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Let G be a connected algebraic group.

Theorem 6.4.7, p. 110
Let S be a subtorus of G.

The centralizer ZG(S) of S is connected.
If B is a Borel subgroup of G containing S then ZG(S) ∩ B is a
Borel subgroup of ZG(S); all Borel subgroups of ZG(S) arise in
this way.
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Proof.
Set Z = ZG(S). Take g ∈ Z and let B be a Borel subgroup
containing g. Put X = {xB ∈ G/B : x−1gx ∈ B}. Then X is a closed
subvariety of G/B, being a fiber of the projection Y1 → G
occurring in the proof of Lemma 6.4.4, with H = B. As a closed
subvariety of G/B,X is complete. Now S acts on X by left
multiplication; by the fixed-point theorem there is xB ∈ X with
x−1Sx ⊂ B. Hence there is a Borel subgroup containing both g
and S. Then Theorem 6.3.5 (ii) and Corollary 6.3.6 (ii) show that g
lies in the identity component Z0 and part (i) follows. Now let B
be as in part (ii). Then Z ∩ B is connected by Corollary 6.3.6 (ii)
and solvable. To prove the first part of (ii) it suffices to show that
Z/Z ∩ B is complete. There is a bijective morphism from Z/Z ∩ B
onto the the Z -orbit Y = Z .B in G/B. Since the map G → G/B is
open, it suffices to show that Y is closed; as the image of Z × B
under a morphism the closure Y is irreducible and
connected.
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Proof.

(continued) If y ∈ Y we have y−1Sy ⊂ B; this also holds if y ∈ Y .
Consider the morphism ϕ : Y × S → B/Bu sending (y , s) to y−1syBu.
By the rigidity of diagonalizable groups we conclude that for
y ∈ Y we have y−1sy ∈ sBu, so that y−1Sy is a maximal torus of
SBu. By the conjugacy of maximal tori of that group there is
z ∈ Bu with y−1Sy = z−1Sz, so that y ∈ Z .B = Y . Hence Y is closed,
as desired; the last assertion in part (ii) follows from the
conjugacy of Borel subgroups.
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By contrast with solvable groups, centralizers of semisimple
elements in general groups need not be connected; see
Exercise 6.4.15 (5).

Corollary 6.4.8
Let T be a maximal torus of G. Then C = ZG(T ) is a Cartan
subgroup of G and any Borel subgroup of G containing T also
contains C.

This follows at once from the theorem with S = T , recalling that
Cartan subgroups are nilpotent.

Theorem 6.4.9, p. 111
Any Borel subgroup B of G has NG(B) = B.

Lecture 11-6: More about solvable groups; roots November 6, 2023 5 / 1



Proof.
We argue by induction on dimG; the result is trivial if G is solvable.
Set H = NG(B) and let x ∈ H. Fix a maximal torus T of B. Then
xTx−1 is also a maximal torus of B; by the conjugacy of maximal
tori we may assume that xTx−1 = T . Consider the homomorphism
ψ : t 7→ xtx−1t−1 of T onto itself. There are two cases. If the image
of ψ is a proper subgroup of T then S = (kerψ)0 is a nontrivial
torus. Moreover, x lies in Z = ZG(S) and normalizes the Borel
subgroup Z ∩ B of Z . If Z ̸= G we have x ∈ B by inductive
hypothesis; if Z = G then S lies in the center of G; passing to G/S
and again using induction we get x ∈ B.
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Proof.
(continued) Otherwise the image of ψ is all of T . Choose ϕ,V ,
and v as in the proof of Theorem 5.5.3 for G/B, realizing B as the
isotropy subgroup of a line kv lying inside a rational
representation V of G. Then ϕ(Bu), ϕ(T ) fix v , since Bu is unipotent
and T lies in the commutator subgroup (H,H), so that ϕ induces
a morphism of the complete variety G/B into the affine one V ,
which must be constant. Then G fixes v , so that H = G and B is
normal in G. But then G/B, containing only unipotent elements,
is unipotent and G is solvable, forcing H = G = B.
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As immediate corollaries we get that if P is parabolic in G then P
is connected and NG(P) = P and if P,Q are conjugate parabolic
subgroups of G whose intersection contains a Borel subgroup B,
then P = Q (Corollaries 6.4.10 and 6.4.11, p. 111). Indeed, P
contains a Borel subgroup B, which lies in P0; if x ∈ NG(P) then
xBx−1 is also a Borel subgroup of P0, which must be conjugate in
P0 to B, say by y ; then y−1x ∈ B and x ∈ P0. For Corollary 6.4.11,
let P = xQx−1. Then B, xBx−1 are two Borel subgroups of P, which
must be conjugate in P, forcing yx for some y ∈ P to lie in
NG(B) = B and x ∈ P, so that P = Q. We also get
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Corollary 6.4.12, p. 111
Let T be a maximal torus of G and B a Borel subgroup containing
T . The map x 7→ xBx−1 induces a bijection of NG(T )/ZG(T ) onto
the set of Borel subgroups containing T .

