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We begin by proving Theorem 6.3.5, stated last time.

We first prove the last assertion. It is clear that G = T.G, since

T N Gy is trivial. Now G is a homogeneous space for the group

T x Gy for the action (t, u).x = txu~!, with the isotropy group at e
being trivial. The tangent map dnr e e) sends (X, Y) € L(T) x L(Gy)
to X — Y and is bijective, whence it is an isomorphism of varieties.
We now prove the other assertions in the case dim G, = 1. Since
Gy is connected it must be isomorphic to G4. Fix an isomorphism
¢:Gg— Gyandlety : G— S= G/G, be the canonical map.
We have dim S = dim G — 1. There is a character a of S such that
go(a)g~! = ¢(a(g)a) for g € G, a € k. If o is trivial, then G is
commutative and the result holds. O
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Proof.

(continued) So assume that « is nontrivial. Let s € G be
semisimple and put Z = Z4(s). By Corollary 5.4.5 we get a direct
sum decomposition g = (Ad(s) — 1)g @ 3. Since ¥ (sxs~') = ¥(x) we
have dy o (Ad(s) — 1) = 0, whence (Ad(s) — 1)g C ker dy = L(Gy),
with the last equality coming from Corollary 5.5.6 (ii). It follows
that dim(Ad(s) — 1)g < 1 and dim Z° = dim 3 > dim G — 1. Now
assume that a(s) # 1. Then Zn G, = e, whence 20 is a closed
connected subgroup of G of dimension dim G — 1 with Z0 = e; by
above results it is a torus. It is maximal and by the last assertion
we have G = 2°G,. If g = xy(x € 2%,y € G,) commutes with s
then so does y, whence y = e; so Z = Z°. We have shown that
the centralizer of s is connected if a(ws) # 1. O
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(continued) If instead a(vys) = 1 then L(Gy) C 3 and we can
conclude that Ad s is the identity, whence s lies in the center of
G. It then lies in a maximal torus, for example the centralizer of a
semisimple element s’ with a(4s") # 1; such elements s’ exist since
we can take the semisimple part of g € G with a(vg) # 1. It
remains to prove the third assertion in the case dim G, = 1. If T is
a maximal torus there is t € T with a(yf) # 1 and T = Zg(1). Let T’
e another maximal torus and let 1 € T’ satisfy a(y1") # 1. Then

T =Zg(1), T = Zs('). Write ' = t¢(a), a € k. Then for b € k we
have ¢(b)t'¢(b)~" = tp(a + (a(vt)~" — 1)b). We can take b such
that the right side equals t, whence ¢(b)T'¢p(b)~! =T, as

desired. O
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(continued) Now consider the general case, taking dim G, > 1.
Let N be as in Lemmma 6.3.4. Put G = G/N. Then

dim G/Gy = dim G/ dim Gy,. Let s € G be semisimple and let s be
its image in G. By induction on dim G, we may assume that § lies
in a maximal torus T of G, whose inverse image H in G is closed,
connected, and contains s. Then s lies in a maximal torus of H,
which is also one of G. This proves the first assertion; the third one
is proved similarly. Ol
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Proof.

(continued) Finally, we have to show that Z = Z5(s) is connected.
let Gy = {ge G:sgs 'g~! € N}; thisis a closed subgroup
containing Z and N (chosen as above) and Gy /N = Z5(s). We
may assume that Z5(s) is connected, whence G, is; if Gy # G
then we have by induction on dim G that Z is connected.
Assume now that G; = G; we may also assume that s is
non-central. An argument similar to the one used to prove the
second assertion in the case dim G, = 1 shows that
G=2729N,Z°n N = e, whence Z = Z0. This concludes the

proof. O
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Next we extend the definition of maximal torus to an arbitrary
algebraic group and develop the basic properties of such tori.
Before doing this we note a consequence of Theorem 6.3.5
(about maximal tori in solvable groups), proved last fime.

Corollary 6.3.6, p. 107
Let H be a subgroup of the connected solvable group G whose
elements are semisimple.
@ His contained in a maximal torus of G; in particular, any
subtorus of H lies in a maximal torus.
@ The centralizer Zg(H) is connected and coincides with the
normalizer Ng(H).
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Proof.

