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Introduction

The purpose of this paper is to extend the recipes of [5] from the group SU(p, q)
to the group Sp(p, q); we will compute annihilators and associated varieties of
simple Harish-Chandra modules for the latter group. We will appeal to the clas-
sification of primitive ideals in enveloping algebras of types B and C in [4] via
their generalized τ-invariants; thus (inspired by [5]) we will define a map H tak-
ing (parameters of) simple Harish-Chandra modules X of trivial infinitesimal
character to pairs (T1,T2) where T1 is a domino tableau and T2 an equivalence
class of signed tableaux of the same shape as T1. Then T1 will parametrize the
annihilator of X (via the classification of primitive ideals in [4]) while any rep-
resentative of T2, suitably normalized, parametrizes its associated variety (via
the classification of nilpotent orbits in Lie Sp(p, q) in [1, 9.3.5]). The proof of
these properties will rest primarily on the commutativity of the maps H with
both τ-invariants and wall-crossing operators Tαβ, defining the latter operators
as in [10]. We will parametrize our modules X via signed involutions of signature
(p, q) and construct the tableaux from the involutions.

Section 1 Cartan subgroups and Weyl groups

For G = Sp(p, q),n = p+ q, p ≤ q we set g0 = Lie G and we let g be its complex-
ification. Let θ be the usual Cartan involution of G or g and let k+ p be the
corresponding Cartan decomposition. Denote by K the subgroup of the complexi-
fication of G corresponding to k. Let H0 be a compact Cartan subgroup of G with
complexified Lie algebra h. As a choice of simple roots in g relative to h we take
2e1, e2 − e1, . . . , en−1 − en−2, en − en−1, following [4].

There are p+1 conjugacy classes of Cartan subgroups of G. If we take H0
to be a compact Cartan subgroup and define Hi inductively for i > 0 as the Cay-
ley transform of Hi−1 through ep−i+1 − ep+i for 1 ≤ i ≤ p, then the Hi furnish
a complete set of representatives for the conjugacy classes of Cartan subgroups
of G. The real Weyl group W(Hi) of the ith Cartan subgroup Hi is isomorphic
to Wp−i nSp−i

2 ×Wi ×Wq−p+i, where Wr,S j respectively denote the hyperoctahe-
dral group of rank r and the symmetric group on j letters; here W(Hi) embeds
into the complex Weyl group W of g (relative to h) by permuting, interchanging,
and changing the signs of the first p− i pairs of coordinates and then permut-
ing and changing the signs of the next i and then the next q− p+ i coordinates
[6, 7]. The subgroups Hi are all connected and there is a single block of simple
Harish-Chandra modules for G with trivial infinitesimal character.
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Section 2 The D set and Cartan involutions

Using Vogan’s classification of simple Harish-Chandra modules with trivial in-
finitesimal character by Z/2Z-data [11], we parametrize such modules for these
groups combinatorially, as follows. Define Sn, the set of signed involutions on n
letters, to be the set of all sets {s1, . . . , sm}, where each si takes one of the forms
(i,+), (i,−), (i, j)+, (i, j)−, where i, j lie between 1 and n, the pairs (i, j) are ordered
with i < j, and each index i between 1 and n appears in a unique pair of exactly
one of the above types. We say that σ ∈Sn has signature (p, q) or lies in Sn,p, if
the total number of singletons (i,+) and pairs (i, j)+ or (i, j)− in σ is p. Let In
denote the set of all involutions in the complex Weyl group Wn, Identify an ele-
ment ι ∈In with an element σ ∈Sn by decreeing that ( j,+) ∈σ if ι( j)= j, ( j,−) ∈σ
if ι( j) = − j, (i, j)+ ∈ σ if the (positive) indices i, j are flipped by ι, (i, j)− ∈ σ if in-
stead the indices i,− j are flipped by ι. Then Wn acts on In by conjugation and we
may transfer this action to Sn via the above identification. The set of involutions
flipping p− r pairs of indices in {±1, . . . ,±(p+ q)} is stable under conjugation and
has cardinaility equal to the index of W(Hp−r), whence we may take Sn,p as a
parametrizing set D for the set of simple Harish-Chandra modules for Sp(p, q)
with trivial infinitesimal character. More generally, as needed for inductive ar-
guments below, we define for any subset M of {1, . . . ,n} the set SM,p in the same
way as Sn,p, replacing the numbers 1, . . . ,n by the numbers in M.

The Cartan involution θ corresponding to any σ ∈Sn,p fixes a unit coordinate
vector e i whenever (i,+) ∈ σ or (i,−) ∈ σ. If (i, j)+ ∈ σ, then θ flips the vectors e i
and e j, while if (i, j)− ∈ σ, then θ flips e i and −e j, unless j− i = 1, in which case
θ sends both e i and e j to their negatives. Thus a simple root e i+1 − e i is compact
imaginary for σ if and only if (i,ε) and (i+1,ε) both lie in σ for some sign ε, while
2e1 is compact imaginary if and only if (1,ε) lies in σ for some sign ε.

Section 3 The cross action and the Cayley transform

For an element σ of Sn,p and a pair of indices i, j between 1 and n, we define
In(i, j,σ) as in [5, Definition 1.9.1], interchanging the unique occurrences of i
and j in σ and leaving all others unchanged (so that σ is unchanged if (i, j)+ or
(i, j)− occurs in it). We define SC(1,σ) to be σ with the pair (1, i)ε in it replaced by
(1, i)−ε,−ε the opposite sign to ε, if there is such a pair in σ; otherwise SC(σ)=σ.
We define In(1,2,σ)′ to be σwith the pairs (1, i)ε, (2, j)ε

′
replaced by (1, j)−ε

′
, (2, i)−ε

if such pairs occur in σ; otherwise we set In(1,2,σ)′ =In(1,2,σ).

