Lecture 3-6

Last time I introduced the formal character ch N_{λ} of any subquotient N_{λ} of a Verma module M_{λ} as the formal sum $\sum_{\mu} \operatorname{dim}\left(N_{\lambda}\right)_{\mu} e^{\mu}$, where the sum runs over all the weights μ of N_{λ}; this sum can be infinite but still makes sense, since all weight spaces of N_{λ}, like those of M_{λ}, are finite-dimensional. Let me way a few words about the use of the term "character" in this context. Usually this term refers to the trace of the matrix attached to an element of a group by a representation of that group. Working for simplicity over the basefield \mathbb{C}, we have the aforementioned exponential map taking any Lie algebra L of matrices to a corresponding Lie group G; it sends a matrix M to $e^{M}=\sum_{i=0}^{\infty} M^{i} / i$!. If a representation W of L has a nonzero μ-weight space W_{μ}, then the matrices h in any Cartan subalgebra H of L act on W_{μ} with trace $\operatorname{dim} W_{\mu} \mu(h)$, whence the matrices in the corresponding Cartan subgroup e^{H} act on W_{μ} with trace $\operatorname{dim} W_{\mu} e^{\mu(h)}$. If μ is finite-dimensional, then the sum of all terms $\operatorname{dim} W_{\mu} e^{\mu h}$ is the trace of h on W; if W is infinite-dimensional, then we have to worry about convergence issues for the sum defining ch W, but at least this motivates our definition of the sum and product of any two expressions $\sum_{\mu} a_{\mu} e^{\mu}$ and $\sum_{\mu} b_{\mu} e^{\mu}$; note that the weights μ occurring for example in any highest weight module will be such that the product of any two such sums running over the weights in such a module is well defined.

Now it is easy to see that given a chain of submodules $N_{0} \subset N_{1} \subset N_{2} \subset \ldots$ of a highest weight module N, the character ch N of N is the sum of the characters of the subquotients N_{i} / N_{i-1} for $i \geq 1$. Last time we saw that all irreducible subquotients of any Verma module M_{λ} are themselves irreducible highest weight modules L_{μ} and that there are only finitely many possibilities for μ (any μ occurring in this way must lie in the λ-coset of the weight lattice of L in \mathbb{R}^{n} and have $\mu+\rho$ of the same square length at $\lambda+\rho$ where ρ is the half sum of the positive roots. Since the weight spaces of N_{λ} are finite-dimensional, it follows that M_{λ} in fact admits a finite chain of submodules whose subquotients all take the form L_{μ} for some μ lying below λ in the partial order and satisfying the condition above. If we now fix λ and let $\mu_{1}=\lambda, \ldots, \mu_{n}$ denote all μ satisfying this condition, then we can order the μ in such way that ch $M_{\mu_{i}}$ is the sum of ch $L_{\mu_{i}}$ and a nonnegative integral combination of ch $L_{\mu_{j}}$ for $j>i$ (so that in particular $M_{\mu_{n}}=L_{\mu_{n}}$ is irreducible. This gives us an upper triangular system of linear equations relating the ch $M_{\mu_{i}}$ to the ch $L_{\mu_{i}}$ with integer entries and ones on the main diagonal. Any such system can be inverted, so we deduce that ch $L_{\mu_{i}}$ is an integral linear combination $\sum n_{j} c h M_{\mu_{j}}$ of $c h M_{\mu_{j}}$ in which ch $M_{\mu_{i}}$ appears with coefficient $n_{i}=1$; the other coefficients can be negative integers in general.

Now for the first time we introduce our key hypothesis that λ is dominant integral, so that L_{λ} is the unique finite-dimensional irreducible module with highest weight λ. Consider a typical term ch M_{μ} appearing in the combination for ch L_{λ}. By the PBW Theorem we may write ch M_{μ} as $e^{\mu} \prod_{\alpha \in \Phi+}\left(1+e^{-\alpha}+e^{-2 \alpha}+\ldots\right)=e^{\mu} \prod_{\alpha \in \Phi+} \frac{1}{1-e^{-\alpha}}$. Multiplying the numerator and denominator of the α term in this product by $e^{\alpha / 2}$ and using the definition of ρ, we get the more symmetric expression $\frac{e^{\mu+\rho}}{\prod\left(e^{\alpha / 2}-e^{-\alpha / 2}\right)}$. Now we bring in the last piece of the puzzle: ch L_{λ} is invariant under the natural action of the Weyl group W, where $w \in W$ sends anye e^{μ} to $e^{w \mu}$. Applying any simple reflection s_{β} to the product $\Delta=\prod_{\alpha>0}\left(e^{\alpha / 2}-e^{-\alpha / 2}\right)$, we find that the term $e^{\beta / 2}-e^{-\beta / 2}$ is replaced
by its negative, while the other terms, corresponding to positive roots other than β, are permuted; hence the product is sent to its negative. Hence any $w \in W$, when applied to this product, sends it to $\operatorname{det} w$ times itself, where $\operatorname{det} w$ is the determinant of w regarded as a linear transformation of the Euclidean space H^{*} containing the roots.

The formula ch $L_{\lambda}=\sum_{\mu}$ ch M_{μ}, combined with the W-invariance of ch L_{λ} and the skew invariance of the denominator Δ, guarantees that the numerator $\sum n_{i} e^{\mu_{i}+\rho}$ is skewinvariant under W; the coefficient of any term e^{ν} in it equals $\operatorname{det} w$ times the coefficient of $e^{w \nu}$ in it. But now the coefficient of $e^{\lambda+\rho}$ is one, so the coefficient of $e^{w(\lambda+\rho)}$ is $\operatorname{det} w$. Now finally the only $e^{\mu+\rho}$ appearing in this sum with μ dominant integral is $\mu=\lambda$, since other dominant integral weights $\mu+\rho$ below $\lambda+\rho$ have shorter length than $\lambda+\rho$, so our final grand conclusion is the Weyl character formula: $\operatorname{ch} L_{\lambda}=\frac{\sum_{w \in W}(\operatorname{det} w) e^{w(\lambda+\rho)}}{\Delta}$. In particular, taking $\lambda=0$, we find that L_{λ} is the trivial representation, having weight 0 with multiplicity 1 and no other weights, so we get a formula for the Weyl denominator Δ; it is $\sum_{w \in W}(\operatorname{det} w) e^{w \rho}$.

