A/R}$. Letting $D \in \text{Der}_R(A, M)$, define an R-linear map $\psi : A \otimes A \to M$ via $\psi(a \otimes b) = bDa$; then $\psi(x, y) = m(x)\psi(y) + m(y)\psi(x)$, whence ψ vanishes on l^2 and defines an R-linear map from $\Omega_{A/R}$ to M. Since $\psi(a \otimes 1 - 1 \otimes a) = Da$ we have $\Phi \psi = D$ and Φ has the required properties.

・ロト ・同ト ・ヨト ・ヨト … ヨ

October 16, 2023

Let A be an R-algebra of the form $R[x_1, \ldots, x_m]/(f_1, \ldots, f_n)$. Let t_i be the image of x_i in A, write $t = (t_1, \ldots, t_m)$, and as above denote partial differentiation with respect to x_i by D_i . Then a straightforward calculation essentially repeating one given above yields

Lemma 4.2.4, p. 61

The dt_i generate $\Omega_{A/R}$. The kernel of the homomorphism $\phi: A^m \to \Omega_{A/R}$ with $\phi(e_i) = dt_i$, e_i the *i*th unit coordinate vector, is the submodule generated by the elements $\sum_{i=1}^n D_i f_i(t) e_i$ for $1 \le j \le n$.

For an affine variety X we can regard the $\mathbf{k}[X]$ -module $\Omega_{\mathbf{k}[X]/\mathbf{k}}$ as the tangent object of X promised above, though it is too large to be an actual tangent space.

In particular, take R to be our basefield **k** and A to be the coordinate ring $\mathbf{k}[X]/I$, where $I = (f_1, \dots, f_n)$ is the ideal of definition of the affine variety $X \subset \mathbf{k}^m$. Let J be the Jacobian matrix of the f_i , so that the *i*/th entry of J is the partial derivative $\partial f_i / \partial x_i$ of f_i with respect to the *j*th variable x_i . Evaluating J at any point $x \in \mathbf{k}^m$ we get a matrix J(x) of elements of \mathbf{k} , whose corank (the number *m* of variables minus the rank) equals the dimension of the tangent space of X at x; note that this space is now given to us as a quotient rather than a submodule of \mathbf{k}^m , as it was in the heuristic introduction, but its dimension over \mathbf{k} at any x is the same as it was before.

14/1

I now enlarge the domains of definition of the above derivations to fields. Let F be a field and $E \subset E'$ be two finitely generated field extensions of F. By above I have an exact sequence of groups $0 \rightarrow \text{Der}_{F'}(E, E) \rightarrow \text{Der}_{F}(E, E) \rightarrow \text{Der}_{F}(E', E)$; this is also an exact sequence of E-vector spaces, where the E-action comes form the second arguments. Then we get an exact sequence $0 \rightarrow \hom_{E}(\Omega_{E/E'}, E) \rightarrow \hom_{E}(\Omega_{E/F}, E) \rightarrow \hom_{E'}(\Omega_{E'/F}, E)$, yielding an exact sequence of E-vector spaces $0 \rightarrow \hom_{E}(\Omega_{E/E'}, E) \rightarrow \hom_{E}(\Omega_{E/F}, E) \rightarrow \hom_{E}(E \otimes_{E'} \Omega_{E'/F}, E)$, since hom_E($E \otimes_{E'} \Omega_{E'/F}, E$) is naturally isomorphic to hom_{E'}($\Omega_{E'/F}, E$). It is easy to check that these vector spaces are finite-dimensional. Dualizing we get an exact sequence of E-vector spaces $E \otimes_{E'} \Omega E' / F \rightarrow \Omega_{E/F} \rightarrow \Omega_{E/E'} \rightarrow 0$; denote the leftmost map here by α .

イロン イロン イヨン イヨン 三日

Now recall that *E* is called *separable algebraic* over *F* if for each $x \in E$ there is a polynomial $f \in f[T]$, or equivalently an irreducible polynomial $f \in f[T]$, over *F* without multiple roots such that f(x) = 0. If the characteristic of *F* is 0, then every algebraic extension of *F* is separable algebraic.

Lemma 4.2.7, p. 63

If E is separable algebraic then the map α above is injective.

ヘロン 人間 とくほ とくほ とう

Proof.

From the above discussion we see that the injectivity of α is equivalent to the surjectivity of the homomorphism $Der_{F}((E, E') \rightarrow Der_{F}(E', E))$, or equivalently to the assertion that every F-derivation of E' in E extends to an F-derivation of E in E. To prove this it is enough to deal with a simple extension $E = E'(x) \cong E'[T]/(f)$, where f is an irreducible polynomial with $f'(x) \neq 0$. Let $D \in \text{Der}_F(E', E)$. If $g = \sum_{i>0} a_i T^i \in E'[T]$ define $Dg \in E[T]$ via $Dg = \sum (Da_i)T^i$. Then D extends to an F-derivation D' of E in E with D'x = a if and only if f'(x)a + (Df)(x) = 0. Since $f'(x) \neq 0$ this equation has a unique solution and the lemma follows.

イロン イ理 とくほ とくほ とう

Lemma 4.2.8, p. 63

If E = F(x) then dim_E $\Omega_{E/F} \leq 1$. We have $\Omega_{E/F} = 0$ if and only if E is separably algebraic over F.

The proof is an easy exercise.

ヘロン ヘアン ヘビン ヘビン