3.1. PROPOSITION. Let s be the simple root e i − e i−1,σ ∈ Sn,p. Then s×σ, the
cross action of s on the parameter σ, is given by In(i −1, i,σ). For t = 2e1 and
σ ∈Sn,p we have t×σ=SC(1,σ).

Proof. This may be computed directly, along the lines of [5, §§1.8,9].

As in [5], we will also need to compute Cayley transforms of parameters σ
through simple roots. It suffices to consider the simple root s = e i+1 − e i. Define
ci(σ) to be σ with the pairs (i,ε), (i+1,−ε) replaced by (i, i+1)ε for σ ∈Sn,p, if such
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pairs occur in σ; otherwise ci(σ) is undefined. Thus ci(σ) is defined if and only if
e i+1 − e i is an imaginary noncompact root for σ. In a similar way, define ci(σ) if
e i+1 − e i is real for σ to be the i through nvolution obtained from σ by replacing
(i, i+1)ε by (i,ε), (i+1,−ε).
3.2. PROPOSITION. If e i+1 − e i is imaginary noncompact for a parameter σ in
Sn,p, then the Cayley transform of σ through this root is given by ci(σ). If this
root is real for σ, then the Cayley transform through it is given by ci(σ).

Proof. Again this follows from a direct computation, along the lines of [5, 1.12].

Section 4 τ-invariants and wall-crossing operators

We define the τ-invariant τ(σ) of a parameter σin Sn,p in the same way as in
[5, 1.13]: it consists of the simple roots that are either real, compact imaginary,
or complex and sent to negative roots by the Cartan involution θ. We extend
this definition to SM,p as in [5, 1.15]. Similarly, if α,β are nonorthogonal simple
roots of the same length, then we define the wall-crossing operator Tαβ on Sn,p
as in [5, 1.14] and [10]. It is single-valued. If α,β are nonorthogonal but have
different lengths we define Tαβ on Sn,p in the same way; in this setting it takes
either one or two values. In both cases Tαβ sends parameters with α not in the
τ-invariant but β in it to parameters with the opposite property. In more detail,
if a parameter σ includes (1,2)+, then the effect of Tαβ on it is to replace (1,2)+
by either 1+,2− or 1−,2+, and vice versa; otherwise we interchange 1 and 2 in σ

if at least one of them is paired with another index but they are not paired with
each other, or we change the sign attached to the pair (1, i)ε in σ, whichever (or
both) of these operations has the desired effect on the τ-invariant of σ.

Section 5 The algorithm

We now describe the algorithm we will use to compute for a given σ ∈ Sn,p the
annihilator and associated variety of the corresponding Harish-Chandra module
for Sp(p, q). We will attach an ordered pair (T1,T2) to σ, where T1 is a domino
tableau in the sense of [2] and T2 is an equivalence class of signed tableaux of
signature (2p,2q) and the same shape as T1. The shape of T1 will be a doubled
partition of 2(p+ q); that is, a partition of 2(p+ q) in which the parts occur in
equal pairs. Any tableau in T2 will thus also have rows occurring in pairs, called
double rows, of equal length; moreover the two rows in a double row will begin
with the same sign. The equivalence relation defining T2 will be that we can
change all signs in any pair of double rows of the same even length, or in any
pair D1,D2 of double rows of different even lengths whenever there is an open
cycle of T1 in the sense of [4, 3.1.1] (so not including its smallest domino) with its
hole in one of D1,D2 and its corner in the other. Here we allow the second double
row D2 to have length 0, so that, for example, if
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T1 = 1
2

then the two signed tableaux of the same shape (one with its rows beginning with
+, the other with −) both lie in T2, since if T1 is moved through the open cycle of
its 2-domino, then that domino is given a clockwise quarter-turn, so that it now
occupies one square of a double row that was empty in T1. On the other hand,
if T1 is replaced by its transpose, then the two signed tableaux of this shape lie
in separate classes T2, since in that case the open cycle of the 2-domino does
not intersect the empty double row. In addition to this equivalence relation, we
decree as usual for signed tableaux that any two of them are identified whenever
one can be obtained from the other by interchanging pairs of double rows of the
same length. The signature of T2 (i.e. the number of + signs in it) will be 2p; note
that this is an invariant of T2. To construct T1 and T2 we follow a similar recipe
to [5, Chap. 3], replacing the tableaux occurring there with domino tableaux and
using insertion and bumping for domino tableaux as in [2].

5.1. DEFINITION. Let σ ∈ Sn,p. Order the elements of σ by increasing size
of their largest numbers. We construct the pair H(σ) = (T1,T2) attached to σ

inductively, starting from a pair of empty tableaux. At each step we insert the
next element (i,ε) or (i, j)ε into the current pair of tableaux. Assume first that
the next element of σ is (i,ε) (with ε a sign) and choose any representative T2 of
T2.
(1) If the first double row of T2 ends in −ε, then add ε to the end of both of its

rows and add a vertical domino labelled i to the end of the first double row
of T1.

(2) If not and if the first double row of T2 has (rows of) even length, then we
look first for a lower double row of T2 with the same length ending in −ε; if
there is a such a double row, we interchange it with the first double row in
T2 and then proceed as above. Otherwise we start over, trying to insert (i,ε)
into the highest double row of T2 strictly shorter than its first double row.
(In the end, we may have to insert a domino labelled i into a new double row
of T1, using ε for both signs in the new double row of T2.)

