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Having mentioned non-affine varieties last time, | will proceed at
once to the most important class of such varieties for us, namely
projective varieties.
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Definitions 1.7.1,p. 14

Projective space P" is the set of lines through the origin in k™1;
equivalently, it is the affine space k™! with the origin removed,
modulo the equivalence relation identifying a nonzero vector x
with any nonzero multiple of itself. We write x* for the
equivalence class of x; if x = (xg, ..., Xn) then we call the x; the
homogeneous coordinates of x.
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Definitions, p. 14

ForO<i<nweset U = {(Xg,...,Xn)* € P": Xx; # 0}, we declare
the U; to be open subsets of P and define a bijection ¢; : U; — A"
VIA 91(X0, -+ s Xn)* = (X7 X05 s X X1, X X1y X Xn). We
fransport the structure of affine variety of A" to U; via this
bijection and declare a general subset of P" to be open if and
only if its intersection with each U; is open.
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A function f defined in a neighborhood of x € P is defined to be
regular if it is regular in the usual sense on some U; containing x.
Thus P has the structure of a prevariety, and in fact that of a
variety (check this)
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Definition 1.7.1, p. 15

A projective variety is a closed subset of some P”; a
quasi-projective variety is an open subvariety of a projective
one.

There is a sharp contrast in the behavior of regular functions in
the affine and projective cases: the only regular functions
defined at all points of a projective variety are constant!
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Now let I C k[Xp, .. ., Xn] be a homogeneous ideal, so that by
definition a polynomial belongs to / if and only if all of its
homogeneous terms (of any degree) do. It is easy to check that
a nonzero x € k"1 is a common zero of all p e | if and only if any
nonzero multiple of x is, so that the set V/(/) of common zeros of
all polynomials in I may be viewed as a subset of P". In fact all
nonempty closed subsets of P" take the form V(/) for some
proper homogeneous ideal /.
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The projective version of the Nullstellensatz states that radical
homogeneous ideals | of S =KX, ..., Xn] other than

J = (X, ..., Xn) are in bijection to closed subsets of P", via the
map sending / to V(/). In this bijection prime ideals correspond
to irreducible closed subsets. Since the ideal J does not occur in
this correspondence, it is sometimes called the irrelevant ideal.
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The product of two projective varieties turns out to have the
structure of a projective variety. To see this, one first embeds the
product P x P into PM+N+M (not PM*1M) via the map sending
the pair (xg, - - -, Xn), (Yo, - - -, Ym) Of homogeneous coordinates to
(XoY0s - - > XnY0, X1 Y05 - - - » Xn¥Ym). Thus P x P is not isomorphic to
P+ pbut rather another projective variety of dimension m + n.
Then if V., W are two projective subvarieties of P", P™,
respectively, the product V x W has a natural structure of
projective subvariety of P"M+1+M (Exercise 1.7.5 (4b), p. 16)
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The Zariski topology on A" makes it info a compact space, but
one that behaves rather differently than compact subsets of say
R" (with the Euclidean topology); for example, any open subset
of A" is also compact. For this reason | have used the term
“quasicompact” rather than “compact”. | will show later that
projective space, or more generally any projective variety,
satisfies a property called completeness that makes it look more
like compact subsets of R than affine varieties do. For now | just
remark that projective varieties are not as central to this course
as they are to Math 567; it will be a while before | have occasion
to use them.
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| conclude by saying a few more words about elliptic curves,
which are the most common examples of non-affine algebraic
groups. Assume that the characteristic of k is not 2 or 3 and let
x3 + ax + b be a polynomial in k[x] with no multiple roots.
Consider first the affine subvariety of k2 defined by the equation
y2 = x3 + ax + b. This is not quite large enough to have a group
structure but it acquires one if the extra points at infinity gotten
by passing to projective space are added to it.

Lecture 10-4: Projective space October 4, 2023 11/1



Accordingly, we homogenize the defining equation, rewriting it
as y2z = x3 4+ axz2 + bz® and viewing it as an equation in P2. Then
it turns out that given any two points

x = (X0, X1,%), Y = (Yo, V1, ¥2) € P? lying in the proejctive variety E
defined by this equation there is a unique third point

z = (29,2, 20) also satisfying it such that x, y, z are collinear in the
sense that there are nonzero constants ¢y, ¢y, ¢y with

CoX + C1yY + cpz = 0. Declaring that x + y + z = 0 in this situation
makes E info an abelian group, called an abelian variety. Its
identity element is (0, 1,0) and the inverse of (x, y, z) is (x, -V, 2).
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