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We continue the study of how root data control the structure of
the reductive groups that give rise to them. Throughout G is a
reductive linear algebraic group with root datum (X ,R, X̌ , Ř)
relative to a maximal torus T and B is a fixed Borel subgroup
corresponding to a choice R+ of positive subsystem of R. Also fix
a realization (uα : α ∈ R) of R in G. First we prove a general result
about solvable groups, from which Proposition 8.2.1 (the last
result stated last time) follows.
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Lemma 8.2.2, p. 137
Let H be a connected solvable algebraic group with maximal
torus S. Assume that there is a set of isomorphisms vi(1 ≤ i ≤ n) of
Ga onto closed subgroups of H such that there exist nontrivial
characters βi of S, no two of them linearly dependent, with
svi(x)s−1 = vi(βi(s)x) for 1 ≤ i ≤ n and all x ∈ k. Also assume that
the weight spaces hβi are one-dimensional and span hu = L(Hu).
Then the morphism ψ : Gn

a → Hu with
ψ(x1, . . . , xn) = v1(x1) . . . vn(xn) is an isomorphism of varieties.
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Proof.
The proof is by induction on n. If n = 1 then Hu equals the image
of v1 (compute dimensions) and the result is trivial. If n > 1 let N
be a normal subgroup in the center of Hu isomorphic to Ga (see
Lemma 6.3.4, p. 105). Then L(N) is an S-stable one-dimensional
subspace of L(Hu), which must be one of the weight spaces hβj .
Then Corollary 5.4.7 shows that the centralizer ZH(ker(βj)

0) is a
group with the properties of H and a one-dimensional unipotent
radical (by the linear independence of the βj). Then N is just the
image of vj .
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Proof.
(continued) For i 6= j let wi : Ga → H/N be the homomorphism
induced by vi . We claim that H/N and the wi satisfy the
assumptions of the lemma, relative to the image of S in H/N; this
is clear except for the wi being isomorphisms. Since the images
of wi and wj overlap trivially (as is easy to check), wi is injective.
Since the weight spaces are one-dimensional the differential dwi
is also injective. By Corollary 5.3.3 (ii), wi is an isomorphism onto a
subgroup of H/N and the claim follows. By induction we may
assume that the result holds for H/N; since N is central it easily
follows that ψ is bijective. By Lemma 4.4.12 the tangent map
dψ(0,...,0) is bijective. By Theorems 4.3.6 and 5.1.6, ψ is birational.
Now Lemma 5.3.4 and Theorem 5.2.8 show that ψ is an
isomorphism, as desired.
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Now fix an ordering of all the roots in R extending the previous
ordering of R+(B). It would be natural to expect that an
analogue of Proposition 8.2.1 (stated at the end last time) would
hold for G and R in place of B and R+(B). This is not the case;
instead the image of the morphism corresponding to φ in
Proposition 8.2.1 is a proper open subset of G. We will see this
later when we prove the Bruhat decomposition (Corollary 8.3.9,
p. 145). For now we introduce the structure constants that will
play a crucial role in presenting a linear algebraic group with
specified root datum as an abstract group.
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Proposition 8.2.3, p. 138
Fix α, β ∈ R, α 6= ±β. There exist constants cα,β,i,j ∈ k such that the
commutator

(uα(x),uβ(y)) =
∏

iα+jβ∈R,i,j>0

uiα+jβ(cα,β,i,jx
iy j)

for all x , y ∈ k, where the order of the factors on the right side is
the one prescribed by the ordering of R. In particular, if there are
no i, j > 0 such that iα + jβ ∈ R, then uα(x) commutes with uβ(y)
for all x , y .
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Proof.
A simple calculation shows that given α, β there is a positive
subsystem of the intersection of R with the subspace W spanned
by α and β containing both of these roots, which extends to a
positive subsystem of R. Hence we may assume that αβ ∈ R+.
Then Uα,Uβ ∈ Bu and (uα(x),uβ(y)) =

∏
γ∈R+ uγ(Pγ(x , y)), where

the order of factors in the product is the prescribed one.
Conjugating by t ∈ T we get Pγ(α(t)x , β(t)y) = γ(t)Pγ(x , y). Using
the linear independence of characters we deduce that Pγ 6= 0 if
and only if γ = iα + jβ for some i, j ≥ 0. It remains to show that
neither i nor j can be 0. Suppose for example that there were a
nontrivial factor with j = 0; since iα is not a root if i > 1 we would
have to have i = 1. Then the commutator (uα(x),uβ(y)) would
have a factor uα(cx) in the product on the right side. Setting
y = 0 we deduce a contradiction.
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Next we need a property of root systems.