(3) If not and the first (or first available) double row of T2 has odd length but
there is more than one double row of this length, but none ending in −ε,
then we change all signs in the first two double rows of T2 of this length and
then proceed as in the previous case.

(4) Otherwise the highest available double row R in T2 has even length, ends
in ε, and is the only double row of this length. In this case we look at the
domino in T1 occupying the last square in the lower row of R. If we move
T1 through the open cycle of this domino, we find that its shape changes by
removing this square and adding a square either at the end of the higher
row of some double row R′ of T1 or else in a new row, not in T1. If it lies in a
new row, then change all signs in R and proceed as above. If it does not lie
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in a new row and R′ 6= R, then change the signs of T2 in both R and R′ and
proceed as above (again not actually moving T1 through the cycle). Finally, if
R = R′, then move T1 through the open cycle, place a new horizontal domino
labelled i at the end of the lower row of R in T1, and choose the signs in T2
so that both rows of R now end in ε while all other rows of T2 have the same
signs as before.

5.2. DEFINITION. Retain the notation of the previous definition but assume
now that the next element of σ is (i, j)ε. We begin by inserting a horizontal
domino labelled i at the end of the first row of T1 if ε = +, or a vertical domino
labelled i at the end of the first column of T1 if ε=−, following the procedure of
[2] (and thus bumping dominos with higher labels as needed). We obtain a new
tableau T′, whose shape is obtained that of T1 by adding a single domino D, lying
either in some double row R of T1 or else in a new row (in which case D must be
horizontal). Let ` be the length of R (before D was added).
(1) If D is horizontal and ` is even, then add a domino labelled j to T′ immedi-

ately below the position of D, in the lower row of R. Choose signs in T2 so
that both rows of R now end in a different sign than they did before; leave
all other signs the same. If D lies in a new row, then we have a new double
row in T2, which can begin with either sign; to make a particular choice, we
decree that both rows in the new double row begin with −.

(2) If D is horizontal and ` is odd, then T′ does not have special shape in the
sense of [2], but its shape becomes special if one moves through just one
open cycle. Move through this cycle and choose the signs in T2 so that R
is now a genuine double row and its rows end in a different sign than they
did before. Then T2 has either two more + signs than before or two more −
signs. Insert a vertical domino labelled j to the first available double row in
T1 strictly below R, following the procedure of the previous definition. The
sign attached to j is − if T2 gained two + signs and is + otherwise.

(3) If D is vertical and ` is even, then R is still a double row; choose signs so
that its rows end in the same sign as they did before, leaving all other signs
unchanged. If a new double row was created by inserting the new domino,
then its rows can begin with either sign; to make a particular choice, we
decree that this sign is +. Now add a new vertical domino j to the first
available double row strictly below R, as in the previous case, giving it the
same sign as in that case.

(4) If D is vertical and ` is odd, then proceed as in the previous case.

One can check that either choice of sign made in Definition 5.2(1) or (3) gives rise
to equivalent tableaux T2, so that in the end we get a well-defined equivalence
class T2. To compute the associated variety of the Harish-Chandra module cor-
responding to σ, we choose any representative of T2 and normalize it so that all
even rows begin with +; this is because this variety is the closure of one nilpo-
tent K-orbit in p∗ [9, 5.2] and such orbits (via the Kostant-Sekiguchi bijection
between them and nilpotent orbits in g0) are parametrized by signed tableaux of
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signature (2p,2q) in which even rows begin with + [1, 9.3.5]. Later we will show
that the map H defines a bijection between Sn,p and pairs (T1,T2) with T2 of
signature (2p,2q)

We give two examples. First let σ= {(1,2)+} ∈S2,1. Then we get

T1 = 1
2

while T2 consists of both signed tableaux of this shape, as noted above. In the
other example, we let σ= {((1,+), (2,−), (3,4)+, (5,+)} ∈S5,3. Then

T1 = 1
2 3
4 5 and T2 = + − + − +

where we denote signed tableaux by tableaux tiled by vertical dominos, each
labelled with the (common) sign of each of its squares; note that here T2 consists
of a single tableau.

Section 6 τ-invariants and Tαβ on tableaux

We define the τ-invariant τ(T1,T2) of a pair (T1,T2), or just of its domino tableau
T1, in the same way as [3, 2.1.9]; thus for example 2e1 lies in the τ-invariant of
T1 in type C if and only if the 1-domino in it is vertical. If α,β are simple roots
of the form e i − e i−1, e i+1 − e i for some i, then we define Tαβ on a domino tableau
T1 lying in the domain Dαβ of this operator as in [3, 2.1.10] and extend this to
a pair (T1,T2) by making the operator act trivially on T2. We now define Tαβ

in the other cases, following the notation of [3, 2.3.4], and as in [3] defining this
operator on pairs rather than single tableaux.

6.1. DEFINITION. Suppose that α = 2e1,β = e2 − e1. If T1 ∈ Dαβ, then either
F2 ⊆T1 or F̃2 ⊆T1.
(1) In the first case, let T′

1 be obtained from T1 by replacing F2 by F1. If the
2-domino of T′

1 lies in an open cycle not including the 1-domino and if the
equivalence class T2 breaks up into two classes T

′
2,T

′′
2 with respect to T′

1,
then we set Tαβ(T1,T2) = ((T′

1,T
′
2), (T′

1,T
′′
2)). If the 2-domino lies in a closed

cycle c, then let T̃′
1 be the tableau obtained from T′

1 by moving through c and
we set Tαβ(T1,T2)= ((T̃′

1,T2), (T′
1,T2)). Otherwise set Tαβ(T1,T2)= (T′

1,T2).