Surjectivity follows from the conjugacy of maximal tori in B;
injectivity follows since Borel subgroups are self-normalizing and
the normalizer of a torus in a Borel subgroup coincides with its
centralizer (Corollary 6.3.6).
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We now give a couple of important definitions. The set B of all
Borel subgroups of an algebraic group G is called, naturally
enough, its variety of Borel subgroups; it may be identified with
the homogeneous projective space G/B, where B is any fixed
Borel subgroup. Similarly, we have the projective variety P = G/P
of conjugates of a fixed parabolic subgroup P.

If N,N′ are normal subgroups of G then N.N′ is also normal.
Hence there is a unique maximal closed connected normal
solvable subgroup of G, called its (solvable) radical and
denoted R(G). Similarly, there is a unique maximal closed
connected normal unipotent subgroup of G, called its unipotent
radical and denoted Ru(G); we have Ru(G) = R(G)u. We say
that G is semisimple if R(G) = e and reductive if Ru(G) = e. The
rest of the course will be primarily devoted to the study of
reductive algebraic groups.
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We now change gears, introducing some combinatorial data
attached to a maximal torus T in a connected algebraic group
G which play a crucial role in the classification of reductive
groups. The dimension n of T is called the rank of G (p. 117). This
dimension is independent of the choice of T since any two
maximal tori are conjugate; the character group X of T is then
isomorphic to Zn. We know that the Lie algebra g of G is a
rational representation of T via the restriction of the adjoint
representation; as such g is a direct sum of one-dimensional
T -stable subspaces gα called root spaces, each corresponding
to a character α of T . The nontrivial characters α arising in this
way are called roots (of T in g). Denote by P the set of roots. An
easy calculation shows that for any subtorus S of T , the
centralizer ZG(S) = ZG(T ) if and only if S is not contained in any of
the subgroups kerα as α runs over P (Lemma 7.1.2, p. 114).
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For α ∈ P we denote by Gα the centralizer of the subtorus kerα of
T ; this is a closed connected subgroup.

Lemma 7.1.3, p. 114
The Gα generate G as α runs over P; if all Gα are solvable then so
is G.

By Corollary 2.2.7 the subgroup H generated by the Gα is closed
and connected. Its Lie algebra contains the Lie algebra c = g0 of
the centralizer of T and all root spaces gα, whence all of g,
forcing H = G. If Gα is solvable then by Theorem 6.4.7 (ii) it lies in
some Borel subgroup and thus every Borel subgroup of G; if this
holds for all roots α then we have G is a Borel subgroup of itself,
so that G is solvable.
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We denote by P ′ the set of roots α such that Gα is non-solvable
and by W the quotient NG(T )/ZG(T ), called the Weyl group of G
(p. 115). We have seen that W is finite; it acts faithfully as a group
of automorphisms of X permuting P and P ′. By Corollary 6.4.12
there is a bijection between W and the set of Borel subgroups of
G containing T ; if B is one such subgroup there is also a bijection
between W and the set of T -fixed points in G/B. Fixing α ∈ P ′, we
note that the group Gα contains S = kerα in its center and the
Weyl group of Gα relative to T coincides with that of Gα/S
relative to T/S, where T/S ∼= Gm is a one-dimensional torus.
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