
Lecture 3-13

We continue with real forms, constructing the noncompact real forms for each complex
semisimple Lie algebra in turn. In type A, we have the set su(p, q) of trace 0 skew-adjoint
matrices with respect to the Hermitian form (·, ·)pq. This form is defined by

((v1, . . . , vi+j), (w1, . . . , wi+j))pq =
∑p

k=1 vkw̄k −
∑p+q

k=p+1 vkw̄k. We also have the split
real form sl(n,R). There is only one other real form, living only in even dimensions, and
denoted su∗(2n); it consists of all n × n matrices over the ring H of quaternions having
trace a real combination of i, j, k.

In types B and D we once again have a family of (this time) symmetric bilinear
forms on Rn parametrized by their signatures (p, q); here (·, ·)pq is defined via the recipe

(v1, . . . , vp+1), (w1, . . . , wp+1)pq =
∑p

k=1 viwi −
∑p+q

k=p+1 viwi. The set of skew-adjoint
matrices with respect to this form is denoted so(p, q); if p = 0 or q = 0 we get the compact
form so(p + q) defined earlier, while the split real form arises from the cases p = q and
p = q ± 1. There is one further real form in type Dn denoted so∗(2n); it consists of skew-
adjoint n×n matrices over H with respect to the skew-Hermitian form

∑n
i=1 vijw̄i, where

the j term in the middle refers to the quaternion with this label (not an index).

In type C we have the split form sp(2n,R) and then the set sp(p, q) skew-adjoint
matrices over H with respect to the Hermitian form

∑p
i=1 viw̄i −

∑p+q
k=p+1 viw̄i.

To describe the real forms of the exceptional simple Lie algebras we need to say a bit
more about the Cartan decomposition L = K + P from last time; here L is a semisimple
Lie algebra over R,K is a compact subalgebra of L such that the restriction of the Killing
form κ on L to K is negative definite, and P is a K-submodule of L such that [PP ] ⊂ K an
the restriction of κ to P is positive definite. We get an involution θ (automorphism of order
2) on L by decreeing that θ = 1 on K and θ = −1 on P ; we call θ the Cartan involution.
Then θ extends uniquely to a complex-linear involution on the complexification of L; it is
equal to 1 on the complexification of K and −1 on the complexification of P . It turns out
that conjugacy classes of automorphisms of order two of a complex Lie algebra classify its
noncompact real forms up to isomorphism; in the exceptional case we can further label a
real form of the complex Lie algebra of type XN as Xn(a) if dimP − dimK = a (that
is, no two nonisomorphic real forms of the same complex exceptional Lie algebra have the
same value of a. We now run through the possibilities for XN in turn.

The most interesting type is E6; here we find four real forms, denoted E6(6), E6(2),
E6(−14), and E6(−26). The fixed subalgebras of the corresponding involution of the
complex Lie algebra of this type have the respective types C4, A5 × A1, D5 × C, and F4.
In type E7 there are three noncompact real forms, denoted E7(7), E7(−5), and E7(−25);
here the fixed subalgebras have types A7, D6 +A1, and E6 ×C. In type E8, there are just
two noncompact real forms, denoted E8(8) and E8(−24); the fixed subalgebras have types
D8 and E7×A1. In type F4 we get the forms F4(4) and F4(−20), having fixed subalgebras
of types C3 × A1 and B4, respectively. Finally in type G2, there is just one noncompact
real form, labelled G2(2), and having fixed subalgebra of type A1 × A1. In all cases the
form labelled XN (N) is the split one and whenever the label C appears in the type of a
subalgebra it refers to the one-dimensional center of that subalgebra. In most cases we
note that the rank of the subalgebra equals that of the complex algebra.



Where do these involutions and subalgebras come from? In fact they arise in a very
simple way in most cases; the automorphism is a diagonal automorphism, acting as the
identity on a Cartan subalgebra and as a scalar on every root space relative to it. More
precisely, recall the extended Dynkin diagrams that we introduced earlier and used to
classify Dynkin diagrams; they arise from ordinary (connected) Dynkin diagrams by adding
one more vertex, representing the negative of the highest root, and joining it to the other
vertices by the usual rules. We can label the vertices in this diagram, labelling the added
vertex 1 and the other vertices by the coefficient of the corresponding simple root in
the highest root (indeed, the extended Dynkin diagram is often understood to include
these labels by definition). Now it turns out that, except in types An, Dn, and E6, the
only possibilities up to conjugacy for the involution in the exceptional cases either involve
choosing just one vertex with the label 2, or else two vertices with the label 1. The
corresponding fixed subalgebra then has diagram corresponding to the unchosen vertices,
together with a copy of C if there are two chosen vertices with the label 1. The slight
complication in the other types An, Dn, and E6 arise from the existence of a diagram
automorphism of order 2 in those types; here involutions involving that automorphism
π come from a slight modification of the extended Dynkin diagram of the fixed point
subalgebra of π(one where a vertex corresponding to the negative of a suitable multiple of
a root rather than to the highest root is added).