(2) If instead F̃2 ⊆ T1, then the 2-domino of T1 lies in a closed cycle c, since
T1 has the (special) shape of a doubled partition; if this cycle were open, it
would have to be simultaneously an up and down cycle in the sense of [4,
§3], a contradiction. Let T̃1 be obtained from T1 by moving through c and
let T̃′

1 be obtained from T̃1 by replacing F2 by F1. Then set Tαβ(T1,T2) =
(T̃′

1,T2).
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(3) If instead α = e2 − e1,β = 2e1, then define Tαβ(T1) for T1 ∈ Dαβ as above,
interchanging F1,F2 throughout by F̃1, F̃2.

For example, if T1 is as in the first example in the last section, so that T2 con-
sists of both signed tableaux of this shape, then T2e1,e2−e1 sends (T1,T2) to the
pair ((T′,T′

2), (T′,T′′
2), where T′ the transpose of T1 and T′

2,T′′
2 are the two signed

tableaux in T2. Note also that, unlike [3, 2.3.4], we must not move through any
open cycles, as all of our tableaux must have doubled partition shape. There are
no right domino tableaux and so there is no notion of extended cycle.

Section 7 H commutes with τ-invariants

As in [5], we prove that our algorithm H computes the annihilators of simple
Harish-Chandra modules by showing that it commutes with taking τ-invariants
and applying wall-crossing operators. In this section we deal with τ-invariants.

7.1. PROPOSITION. Let σ ∈Sn,p and α a simple root for Sp(p, q). Then α ∈ τ(σ)
if and only if α ∈ τ(H(σ).

Proof. We enumerate all possible ways in which α can lie in τ(σ), or fail to lie in
this set, and then check directly that the conclusion holds in each case.

Suppose first that α ∈ τ(σ).

(1) If α= e i+1− e i is compact imaginary, then we must have (i,ε), (i+1,ε) ∈σ for
some sign ε. The i-domino starts out vertical and in the first double row of
T1; eventually either the i- and (i+1)-dominos wind up horizontal with the
first on top of the second, or the (i+1)-domino is added vertically to a lower
double row. In both cases the i-domino winds up above the (i+1)-domino,
as desired. If α= 2e1 is compact imaginary, then (1,ε) ∈σ for some sign ε, so
that the 1-domino is vertical in T1.

(2) If α= e i+1 − e i is real, then we must have (i, i+1)+ ∈ σ. It is clear from the
algorithm that the i-domino winds up below the (i+1)-domino.

(3) Otherwise α is complex. If α= 2e1, then we must have (1, j)− ∈σ for some j,
and then it is clear that the 1-domino winds up vertical in the first double
row of T1, while the j-domino lies below this double row.

(4) We are now reduced to the case where α = e i+1 − e i,α complex. If
(i,ε), ( j, i + 1)ε

′ ∈ σ for some j < i for signs ε,ε′ and if the i-domino is ver-
tical when adjoined to T1, then it is added to the end of some double row R
such that the double rows above it end in the same sign as R in T2 (since
the i-domino was not put into a higher row). When the j-domino is inserted,
adding a domino D to the shape of T1, the additional signs added to T2, if D
is vertical, are both −ε, whence the (i+1)-domino is now inserted vertically
with sign ε and winds up in a row below R (since all higher rows end with
the same sign as they did before the j-domino was inserted). If D is horizon-
tal, then it lies in the bottom row of T1, and once again, the (i+1)-domino
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lies below it. The argument is similar if instead the i-domino ends up hori-
zontal (lying directly below another horizontal domino) when it is adjoined
to T1.

(5) If (i +1,ε), (i,k)+ ∈ σ for some k > i +1, then the (i + 1)-domino is vertical
at the end of some double row of T1; the i-domino is adjoined horizontally
either to this double row or a higher one, and if to this double row bumps
the (i+1)-domino so that it lies below the i-domino, as desired.

(6) If ( j, i+1)ε, (i,k)+ ∈ σ and j < i < k, then the i-domino is added to the first
row of T1, while the (i+1)-domino in all cases lies below this row. A similar
argument applies if instead ( j, i)ε, (i+1,k)− ∈σ.

(7) If ( j2, i)+, ( j1, i+1)ε ∈σ and j1 < j2 < i, then adding the j1-domino bumps the
dominos that were previously bumped by adding the j2-domino, together
with at least one domino in the double row of the i-domino, so that the
(i+1)-domino winds up below the i-domino.

(8) If ( j1, i)ε, ( j2, i+1)− ∈ σ and j1 < j2 < i, then since the j2-domino is inserted
vertically into the first column of T1, the (i+1)-domino is again forced to lie
below the i-domino, as in the previous case.

(9) if ( j2, i)+, ( j1, i+1)− ∈ σ and j1 < j2, then again the (i+1)-domino winds up
below the i-domino, similarly to the previous case.

(10) if (i+1,k1)ε, (i1,k2)+ ∈σ and i+1< k1 < k2, then either the i-domino bumps
the (i+1)-domino, or else the i-domino winds up horizontal in the first dou-
ble row, while the (i + 1)-domino winds up vertical in the first column, in
either case lying below the i-domino.

