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Last time we gave the outline of the proof that any two
reductive groups G,G′ over a fixed k with isomorphic root data
are isomorphic; for this last week we will sketch the proof that
there exists an algebraic group with any given root datum. For
simplicity we will confine attention to data D = (X ,R, X̌ , Ř) such
that X is exactly the Z-span of R, so that the groups G we
construct will be semisimple and of adjoint type. (There is a
supplementary argument in the text to deal with the general
case, which will be omitted here.)
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The first step is to define the Lie algebra g of G, using only the
root system R. First we define (abstract) Lie algebras h (over
arbitrary fields F) in general: such an h is a finite-dimensional
vector space over F endowed with a bilinear product [x , y ]
(called the bracket of x and y) such that [x , x ] = 0 for all x (so
that also [x , y ] = −[y , x ] for all x , y) and the Jacobi identity holds,
so that [x , [y , z]]− [y , [x , z]] = [[x , y ], z] for all x , y , z, or equivalently
[[x , y ], z] + [[z, x ], y ] + [[y , z], x ] = 0. The main example to keep in
mind is that of any finite-dimensional associative F-algebra A,
taking [xy ] to be the commutator xy − yx ; an easy calculation
shows that the Jacobi identity indeed holds in this case. Now,
given R, set t = k ⊗ X̌ and define g as a vector space as
t⊕

∑
α∈R keα (see p. 179). Note that this decomposition is similar

to, but much simpler than, the analogous one observed earlier
for an algebraic group G with a given root system.
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To define the bracket in general, it is enough by bilnearity to
define [x , y ] for x , y lying either in t or equal to one of the root
vectors eα. We decree that [u,u′] = 0 for
u,u′ ∈ t, [u,eα] = ⟨α,u⟩eα, [eα,e−α] = 1 ⊗ α̌, [eα,eβ] = cα,βeα+β if
α, β, α+ β ∈ R, [eα,eβ] = 0 if α, β ∈ R, α+ β /∈ R (p. 179). Here the
cα,β ∈ k∗ are certain structure constants to be specified below;
note that these are similar to, but significantly simpler than, the
structure constants introduced earlier for groups.
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To define the cα,β , we restrict for now to the simply laced case,
where all roots in R have the same length; recall that this holds if
and only if there are no multiple bonds in the Dynkin diagram of
R, in which case we may take (α, α) = 2 for all α ∈ R. It is easy to
check that for α, β ∈ R and ϵ = ±1 we have α+ ϵβ ∈ R if and only
if ⟨α, β̌⟩ = −ϵ (Lemma 10.2.2 (i), p. 177). Now let f be a Z-valued
bilinear function on X such that (x , y) ≡ f (x , y) + f (y , x)
mod 2, 1

2(x , x) ≡ f (x , x) mod 2 for all x , y ∈ X ; for example, fixing a
Z-basis (ei)1≤i≤n of X , we could set f (ei ,ej) = (ei ,ej) if
1 ≤ i < j ≤ n, f (ei ,ej) = 0 if i > j, f (ei ,ei) =

1
2(ei ,ei).
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Now fix a choice R+ of positive roots, put ϵ(α) = ±1, according
as α ∈ R lies in R+ or −R+, and define
cα,β = ϵ(α)ϵ(β)ϵ(α+ β)(−1)f (α,β) if α, β, α+ β ∈ R. Also define
cαβ = 0 if any of α, β, α+ β fail to lie in R. Then we have

Lemma 10.2.4, p. 178
cα,β = −cβ,α and c−α,βcα,−α+β + cβ,αc−α,α+β = ⟨β, α̌⟩;
If α, β, γ ∈ R are linearly independent we have
cα,βcα+β,γ + cβ,γcβ+γ,α + cγ,αcγ+α,β = 0.
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Proof.
If α, β, α+ β ∈ R then we see from Lemma 10.2.2 (i) that
f (α, β) + f (β < α) ≡ (α, β) ≡ 1 mod 2, implying the first assertion in
(i). If (β, α̌) = −1 then α+ β ∈ R,−α+ β /∈ R, and c−α,β = 0. Hence
cβ,αc−α,α+β = −(−1)f (β,α)+f (−α,α+β) = −1 and the second part of
(i) follows. If (β, α̌) = 1 the proof is similar. To prove part (ii) we
may assume that cα,βcα+β,γ ̸= 0. Then (α, β) = (α+ β, γ) = −1,
whence either (α, γ) = 0, (β, γ) = −1 or (α, γ) = −1, (β, γ) = 0; by
symmetry we may assume that the first alternative holds. Then
what we must show follows from
f (α, β)+ f (α+β, γ)+ f (β, γ)+ f (β+γ, α) ≡ (α, β)+(α, γ)+2f (β, γ) ≡ 1
mod 2. The proof is complete.

As a consequence the Jacobi identity holds on basis vectors of
g, so by linearity holds in general.
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By analogy with associative algebras, we define a derivation on
a general Lie algebra h to be a linear map ∆ on h such that
∆[x , y ] = [∆x .y ] + [x ,∆y ] (the Leibniz rule). The Jacobi identity
shows at once for any fixed z ∈ h that ad z, sending any x ∈ h to
[z, x ], is a derivation; such derivations are called inner.

