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Theorem 6.2.7, p. 102

@ A closed subgroup of G is parabolic if and only if it contains
a Borel subgroup.

@ A Borel subgroup is parabolic.
@ Any two Borel subgroups are conjugate.
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Proof.

We may assume that G is connected. Let B be a Borel subgroup
and P a parabolic subgroup. Applying Borel's fixed point
theorem to B and the complete variety G/P we see that P
contains a conjugate of B, which is also a Borel subgroup. To
finish the proof of the first assertion it suffices to prove the second
one. We may assume that G is non-solvable. Then it has a
proper parabolic subgroup, which after conjugation we may
assume contains B. Then Bis Borel in P; by induction on
dimension we may assume B is parabolic in P. Hence B is
parabolic in G, as desired. Finally, if B, B’ are two Borel subgroups,
then both are parabolic and each is conjugate to a subgroup of
the other, whence they have the same dimension and both are
conjugate. Ol
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An easy argument then yields

Corollary 6.2.8, p. 103

Let ¢ : G — G be a surjective homomorphism of algebraic
groups. Let P be a parabolic subgroup (resp. a Borel subgroup)
of G. Then ¢P is a subgroup of G of the same type.

We also get

Corollary 6.2.9, p. 103
If G is connected with center C(G) then C(G)° ¢ C(B) c C(G).

C(G)is closed, connected, and commutative, so lies in a Borel
subgroup. By the conjugacy of Borel subgroups, it lies in all Borel
subgroups, whence the first inclusion. If g € C(B) the morphism
x — gxg~'x~ ! induces a morphism G/B — G, which must be
constant; the second asserfion follows.
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Then we have

Corollary 6.2.10, p. 103
If Bis nilpotent (as an abstract group) then G° = B.

A connected nilpotent group contains a nontrivial closed
connected subgroup in its center (the subgroup generated by
commutators of maximal length). Hence C(B) is nontrivial and
central in G; moding out by C(B) and arguing by induction on
dimension, the result follows.
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We now study connected solvable groups, denoting such a
group by G throughout. We will show that G always contains a
torus and we will relate ifs structure to that of the torus. We begin
with a famous result.
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Theorem 6.3.1, p. 104: Lie-Kolchin Theorem

If Gis a closed subgroup of GL, then there is x € GL, with
xGx~' c T,, the group of upper triangular matrices.

Using induction on n it is enough to prove that the elements of G
have a nonzero common eigenvector. This follows from Borel’s
fixed-point theorem 6.2.6, applied to G acting on P,
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A more elementary argument is also available. By induction on
dim G we may assume that there is a common eigenvector for
the elements of the commutator group (G, G), which is closed
and connected. If x is a character of (G, G) set
Vi,={veV:gv=x(g)V,gec (G, G)}. Then G permutes the
distinct nonzero spaces V,; since G is connected it must in fact
stabilize each V.. Now it suffices to prove the result when V =V,
for some x. The elements of (G, G) act by scalar multiplications;
since these multiplications have determinant one, (G, G) must
be finite. Since (G, G) is also connected it must be trivial, forcing
G to be abelian. But then we know that G is conjugate to a
subgroup of diagonal matrices and the existence of a common
eigenvector follows at once.
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As an interesting historical aside, Kolchin originally proved this
result for differential Galois groups. These are groups attached to
the solution spaces of linear homogeneous differential equations
with function coefficients coming from a given field of functions,
just as ordinary Galois groups are attached to the splitting fields
of polynomials with coefficients from a given field of numbers.
Differential Galois groups were historically the first groups to be
called algebraic.
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Corollary 6.3.2, p. 105
Assume further that G c GL, is nilpotent.
@ The sets Gg, G, of semisimple rep. unipotent elements are

closed and connected subgroups, with Gs a central torus in

G.

@ The product map Gs x G, — G is an isomorphism of
algebraic groups.
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We first show that Gs is a central torus. Nilpotence of G forces alll
n-fold iterated commutators in G to be trivial, forsome n. If s € G
is semisimple, the map x defined in 5.4.1 from conjugation c(s)
by s has x(x) = (s, x) = sxs~'x~!, the commutator of s and x, for
all x € G, whence x"'G = e. By Lemma 4.4.13 we get that

Ad(s) — 1is alinear map on g which is both semisimple and
nilpotent, so that it is 0. It follows that G is closed under
multiplication and is indeed a central torus. Now we know that
V = k" decomposes as a direct sum of one-dimensional
subspaces, on each of which G acts by scalars. Lie-Kolchin
then enables us to put the restriction of G to each subspace in
friangular form. The result of the proof proceeds as in the
commurtative case. O
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Corollary 6.3.3, p. 105
Let G be solvable and connected.

@ The commutator subgroup (G, G) is closed, connected,
unipotent, and normal.

@ The set G, of nilpotent elements is a closed connected
nilpotent, and normal subgroup of G; the quotient group
G/ Gy is a torus.
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Proof.

First of all, (G, G) is closed and connected. We may assume that
G is a closed subgroup of T,. Then (G, G) is clearly unipotent.
Since G, = GnN Un, Un the upper triangular unipotent matrices,
we see that G is a closed normal subgroup, nilpotent since Uy is.
We have an injective map from G/ G, into the torus D = T,/ Up.
Thus G/ Gy is diagonalizable; since it is connected it is a torus. It
only remains to show that G is connected. Its identity
component G is normal in G; passing o G/ G2, we are reduced
to showing that G is finite then it is trivial. Now any finite normal
subgroup N of a connected linear algebraic group H is central,
since for fixed n € N the morphism from G to N sending g to

g~ 'ng has connected and finite image. Hence G, = 1 and G is
nilpotent. The previous result then shows that G is connected,
as desired. O
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Before we prove our next main result we need a lemma.
Lemma 6.3.4, p. 105

Assume that G is not a torus. Then there exists a closed normal
subgroup N of G that is isomorphic to G4 and lies in the center of
Gy.

Let H a nontrivial closed connected subgroup of G lying in the
center of G; we have seen that such subgroups exist. If the
characteristic p of k is nonzero we may further assume that

HP = e, by replacing H by a suitable power HP of itself. Then H is
isomoprhic to a vector group G if m= 1, we are done.
Otherwise let A C k[H] be the space of additive functions on H.
The torus T = G/ G, acts on H by conjugation; there is a
representation of T on k[H] stabilizing A. We can then find f € A
which is a simultaneous eigenvector for the T-action. Then the
identity component (ker )9 of the kernel of f has the same
properties as H, but has lesser dimension. The lemma then follows
by induction.
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A maximal torusin G is a subtorus with the same dimension as
S=G/Gy (p. 106). This turns out to be the same as a subtorus of
maximal dimension, as follows from the next result; for now just
note that dim § is indeed the maximal possible dimension of a
subtorus.

Theorem 6.3.5, p. 106

@ Let s € G be semisimple. Then s lies in a maximal torus; in
particular, maximal tori exist.

@ The centralizer Zg(s) of a semisimple element s € G is
connected.

@ Any two maximal tori of G are conjugate.

@ If T is a maximal torus, then the productmap n: T x G, — G
is an isomorphism of varieties.

We will prove this next time.
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