
Lecture 3-15

We wrap up the course by starting from a Chevalley basis of a complex simple Lie
algebra, as we did to construct its split and compact real forms, but now moving in a
different direction. We mentioned that if xα, xβ , xα+β are root vectors in a Chevalley
basis such that α, β, and α + β are all roots, then the constant cαβ appearing in the
bracket [xαxβ ] = cαβxα+β is equal to ±(r + 1) where r is the largest integer (possibly
0) for which β − rα is a root. If we now assume that β + 2α, . . . , β + qα are all roots,
then repeatedly bracketing xβ with xα gives rise to the coefficients ±(r+ 1),±(r+ 1)(r+
2), . . . ,±(r+1) . . . (r+ q), all of which remain integers upon division by q!, so we conclude
that ad xqα/q! and exp ad xα both leave the Z-span L′ = LZ of a Chevalley basis of L
invariant. Hence the group G generated by all exp ad cxα as α runs over the roots also
leaves L′ invariant. Now if p is a prime, we can reduce everything modulo p: even though
the resulting reduction L′p of L′ might not be semisimple, as noted last time, and even
though some of the denominators arising in the definition of exp ad xα might be equal to
0 mod p, the reduced group Gp still makes sense and still acts on the reduction of L′p mod
p. More generally, if F is any field of characteristic p, then we can set L′F to be the algebra
obtained from L′p by extending scalars from Zp to F , then the group GF generated by
exp ad cxα as c runs over the elements of F and α runs over the roots is well defined and
acts by automorphisms on L′F . In a famous and fundamental paper of 1955, Chevalley
showed that the groups GF are simple, apart from a few exceptional cases for very small
fields F . He thereby exhibited several families of finite simple groups; many of the groups
in these families were previously known, but Chevalley’s was the first unified treatment
of them. The simplest example of a Chevalley group is obtained from Gq = GL(n,Fq),
the group of n × n invertible matrices over the finite field Fq of order q = pn, p a prime.
Here Gq itself is not simple, but if we pass first to the subgroup Hq of matrices in Gq with
determinant 1 and then to the quotient Pq of Hq by its center, we do get a simple group for
q ≥ 5. There is a simple formula for the order of S; observing first that the first row of an
n× n invertible matrix over Fq can be any nonzero vector in Fq, then the second row can
be any vector not a multiple of the first row, and so on, we see that that the order of Gq is

(qn− 1)(qn− q) . . . (qn− qn−1 = q(
n
2)(q− 1) . . . (qn− 1). Dividing by q− 1 (there are q− 1

possible determinants of a matrix in Gq, each equally likely), and then finally by the order
g =gcd(n, q− 1) of the cyclic center of Hq, we get the formula for the order of Pq, namely

q(
n
2)(q2 − 1) . . . (qn − 1)/g. Chevalley showed that the orders of all finite Chevalley groups

attached to Fq are given by a formula of much the same form, namely a power of q times
a product of various differences qi − 1, possibly divided by another constant equal to the
order of the center of a certain finite group. The exponents i of the powers of q arising in
the formula depend in a very interesting way on the root system of the Lie algebra giving
rise to the group Gq; they are in fact called the exponents of this root system and have
many applications not related to Chevalley groups.

Later Steinberg showed that whenever the Dynkin diagram of the Lie algebra L admits
a nontrivial diagram automorphism, that automorphism can be folded into the construction
of Chevalley groups to produce further families of finite simple groups, called twisted. In
fact it turns out that in characteristic 2 there is a series of twisted groups called the Suzuki



groups that do not have analogues in characteristic 0 but which eventually were seen to fit
into this construction; later Ree constructed further analogues for type G2 in characteristic
3. Then the alternating groups, the finite Chevalley groups, their analogues using diagram
automorphisms in types An, Dn, and E6 due to Steinberg, and the analogues due to Ree,
Suzuki, and Tits and existing only in characteristics 2 and 3, account for all but finitely
many finite simple groups of nonprime order. There are 26 sporadic finite simple groups as
well, not lying in any infinite family of groups. The largest of these is the Monster group;
it too turns out to have a Monster Lie algebra attached to it.