Lemma 10.2.6, p. 179
Any derivation ∆ on the Lie algebra g constructed above from a
root datum is ad a for a unique a ∈ g, so that it is inner.
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Proof.
Given ∆, write ∆u = d(u) +

∑
α∈R ℓα(u)eα for u ∈ t, where d is a

linear map from g to t and the ℓα are linear functions on g. By the
Leibniz rule on t we get ⟨α,u⟩ℓα(u′) = ⟨α,u′⟩ℓα(u) for all
α ∈ R,u,u′ ∈ t, whence there is cα ∈ k with ℓα(u) = cα⟨α,u⟩ for
u ∈ t, α ∈ R. Then ∆+ad(

∑
cαeα) is a derivation ∆′ mapping t

into itself. The Leibniz rule applied to t and eα then shows that
there is dα ∈ k with ∆′eα = dαeα; applying this rule to eα and eβ

we get dα+β = dα + dβ if α, β α+ β ∈ R,d−α = −dα.
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Proof.
Now let D be the choice of simple roots corresponding to R+.
Given β ∈ R+, β =

∑
α∈D nαα, there must be some α ∈ D such that

nα > 0, (β, α) > 0, whence either β = α or β − α ∈ R+. Continuing
in this way, we see that we can write any β ∈ R+ as a sum
α1 + . . .+ αm of not necessarily distinct simple roots such that
every partial sum α1 + . . . αi is a root. It follows that the dα for
α ∈ R+ and thus for α ∈ R are completely determined by the dα

for α ∈ D, and finally that ∆′ =ad u0 for some u0 ∈ t, as desired.
This u0 is unique as it is easily seen that the only x ∈ g with
ad x = 0 is x = 0.
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If ∆ is a derivation on a general Lie algebra h, then an easy
calculation with the power series exp ∆ =

∑∞
n=0

∆n

n! defines an
automorphism of h whenever this series is well defined, taking ∆0

to be the identity map. This is not always the case (even for say
the algebraically closed field of algebraic complex numbers),
but it does hold if ∆ is nilpotent (and k has characteristic 0), so
that ∆m is identically 0 on h for some fixed m.
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If the characteristic of k is positive, then we must also make sure
that we never divide by 0 in forming the series. Returning now to
the above Lie algebra g, we find that ∆x ,α =ad xeα satisfies
D3

x ,α = 0 on g for any α ∈ R, x ∈ k, since the only root β such that
β + 2α is a root is β = −α and then β + 3α is not a root. Moreover
we have (ad eα)

2(e−α) = α̌(α)eα = 2eα, so exp keα is defined on
g even if k has characteristic 2. We also have the law of
exponents (exp ad keα)(exp ad ℓeα) =exp ad (k + ℓ)eα for
k , ℓ ∈ k. The set Uα of all automorphisms of g of this type is then a
one-dimensional group isomorphic to Ga and acting on g by
automorphisms; its Lie algebra may be identified with keα, since
the action of Uα on g has as differential the adjoint action of keα.
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Now let T be a torus with character group X ; let T act on g via
t .u = u for u ∈ t, t .eα = α(t)eα for α ∈ R. Finally, let G be the
subgroup of GL(g generated by T and all the groups Uα. Then we
have

Proposition 10.2.8, p. 180
With notation as above, G is reductive, T is a maximal torus of it,
and the root system of G relative to T is R.

Indeed, G acts on g by automorphisms by the construction; as
the differential of an automorphism is a derivation by Lemma
4.4.14, the Lie algebra of G is contained in g = t+

∑
α keα by the

previous result. But g is also contained in the Lie algebra L(G) by
the construction, whence g = L(G) and
dimG = dim g = dim T + |R|.
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It is easy to check that the roots of T are exactly the elements of
R; since the minimal nontrivial normal subgroups of G
correspond to the connected components of the Dynkin
diagram of R by Theorem 8.1.5, G has no nontrivial normal
unipotent subgroups and it is reductive. Identifying X with its dual
X̌ via the bilinear form (·, ·), we have α̌ = α for all α ∈ R and thus
Ř = R. Thus the root datum of G is (X ,R, X̌ , Ř). For α ∈ R, the map
sending k ∈ k to exp ad keα provides a realization of R in G. The
structure constants cα,β;i,j turn out to equal cα,β if α, β ∈ R and
i = j = 1; they are 0 otherwise. The quasisimple groups that are
realized in this way are PSL(n,k) (type A), PSO(2n,k) (type D),
and of types E6, E7, and E8 (type E).
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We conclude by remarking that another construction of the
simply connected group G having a given root system R arises
as the universal covering of G as an abstract topological group,
bearing in mind that any such covering always has a
topological group structure and that its deck transformations all
arise from elements of its center (which turns out for algebraic
groups to be isomorphic to the quotient of the weight lattice of
R by its root lattice, as previously noted). The other groups
having root system R, including the adjoint group, are then all
quotients of this one by a finite central subgroup. We also
observe that the non-semisimple adjoint group G′ corresponding
to a datum (X ,R, X̌ , Ř) for which X is not spanned by R but is
instead the direct product of the abelian subgroup Q spanned
by R and its orthogonal under the form (·, ·) is easily constructed
from the group G with datum (Q,R, Q̌, Ř) by taking the direct
product of this group and a suitable torus.
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