Lecture 3-6

Last time I introduced the formal character ch N_{λ} of any subquotient N_{λ} of a Verma module M_{λ} as the formal sum $\sum_{\mu} \dim(N_{\lambda})_{\mu} e^{\mu}$, where the sum runs over all the weights μ of N_{λ} ; this sum can be infinite but still makes sense, since all weight spaces of N_{λ} , like those of M_{λ} , are finite-dimensional. Let me way a few words about the use of the term "character" in this context. Usually this term refers to the trace of the matrix attached to an element of a group by a representation of that group. Working for simplicity over the basefield \mathbb{C} , we have the aforementioned exponential map taking any Lie algebra L of matrices to a corresponding Lie group G; it sends a matrix M to $e^M = \sum_{i=0}^{\infty} M^i / i!$. If a representation W of L has a nonzero μ -weight space W_{μ} , then the matrices h in any Cartan subalgebra H of L act on W_{μ} with trace dim $W_{\mu}\mu(h)$, whence the matrices in the corresponding Cartan subgroup e^H act on W_{μ} with trace dim $W_{\mu}e^{\mu(h)}$. If μ is finite-dimensional, then the sum of all terms dim $W_{\mu}e^{\mu h}$ is the trace of h on W; if W is infinite-dimensional, then we have to worry about convergence issues for the sum defining h W, but at least this motivates our definition of the sum and product of any two expressions $\sum_{\mu} a_{\mu} e^{\mu}$ and $\sum_{\mu} b_{\mu} e^{\mu}$; note that the weights μ occurring for example in any highest weight module will be such that the product of any two such sums running over the weights in such a module is well defined.

Now it is easy to see that given a chain of submodules $N_0 \subset N_1 \subset N_2 \subset \ldots$ of a highest weight module N, the character ch N of N is the sum of the characters of the subquotients N_i/N_{i-1} for $i \geq 1$. Last time we saw that all irreducible subquotients of any Verma module M_{λ} are themselves irreducible highest weight modules L_{μ} and that there are only finitely many possibilities for μ (any μ occurring in this way must lie in the λ -coset of the weight lattice of L in \mathbb{R}^n and have $\mu + \rho$ of the same square length at $\lambda + \rho$ where ρ is the half sum of the positive roots. Since the weight spaces of N_{λ} are finite-dimensional, it follows that M_{λ} in fact admits a *finite* chain of submodules whose subquotients all take the form L_{μ} for some μ lying below λ in the partial order and satisfying the condition above. If we now fix λ and let $\mu_1 = \lambda, \ldots, \mu_n$ denote all μ satisfying this condition, then we can order the μ in such way that ch M_{μ_i} is the sum of ch L_{μ_i} and a nonnegative integral combination of ch L_{μ_j} for j > i (so that in particular $M_{\mu_n} = L_{\mu_n}$ is irreducible. This gives us an upper triangular system of linear equations relating the ch M_{μ_i} to the ch L_{μ_i} with integer entries and ones on the main diagonal. Any such system can be inverted, so we deduce that ch L_{μ_i} is an integral linear combination $\sum n_j$ ch M_{μ_j} of ch M_{μ_j} in which ch M_{μ_i} appears with coefficient $n_i = 1$; the other coefficients can be negative integers in general.

Now for the first time we introduce our key hypothesis that λ is dominant integral, so that L_{λ} is the unique finite-dimensional irreducible module with highest weight λ . Consider a typical term ch M_{μ} appearing in the combination for ch L_{λ} . By the PBW Theorem we may write ch M_{μ} as $e^{\mu} \prod_{\alpha \in \Phi^+} (1 + e^{-\alpha} + e^{-2\alpha} + ...) = e^{\mu} \prod_{\alpha \in \Phi^+} \frac{1}{1 - e^{-\alpha}}$. Multiplying the numerator and denominator of the α term in this product by $e^{\alpha/2}$ and using the definition of ρ , we get the more symmetric expression $\frac{e^{\mu+\rho}}{\prod (e^{\alpha/2} - e^{-\alpha/2})}$. Now we bring in the last piece of the puzzle: ch L_{λ} is invariant under the natural action of the Weyl group W, where $w \in W$ sends any e^{μ} to $e^{w\mu}$. Applying any simple reflection s_{β} to the product $\Delta = \prod_{\alpha>0} (e^{\alpha/2} - e^{-\alpha/2})$, we find that the term $e^{\beta/2} - e^{-\beta/2}$ is replaced by its negative, while the other terms, corresponding to positive roots other than β , are permuted; hence the product is sent to its negative. Hence any $w \in W$, when applied to this product, sends it to det w times itself, where det w is the determinant of w regarded as a linear transformation of the Euclidean space H^* containing the roots.

The formula ch $L_{\lambda} = \sum_{\mu} \operatorname{ch} M_{\mu}$, combined with the *W*-invariance of ch L_{λ} and the skew invariance of the denominator Δ , guarantees that the numerator $\sum n_i e^{\mu_i + \rho}$ is skew-invariant under *W*; the coefficient of any term e^{ν} in it equals det *w* times the coefficient of $e^{w\nu}$ in it. But now the coefficient of $e^{\lambda+\rho}$ is one, so the coefficient of $e^{w(\lambda+\rho)}$ is det *w*. Now finally the only $e^{\mu+\rho}$ appearing in this sum with μ dominant integral is $\mu = \lambda$, since other dominant integral weights $\mu + \rho$ below $\lambda + \rho$ have shorter length than $\lambda + \rho$, so our final grand conclusion is the Weyl character formula: ch $L_{\lambda} = \frac{\sum_{w \in W} (\det w) e^{w(\lambda+\rho)}}{\Delta}$. In particular, taking $\lambda = 0$, we find that L_{λ} is the trivial representation, having weight 0 with multiplicity 1 and no other weights, so we get a formula for the Weyl denominator Δ ; it is $\sum_{w \in W} (\det w) e^{w\rho}$.