
Lecture 3-4

We now look at other representations of classical Lie algebras (besides the defining
representations). Recall that the tensor product ⊗iVi of two or more modules Vi over
a Lie algebra L also carries the structure of an L-module. In the case of tensor powers
TnV = V ⊗n of a single L-module V , certain natural quotients of TnV also admit an L-
module structure. Specifically, if we pass to the nth symmetric power SnV , obtained from
TnV by moding out by the relation v ⊗ w = w ⊗ v for v, w ∈ V (that is, by identifying
two pure tensors in TnV whenever one is obtained form the other by interchanging two
terms), then the defining relation is preserved by the action of L, so L continues to act
on SnV . Similarly, if instead we impose the relation v ⊗ w = −w ⊗ v for v, w ∈ V , then
we get the nth exterior power ∧nV , which is also an L-module whenever V is. Note that
the dimension of ∧nV is the binomial coefficient

(
m
n

)
, where m is the dimension of V , so

∧nV = 0 for n > m; by contrast, SnV has dimension
(
m+n−1

n

)
, which grows arbitrarily

large as n increases.
Now it turns out that if V is the defining representation of a classical Lie algebra L,

then the powers SnV,∧nV are “irreducible modulo the obvious relations”. More precisely,
all symmetric and exterior powers SnV, TnV are irreducible over L if L = sl(n,K), with the
highest weight of SnV equal to n times the highest weight of V itself. If L is orthogonal
(so of type B or D), then S2V has a nonzero vector sent to 0 by L, corresponding to
the symmetric bilinear form preserved by Int L; accordingly, we may view Sn−2V as a
submodule of SnV and the quotient SnV/Sn−2V turns out to be irreducible; its highest
weight is n times the highest weight of V . The exterior powers ∧nV remain irreducible
(or 0) for all n; there is no skew-symmetric form preserved by Int L. In type C, we
have the opposite situation; there is a skew-symmetric bilinear form preserved by Int L;
accordingly, ∧2V admits an Int L-invariant vector (sent to 0 by L) and ∧n−2V identifies
with a submodule of ∧nV if 2 ≤ n ≤ m = (1/2) dimV and ∧nV/ ∧n−2 V is irreducible.
Its highest weight has coordinates (1, . . . , 1, 0, . . . , 0), where n ones appear. In types A
and C, one can start from V , apply a purely linear algebraic construction generalizing the
symmetric and exterior powers, and get all the irreducible finite-dimensional L-modules;
this is the approach followed by Weyl in his famous 1939 book on the classical groups.
In types B and D, the starting point of V is not enough; one needs the so-called half-
spin representation in type B and two half-spin representations in type D. Their highest
weights are ((1/2, . . . , 1/2) in type Bn and (1/2, . . . , 1/2), (1/2, . . . , 1/2,−1/2) in type
Dn; in both cases all weights are W -conjugates of the highest weight and all multiplicities
are one, so that the dimension of the half-spin representation in type Bn is 2n, while the
dimensions of the half-spin representations in type Dn are both 2n−1. As mentioned last
time, all of these representations carry actions of the appropriate spin group, but not the
corresponding orthogonal group.

Returning now to a general semisimple Lie algebra L with Cartan subalgebra H, let
λ ∈ H∗ be any weight (not necessarily integral). Let I be the left ideal of the enveloping
algebra U of L arising in the definition of highest weight representation, so that I is
generated by all positive root space Lα of L together with h − λ(h) for all h ∈ H. The
quotient U/I is called a standard cyclic module in the text; nowadays it is more commonly
known as a Verma module and denoted Mλ. Any L-module generated by a single highest



weight vector of weight λ is a quotient of Mλ; the unique irreducible such module is denoted
Lλ (where this notation replaces our earlier one V λ).

Now the weights of Mλ all take the form λ − ν, where ν is a sum of simple roots;
thus if a sum of sufficiently many simple roots is added to any weight of Mλ, the resulting
weight does not occur in Mλ. It follows that any subquotient S of Mλ has a weight that
is maximal in the partial order, and thus a highest weight vector. Thus an irreducible
subquotient of Mλ must take the form Lµ for some weight µ lying below λ. But now I
claim that there are only finitely many possibilities for µ. To prove this, we introduce
an analogue in U of the Casimir element that we used in the proof of Weyl’s Theorem.
Let h1, . . . , hr be an orthonormal basis of H with respect to the Killing form κ. For each
positive root α, choose xα ∈ Lα, zα ∈ L−α so that κ(xα, zα) = 1. Note that zα is not the
same as our usual yα ∈ L−α corresponding to xα; this time we have [xα, zα] = tα, the
element of H identified with α ∈ H∗. Now the element c =

∑r
i=1 h
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i +
∑
α∈Φ+(xαzα+zαxα)

of U commutes with all x ∈ L, by the same argument as for the original Casimir element;
rewriting each term xαzα in the sum as zαxα + [xαzα] = zαxα + tα, we see that c acts by
the scalar (λ + 2ρ) · λ = ||λ + ρ||2 − ||ρ||2 on the highest weight vector in Mλ, where 2ρ
(denoted 2δ in the text) is the sum of the positive roots. Since the highest weight vector
of Mλ generates Mλ as an L-module, c acts by this scalar on all of Mλ and by the same
scalar on any irreducible subquotient of Mλ. But now we have already observed that the
weights µ of Mλ all lie in the translate of the root lattice of L by λ; only finitely many
vectors µ in this translate can have µ+ ρ of the same square length as λ+ ρ. The upshot
is that there are only finitely many simple subquotients of Mλ up to isomorphism. Next
time we will continue this argument to show that Mλ as finite length as a U -module and
explore its structure in more detail.