(11) if (i,k1)−, (i+1,k2)− ∈σ and i+1< k1 < k2, then the (i+1)-domino is inserted
below the i-domino.

(12) if (i,k1)+, (i + 1,k2)− ∈ σ and i + 1 < k1 < k2, then as above the i-domino
winds up in the first double row while the (i +1)-domino winds up in the
first column and lies below the former.

This exhausts all cases where α ∈ τ(σ). Now suppose the contrary. The cases
where α= 2e1 are easily dealt with, so assume that α= e i+1 − e i.

(1) If α is noncompact imaginary, so that (i,ε), (i + 1,−ε) ∈ σ, then the (i + 1)-
domino is inserted either next to the i-domino or in a higher row.

(2) If ( j, i)−, (i+1,ε) ∈ σ and j < i, then either the (i+1)-domino is added verti-
cally at the end of the first double row, or there is at least one double row of
odd length ending in −ε in T1, whence the (i+1)-domino is added to a row
not below the i-domino.

(3) If (i,ε), (i+1,k)′+ ∈ σ and +1i < k, then the (i+1)-domino is inserted hori-
zontally into the first row and cannot lie below the i-domino.

(4) If (i+1,ε), (i,k)− ∈ σ and i < k then the (i+1)-domino is inserted vertically
into the first column and cannot lie below the i-domino.
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(5) If ( j, i)ε, (i+1,m)+ ∈σ and j < i, then the (i+1)-domino is inserted horizon-
tally into the first row and cannot lie below the i-domino.

(6) If ( j1, i)ε, ( j2, i + 1)+ ∈ σ and j1 < j2 < i, then either the (i + 1)-domino is
inserted vertically into a double row no further down than the one in which
the i-domino appears, or the i-domino is in the first double row and the
(i +1)-domino is also inserted into this double row, not directly below the
former. In both cases the (i+1)-domino is not below the i-domino.

(7) If ( j2, i)−, ( j1, i+1)+ ∈ σ and j1 > j2 < i, then the i-domino is in the lowest
double row of T1 and the (i+1)-domino cannot lie below it.

(8) If ( j2, i)−, ( j1, i+1)− ∈ σ and j1 < j2 < i, then the i-domino is in the lowest
double row of T1 and (i+1)-domino is not below this double row.

(9) If (i,k1)ε, (i+1,k2)+ ∈σ and i+1< k1 < k2, then the (i+1)-domino is inserted
in the first double row of T1 and does not lie below the i-domino.

(10) If (i+1,k1)−, (i,k2)− ∈ σ and i+1 < k1 < k2, then the i-domino bumps the
(i+1)-domino vertically and does not wind up below the latter.

(11) If (i+1,k1)+, (i,k2)− ∈ σ, i+1 < k1 < k2, then the (i+1)-domino is inserted
into the first double row and cannot lie below the i-domino.

This exhausts all cases and concludes the proof.

Section 8 H commutes with Tαβ

.
Again following [5], we complete our program of showing that the map H com-
putes annihilators by showing that it commutes with wall-crossing operators.

8.1. PROPOSITION. Let α,β be nonorthogonal simple roots and let σ ∈ Sn,p lie
in the domain of the operator Tαβ. Then H(Tαβ(σ))= Tαβ(H(σ).

Proof. As in [5] we enumerate all ways in which σ can lie in the domain of Tαβ

and check that the conclusion holds in all cases. Let T1,T2 respectively denote
the domino tableau and a representative of the class of signed tableaux attached
to σ by the algorithm.

Suppose first that {α,β}= {2e1, e2 − e1}. If (1,2)+ ∈σ, then F2 ⊆T1 and Tαβ(σ)
consists of the two involutions σ1,σ2 obtained from σ by replacing (1,2)+ by
(1,+), (2,−) and (1,−), (2,+) in turn. Clearly the domino tableaux attached to
σ1,σ2 are both equal to the tableau T′

1 defined in Definition 6.1 (1). The signed
tableaux attached to these involutions at the second step of the algorithm are
not equivalent at that step, whence by the algorithm they remain inequivalent
at its end. Hence H(σ1) 6= H(σ2), as desired. The cases where (1,+), (2,−) ∈ σ or
(1,−), (2,+) ∈ σ are similar. Finally, in the case where at least one of the indices
1 and 2 is paired with another index but 1 and 2 are not paired with each other,
one clearly moves the 1- and 2-dominos in T1 in the desired fashion, whence one
can check that if any other dominos move, they are the ones in the closed cycle
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containing the 2-domino of T1 and in fact the two domino tableaux produced are
those specified by Definition 6.1 (cf. [3, 2.2.9,2.3.7]). If the 2-domino of T1 does
not lie in a closed cycle, then only one domino tableau is produced, which again
agrees with that given by this definition.