Lemma; cf. Exercise 8.1.12 (3b)
Suppose the Dynkin digram D of the root system R has
connected components D1, . . . ,Dr . Then each Di is the Dynkin
diagram of a root system Ri and R is the disjoint union of the Ri ,
with every root in Ri orthogonal to every root in Rj for i 6= j. If D is
connected, then R is irreducible in the sense that one cannot
partition it into two nonempty subsets with every root in the first
subset orthogonal to every one in the second.
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Proof.
Let ∆i be the subset of simple roots corresponding to the nodes
of Di , so that the disjoint union ∆ of the ∆i is the set of simple
roots corresponding to D. We know that every root is conjugate
by a product of simple reflections a root in ∆i for some i and that
the reflections corresponding to roots in ∆j fix all linear
combinations of roots ∆i for j 6= i. It follows at once that the set of
conjugates of a root in ∆i is exactly the root subsystem Ri of R
consisting of roots in the real span Vi of ∆i and that R is the
orthogonal disjoint union of the Ri . If D is connected and R is the
orthogonal disjoint union of R1 and R2, then either all roots of ∆
lie in R1 or all lie in R2, by the connectedness. If they all lie in say
R1, then R2 consists only of roots orthogonal to all roots in ∆; but
there are no such roots, so R2 is empty.
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The consequence of this last result for algebraic groups is

Theorem; cf. Theorem 8.1.5, p. 133
With notations as above, let G be semisimple and let D1, . . . ,Dn
be the irreducible components of the Dynkin diagram D of R,
with Di corresponding to the root system Ri and R the orthogonal
disjoint union of the Ri . For each i there is a closed connected
normal subgroup Gi of G with root system Ri ; we have
(Gi ,Gj) = 1 for i 6= j. G is the product of the Gi and the
intersection of any Gi and the product of the others is finite. The
groups Gi are also quasi-simple in the sense that they have no
normal subgroups of positive dimension.
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Proof.
For each i let Ti be the subtorus of T generated by the images of
the coroots α̌ for α ∈ Ri . We can then take Gi to be the subgroup
generated by Ti and Uα as α runs through the roots in Ri . If
α ∈ Rk , β ∈ R` with k 6= `, then no combination iα + jβ is a root for
any i, j > 0, whence by the above proposition we have
(Gi ,Gj) = 1 for i 6= j. Hence the Gi are closed connected normal
subgroups and G is their product. The proof of Theorem 8.1.5 in
the text shows that each Gi is quasi-simple and each intersects
the product of the others in a finite set (since they commute
elementwise).
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We conclude with some more combinatorics on the Weyl group
W of a root system R. Let ∆ be a choice of simple roots.

Proposition; cf. Theorem 8.2.8 (i)
The simple reflections sα for α ∈ ∆ generate W .

Given any β ∈ R we know that there is a product w of simple
reflections with wβ = α ∈ ∆. Then one easily checks that
w−1sαw = sβ ; since the reflections sβ generate W by definition, so
do the simple reflections. Hence given any w ∈W there is a
unique minimum number h such that w is the product of h simple
reflections; we denote h by `(w) and call it the length of w (p.
142). Clearly the identity element is the unique one of length 0,
while the simple reflections sα are the only elements of length 1.
If s1, . . . , sh are simple reflections (not necessarily distinct) and
w = s1 . . . sh, `(w) = h, then we call s1 . . . sh a reduced
decomposition of w ; note that a fixed w may have many
reduced decompositions.
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Given w we can compute the quantity `(w) without having to
consider any reduced decompositions at all. Fixing a system R+

of positive roots, set R(w) = {α ∈ R+ : w .α ∈ −R+}. Then we have

Lemma 8.3.2, p. 142
Let s1 . . . sh be a reduced decomposition of w . Write αi for the
simple root corresponding to the reflections si , and recall that the
si need not be distinct. Then R(w) = {αh, sh.αh−1, . . . , sh . . . s2.α1},
so that in particular R(w) has h = `(w) elements.

If h = 1, then applying sh to a positive root β adds or subtracts a
multiple of αh to β, whence shβ is still positive if β 6= αh, while
sh(αh) = −αh, so the result holds. The same reasoning shows that
R(wsα) = sα.R(w) ∪ {α} if w .α ∈ R+, while R(wsα) = sα(R(w)− {α})
if w .α ∈ −R+. The result follows at once by induction on h. Next
time we will begin with more results along these lines.
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