First of all, H is comnmutative since the restriction to H of the
canonical homomorphism G — G/ G, is bijective. If H lies in the
center of G the result is obvious. Otherwise, take a non-central
element s of H. By Theorem 6.3.5 (i), the centralizer Z5(s) is
connected and contains H. Now the first assertion and the
connectedness of Zg(H) follow by induction on dim G. Finally, if
x € Ng(H). then for h € Hwe have

xhx~'h~1 ¢ HN (G, G) c HN G, = e, whence the second
assertion.
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Now let G be an arbitrary connected algebraic group. We
define a maximal forusin G to be a subtorus not properly
contained in any other subtorus (the obvious definition). A
Cartan subgroup of G is the identity component of the
centralizer of a maximal torus; we will see later that in fact such a
centrdlizer is always connected. For now we observe that any
two maximal tori in G are conjugate (Theorem 6.4.1, p. 108),
since a maximal torus T, being connected and solvable, lies in a
Borel subgroup B, with any two maximal tori of B being
conjugate. Since any two Borel subgroups of G are conjugate
the result follows.
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Proposition 6.4.2, p. 108

Let T be a maximal torus of G and C = Zg(T)° the corresponding
Cartan subgroup.

@ Cis nilpotent and T is its unique maximal torus.

@ There exist elements t € T lying in only finitely many
conjugates of C.
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Clearly C contains T as a central subgroup. A Borel subgroup B
of C containing T also has T has a central subgroup and must be
nilpotent, since B/T = B, is nilpotent. By Corollary 6.2.10 we have
C = Band by Corollary 6.3.2 (i) T is the only maximal torus of C;
this proves (i). For the proof of (ii) we begin by claiming that for
any subtorus S of G there is s € S with Zg(s) = Zg(S) (Lemma 6.4.3,
p. 109). To prove this we may assume that G = GL, and that S
consists of diagonal matrices. The diagonal entries define
characters of S; let x;, ..., xm e the characters so obtained.
The elements s € S with x;(s) # x;(s) for i # j have the required
property and form a dense open subset of S; the claim follows.
Now choose t € T with Zg(t) = Zg(T). If  lies in a conjugate
gCg'.thengtgeTand T c Zg(g~'tg) = g 'Tg. Since T s
maximal it follows that g € Ng(T). But C is known to have finite
index in this last group, whence (ii) follows. O
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Lemma 6.4.4, p. 109

Let H be a closed subgroup of G and denote by X the union of
the conjugates of H.

@ X contains a nonempty open subset of its closure X. If H is
parabolic then X is already closed.

@ Assume that H has finite index in its normalizer N and that
there exist elements of H lying in only finitely many
conjugates of H. Then X = G.
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We may assume that H is connected. Then

Y ={(x,y) € Gx G:x yx € H} is a closed subset of G x G
isomorphic to G x H and thus irreducible. If (x, y) € Y then
(xH,y) € Y. It follows that Yy = {(xH, y) : x"Tyx € H} isan
irreducible closed subset of G/H x G. Since X = 7Y, 7 the
second projection, part (i) follows by the definition of parabolic
subgroup, since images of morphisms contain nonempty open
subsets of their closures. Since the fibers of the projection

Y1 — G/H all have dimension dim H it follows from Theorem 5.1.6
(i) that dim Y7 = dim G. If x € H lies in only finitely many
conjugates of H then =~ 'x is finite, since H has finite index in N.
By Theorem 5.2.7 we have dim X = dim Y; = dim G, as desired. [
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Theorem 6.4.5, p. 109

@ Every element of G lies in a Borel subgroup.
@ Every semisimple element of G lies in a maximal torus.

@ The union of the Cartan subgroups of G contains a dense
open subset.

Let T be a maximal torus, C = Zg(T)° the corresponding Cartan
subgroup, and B a Borel subgroup containing C (which exists
because C is connected and nilpotent). Apply the previous
lemma with H = C. it follows from Proposition 6.4.2 (i) that

Ne(C) = Ng(T). By the rigidity of diagonalizable groups, C has
finite index in its normalizer. By Proposition 6.4.2 (i) the conditions
of Lemma 6.4.4 are met; part (i) follows. Next apply Lemma
6.4.4. (i) with H = B; then part (i) follows from (iii). Finally, part (ii)
follows from (i) and Theorem 6.3.5 (i).
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Corollary 6.4.6.,p. 110

Let G be a Borel subgroup of G. Then the center C(B) of B
coincides with C(G).

An element in C(G) lies in a Borel subgroup by Theorem 6.4.5 (),
hence in all of them by the conjugacy of Borel subgroups. So
C(G) c C(B); the reverse inclusion was proved in Corollary 6.2.9.
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