Henceforth we assume that α = e i − e i−1,β = e i+1 − e i for some i ≥ 2. Set
σ′ = Tαβ(σ) and let T′

1,T′
2 respectively denote the domino tableau and a repre-

sentative of the class of signed tableaux attached to σ′ by the algorithm. The
cases in our discussion below are parallel to the corresponding cases in the proof
of [5, Proposition 4.2.1]. That proof shows that the desired result holds whenever
none of the indices i−1, i, i+1 occurs in an ordered pair (a,b)− in σ and Tαβ does
not act on T1 by an F-type interchange in the sense of [3], using [3, 2.1.20,2.1.21]
in place of the results in Section 2.5 of [5]: in all cases either the (i−1)- and i- or
i- and (i+1)-dominos are interchanged in T1, whichever of these has the desired
effect on τ-invariants. Apart from this one changes signs and moves through
open cycles in the same way in the constructions of T1,T′

1 and T2,T′
2, so that

T′
2 is equivalent to T2, as desired. If an ordered pair (a,b)− involving one of the

indices i−1, i, i+1 does occur in σ, then one checks directly that T′
1 is obtained

from T1 by either interchanging the (i−1)- and i- or i- and (i+1)-dominos and we
may take T′

2 =T2, as desired; note that ordered pairs (a,b)− have no analogue in
[5].. It only remains to show that the desired result holds whenever Tαβ acts on
T1 by an F-type interchange (again, there is no analogue of such an interchange
in [5]). In each case below, we indicate how many subcases involve an F-type
interchange; then the result follows by a direct calculation in each such subcase.
Throughout we denote by j, j1, j2, j3 indices less than i−1 with j1 < j2 < j3, and
similarly by k,k1,k2,k3 indices greater than i+1 with k1 < k2 < k3.

(1) Suppose first that (i−1,ε), (i,−ε), (i+1,−ε) all lie in σ for some sign ε, which
for definiteness we take to be +. Then σ′ is obtained from σ by replacing the
terms (i−1,+), (i,−) by the single term (i−1, i)+. Let σ̃ consist of the terms
of σ involving only indices less than i−1 and let T̃1,T̃2 be the domino and
representative of the class of signed tableaux attached to σ̃ by the algorithm.
There are four subcases, according as the top double row of T̃2 has even or
odd length and ends with + or −, but only one of these has Tαβ acting on T1
by an F-type interchange. One checks directly that the conclusion holds in
this case.

(2) If instead (i−1,ε), (i, i+1)+ ∈σ, so that (i−1,ε), (i,ε), (i+1,−ε)) ∈σ′, then again
only one subcase out of four has Tαβ acting on T1 by an F-type interchange,
and the conclusion holds in that case.

(3) If ( j, i−1)ε, (i, i+1)+ ∈ σ, so that ( j, i)ε, (i−1, i+1)+ ∈ σ′, then no F-type in-
terchange ever takes place.

(4) If (i − 1, i + 1)ε, (i,k)+ ∈ σ, so that (i − 1, i)ε, (i + 1,k)+ ∈ σ′, then no F-type
interchange ever takes place.

(5) If ( j, i − 1)ε, (i,ε′), (i + 1,ε′) ∈ σ, so that (i − 1,ε′), ( j, i)ε), ((i + 1),ε′) ∈ σ′, then
there are eight subcases, depending as in case 1 on the length parity and
sign at the end of the top double row, and this time also on whether the
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i−1- and i+1-dominos are bumped into the same double row. Two subcases
involve an F-type interchange and the desired result holds in both of them.

(6) If (i−1,ε), (i,−ε), ( j, i+1)ε
′ ∈σ, so that (i−1,ε), ( j, i)ε

′
, (i+1,−ε) ∈σ′, then no

F-type interchange takes place.

(7) If (i−1,ε), (i+1,ε), (i,k)+ ∈σ, so that (i−1,ε), (i,ε), (i+1,k)+ ∈σ′, then there
is one case where an F-type interchange occurs and the result holds in that
case.

(8) If (i−1,ε), (i+1,−ε), (i,k)+ ∈σ, so that (i,ε), (i+1,−ε), (i−1,k)+ ∈σ′, then an
F-type interchange always occurs and the result holds in all cases.

(9) If ( j1, i−1)+, (i,ε′), ( j2, i+1)+ ∈σ, so that (i−1,ε), ( j1, i)+, ( j2, i+1)+ ∈σ′, then
there is one case where an F-type interchange occurs and the result holds
in it.

(10) If ( j2, i−1)+, (i,ε), ( j1, i+1)+ ∈σ, so that ( j2, i−1)+, ( j1, i)+, (i+1,ε)+ ∈σ′, then
an F-type interchange never arises.

(11) If ( j, i−1)+, (i+1,ε), (i,k)+ ∈σ, so that ( j, i)+, (i+1,ε), (i−1,k)+ ∈σ′, then an
F-type interchange never arises.

(12) If (i−1,ε), ( j, i+1)+, (i,k)+ ∈σ, so that (i−1,ε), ( j, i)+, (i+1,k)+ ∈σ′, then an
F-type interchange never arises.

(13) If ((i+1,ε), (i−1,k1)+, (i,k2)+ ∈σ, so that (i,ε), (i−1,k1), (i+1,k2) ∈σ′, then
there are two subcases where an F-type interchange arises and the result
holds in both of them.

(14) If (i−1,ε), (i+1,k1)+, (i,k2)+ ∈σ, so that ((i,ε), (i+1,k+
1 ), (i−1,k2)+ ∈σ′, then

there are two subcases where an F-type interchange arises and the result
holds in both of them.

(15) If (( j2, i−1)+, ( j3, i)+, ( j1, i+1)+ ∈σ, so that ( j2, i−1)+, ( j1, i)+, ( j3, i+1)+ ∈σ′,
then no F-type interchange occurs.

(16) If ( j1, i−1)+, ( j3, i)+, ( j2, i+1)+ ∈ σ, so that ( j3, i−1)+, ( j1, i)+, ( j2, i+1) ∈ σ′,
then no F-type interchange toccurse.

(17) If ( j2, i−1)+, ( j i, i+1)+, (i,k)+ ∈ σ, so that ( j2, i−1)+, ( j1, i)+, (i+1,k)+ ∈ σ′,
then no F-type interchange occurs.

(18) If ( j1, i−1)+, ( j2, i)+, (i,k)+ ∈σ, so that ( j1, i)+, ( j2, i+1)+, (i−1,k)+ ∈σ′, then
no F-type interchange occurs.

(19) If ( j, i +1)+, (i −1,k1), (i,k2)+ ∈ σ, so that ( j, i)+, (i −1,k1)+, (i +1,k2)+ ∈ σ′,
then no F-type interchange occurs.

(20) If ( j, i−1)+, (i+1,k1)+, (i,k2)+ ∈σ, so that ( j+i , (i+1,k1)+, (i−1,k2)+ ∈σ′, then
no F-type interchange occurs.

(21) If (i+1,k1)+, (i−1,k2)+(, i,k3)+ ∈σ, so that (i,k1)+, (i−1,k2)+, (i+1,k3)+ ∈σ′,
then no F-type interchange occurs.

(22) If (i−1,k1)+, (i+1,k2)+, (i,k3)+ ∈σ, so that ((i,k1)+, (i+1,k2)+, (i−1,k3)+ ∈σ′,
then no F-type interchange occurs.
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This exhausts all cases and concludes the proof.

8.2. THEOREM. Let σ ∈Sn,p. Then the first coordinate T1 of H(σ) parametrizes
the annihilator of the simple Harish-Chandra module corresponding to σ via the
classification of [4, Theorem 3.5.11].

Proof. Thanks to Propositions 7.1 and 8.1, we know that the primitive ideal I
corresponding to T1 has the same generalized τ-invariant as the Harish-Chandra
module X corresponding to σ, whence by [4, Theorem 3.5.9] I is indeed the anni-
hilator of X , since primitive ideals of trivial infinitesimal character in type C are
uniquely determined by their generalized τ-invariants.

We also see that, since the wall-crossing operators Tαβ generate the Harish-
Chandra cells for Sp(p, q) [7, Theorem 1], modules in the same Harish-Chandra
cell for this group (and trivial infinitesimal character) have the same signed
tableaux T2 attached to them, up to changing the signs in double rows whose
rows have even length.

Section 9 H is a bijection

9.1. THEOREM. The map H defines a bijection between Sn,p and ordered pairs
(T1,T2), where T1 is a domino tableau with shape a doubled partition of 2(p+ q)
and T2 is an equivalence class of signed tableaux of signature (2p,2q) and the
same shape as T1.

Proof. We first show that any ordered pair (T1,T2) as in the hypothesis lies in the
range of H, by induction on p+ q. Assuming that this holds for all pairs (T1,T2)
if T1 has fewer than n = p+ q dominos, let T1,T2 be a pair with n dominos in T1.
Let T′

1 be T1 with the n-domino removed.
If the n-domino in T1 is horizontal and lies in a row of even length, then the

next to last row R of T′
1 has two more squares than its last row. By [2, 1.2.13],

there is a domino tableau T whose shape is that of T′
1 with the last two squares

removed from R such that inserting a horizontal i-domino for a suitable index i
into the first row of T produces the tableau T′

1, or else there is such a tableau T
and an index i such that inserting a vertical i-domino into the first column of T
produces T′

1. In either case there is a pair (T′′
1,T

′′
2)= H(σ′) in the range of H, and

if we add (i,n)+ or (i,n)− to σ′ to get σ (the first pair if the i-domino is horizontal,
the second if it is vertical), then H(σ) = (T1,T2), as desired. If instead the n-
domino in T1 is horizontal but lies in a row of odd length then we can move T′

1
through a suitable open cycle to produce a new tableau T′′

1 with shape a doubled
partition such that the shape of T1 differs from that of T1 by a single vertical
domino. We then reduce to the case covered in the following paragraph.

Now suppose that the n-domino in T1 is vertical, so that the shape of T′
1 is

that of a doubled partition. Let T2 be a representative of T2; assume for def-
initeness that the squares in T2 corresponding to those of the n-domino in T1
are labelled +. Look at all the double rows in T2 above the one corresponding

12



to the double row with the n-domino in.T1. If every such double row consists of
rows of odd length ending in +, then one checks immediately that there is a class
T
′
2 such that the pair (T1,T

′
2) = H(σ′) lies in the range of H and if we add (n,+)

to σ′ the resulting involution σ satisfies H(σ) = (T1,T2) as desired. Otherwise,
if the lowest such double row D has rows of odd length and ends in −, let T̃′

1
be obtained from T′

1 by removing the last squares of the rows of D. There is a
domino tableau T with the same shape as T̃′

1 and an index i such that inserting a
suitably oriented i-domino into T gives T′. As above there is a class T

′′
2 of signed

tableaux such that (T,T
′′
2) = H(σ′) and then there is σ with H(σ) = (T1,T2), as

desired. If the lowest such double row has rows of even length ending in +, then
look at the open cycle through the largest domino in the corresponding double
row. The argument of the last paragraph produces the desired σ. If the lowest
such double row D has rows of even length ending in −, then look at the open
cycle of T′

1 through the largest domino in the corresponding double row. If this
open cycle has its hole and corner in different double rows D1,D2, then change
all signs in these double rows of T2 and argue as in the previous case. Finally, if
this open cycle has its hole and corner both in D, then move through this open
cycle in T′

1 and argue as in the case where the n-domino in T1 is horizontal. In
this case adjoining the i-domino initially produces a domino tableau where the
first row of D has length two more than its second row; moving through the open
cycle, as specified by Definition 5.2 (2), gives D the shape it has in T1 and then
bumping the n-domino into the next lower double row yields T1, as desired.

Now we know that H is surjective. To show that it is injective, it is enough
to show that its domain and range have the same cardinality. To this end, we
appeal to [7]. The cells of Harish-Chandra modules for Sp(p, q) span complex
vector spaces which carry the structure of representations of the Weyl group W
of type Cp+q. Let p be a doubled partition of 2(p+ q), with Lusztig symbol s,
and let π be the corresponding irreducible representation of W . Enumerate the
distinct even parts of p as r1, . . . , rk and denote by p1, . . . ,p2k the 2k partitions
obtained from p by either replacing the block r i . . . , r i of parts of p equal to r i
by r i +1, r i, . . . , r i, r i −1 or leaving this block unchanged, for all i between 1 and
k. Then the pi correspond (via their Lusztig symbols) to the representations in
the complex double cell of π of Springer type in the sense of [7]. From this and
[7, Corollary 3] it follows that the number of equivalence classes T2 of shape p
relative to a fixed domino tableau T1 of this shape equals the number of modules
in any Harish-Chandra cell C with annihilator the primitive ideal corresponding
to T1, provided that C has at least one such module. Hence the domain and range
of H have the same cardinality and H is a bijection.

Fix a signed tableau T′
2 whose rows of even length all begin with +. It follows that

signed involutions σ such that the normalization (in the sense of the paragraph
after Definition 5.2) of the second coordinate of H(σ) is T′

2 correspond bijectively
to modules in a Harish-Chandra cell for Sp(p, q) and that all such cells (of mod-
ules with trivial infinitesimal character) arise in this way; in particular, and in
accordance with [7, Theorem 6], there are as many such cells as there are nilpo-
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tent orbits in g0. It remains to show that all modules in the cell corresponding to
T′

2 have associated variety equal to the closure of the corresponding K-orbit in p
via [1, 9.3.5]. This we will do in the next and final section.

Section 10 Associated varieties

Our final result is

10.1. THEOREM. Let σ ∈ Sn,p correspond to the Harish-Chandra module Z.
Then the associated variety of Z is the closure of the K-orbit corresponding to T′

2,
where H(σ)= (T1,T2),T2 is a representative of T2, and T′

2 is its normalization as
defined after Definition 5.2 (obtained from T2 by changing signs as necessary in
all rows of even length so that they begin with +).

Proof. Let q be a θ-stable parabolic subalgebra of g whose corresponding Levi
subgroup of G is Sp(p′, q′)×U(p1, q1)× ·· ·×U(pr, qr), where the pi, qi are such
that p′+∑

i pi = p, q"+∑
i qi = q. There is a simple derived functor module Aq

of trivial infinitesimal character whose associated variety is the closure of the
Richardson orbit O attached to q in the sense of [8]. The corresponding clan σ′
is obtained as follows. Its first block of terms corresponds to the factor Sp(p′, q′),
taking the form (1,+) . . . , (p′ − q′,+), (p′ − q′ + 1, p′ − q′ + 2)−, . . . ,
(p′ + q′ −1, p′ + q′)− if p′ ≥ q′ or (1,−), . . . , (q′ − p′,−), (q′ − p′ +1, q′ − p′ +2)−, . . . ,
(q′ + p′ − 1, q′ + p′)− if q′ > p′. Its next block of terms takes the form
(m+1,+), . . . , (m+p1−q1,+), (m,m+p1−q1+1)+, . . . , (p′+q′+1, p′+q′+p1+q1)+, if
p1 ≥ q1, or (m + 1,−), . . . , (m + q1 − p1)−, (m,m + q1 − p1 + 1)+, . . .
(p′+ q′+1, p′+ q′+ p1 + q1)+ if q1 > p1 (where m+1 = b(p′+ q′+ p1 + q1 +1)/2c);
the remaining blocks of σ correspond similarly to the remaining factors U(pi, qi).
Letting H(σ′) = (T1,T2) and defining T′

2 as above, one checks immediately that
the orbit corresponding to T′

2 is indeed O . More generally, let X ′ be any sim-
ple Harish-Chandra module for Sp(p′, q′) with trivial infinitesimal character and
associated variety Ō . Then there is a simple Harish-Chandra module X for G
obtained from X ′ by cohomological parabolic induction from q, whose associated
variety is the closure of the orbit induced from O in the sense of [8]. Its signed
involution σ(X ) is obtained from that of X ′ by adding the blocks of terms corre-
sponding to the U(pi, qi) factors in the above construction of σ, and if the theorem
holds for X ′ and its associated variety, then the same is true for X .

Given Z as in the theorem, let Ō be its associated variety. If O is the closure
of a Richardson orbit, say the one attached to the θ-stable parabolic subalgebra
q, then the module Aq above lies in the same Harish-Chandra cell as Z and the
theorem holds for Aq, whence it holds for Y . In general, using [8, Proposition
2.3 (3)] and induction by stages, we can induce O to an orbit O ′ for a higher
rank group G′ such that all even parts in the partition corresponding to O ′ have
multiplicity at most 4, whence O ′ is Richardson by [8, Corollary 5.2]. Then the
result holds for the module Z′ correspondingly induced from Z. But now the
orbit O of Sp(p, q) is the only one inducing to O ′ relative to a suitable θ-stable
parabolic subalgebra q of Lie G′ with Levi subgroup having Sp(p, q) as its only
factor of type C. It follows that the theorem holds for Z, as desired.
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