
Lecture 3-11

In the first week of class, when I gave basis vectors for the classical Lie algebras,
you may already have noticed that the commutator of any two of them is an integral
combination of the others. Now we are in a position to prove that any semisimple Lie
algebra L over an algebraically closed field K of characteristic 0 admits a basis consisting
of elements of a Cartan subalgebra and root vectors, such that the bracket of any two
basis elements is a rational combination of basis elements. The slickest way to see this is
to invoke the abstract construction by generators and relations of a semisimple Lie algebra
over any field K having a specified root system Φ. The construction works over any field
K of characteristic 0; the only reason that it can fail in general (and would not work over
Z) is that at one point it invokes the action of the Weyl group, which is defined by finite
power series involving denominators. But in fact any semisimple complex Lie algebra L
does admit a basis of this type such that the bracket of any two basis vectors is an integer
combination of basis vectors. To prove this, let σ be the Chevalley automorphism of L
mentioned earlier; it acts as−1 on a fixed Cartan subalgebra and sends any root space Lα to
the negative root space L−α. If we choose any nonzero xα ∈ Lα for α positive, the bracket
[xα,−σ(xα] is a multiple of hα, the element of H corresponding to 2α/α · α. Multiplying
xα by c ∈ C multiplies [xα,−σ(xα] by c2. By the algebraic closure of C, we can choose
xα ∈ Lα for all positive α in such a way that [xα,−σ(xα] = hα for α > 0; replacing xα by
−σ(xα) and using that (−σ)2 = 1, h−α = −hα, we see that [xα,−σ(xα)] = hα holds for
all roots α. Having chosen xα ∈ Lα,−σ(xα ∈ L−α for all α > 0, let h1, . . . , hr enumerate
the hβ as β runs through the simple roots. Then every hα is an integer combination of
hi, every hi has every xα as an eigenvector with integer eigenvalue, and if α, β, and α+ β
are all roots with [xα, xβ ] = cαβxα+β , then on applying σ we get that cαβ = −c−α,−β .
It is then shown in the text that these conditions imply that cαβ = ±(r + 1), where r
is the largest positive integer such that β − rα is a root; in particular, all coefficients
appearing are indeed integers. We call a basis of L consisting of elements of H and root
vectors constructed in this way a Chevalley basis. Such a basis shows that a semisimple
Lie algebra with a root space decomposition and given root system exists over any field
(and even over any ring of characteristic 0). We call such a Lie algebra split semisimple;
clearly it has properties quite analogous to those of such Lie algebras over algebraically
closed fields.

Now take the basefield K to be R and let L be a semisimple complex Lie algebra with
Chevalley basis {xα, hi : α ∈ Φ, i = 1, . . . , r}. Let L′ be the real subalgebra spanned by
xα − x−α, i(xα + x−α, ihj , where α runs over the positive roots, the index j runs as above
from 1 to r, and as usual i is a square root of −1. The property cαβ = c−α,−β noted
above guarantees that L′ is indeed closed under the bracket. Now L′ is semisimple, but
it does not have a root space decomposition; indeed, it turns out that all elements of L′

are semisimple (but not diagonalizable; in fact all elements of L′ have purely imaginary
eigenvalues), but L′ is not abelian. The Killing form κ is easily seen to restrict to a negative
definite real bilinear form on L′; the adjoint group Int L′, now generated by all exp ad x as
x runs over all of L′, not just the ad-nilpotent elements, preserves this form, so that Int L
is naturally realized as a closed subgroup of O(n,R), where n is the real dimension of L′,
equal to the complex dimension of L. Accordingly, we call both L′ and its adjoint group



compact, even though L′ is obviously not compact as a topological space. The subalgebra
L′ is uniquely determined up to isomorphism by L; it is called the compact real form of
the latter.

We can give a direct construction of L′ for classical Lie algebras L, analogous to the
definitions of those algebras we gave in the first week. Recall that the standard Hermitian
form (·, ·) on Cn is defined via ((v1, . . . , vn), (w1, . . . , wn) =

∑
viw̄i; this form is complex-

linear in the first variable but only conjugate-linear in the second. The set of all complex
linear transformations X of trace 0 from Cn to itself that are skew-adjoint with respect
to this form (so that (Xv,w) = −(v,Xw) for all v, w ∈ Cn) is a real (not complex) Lie
algebra denotes su(n,C); it realizes the compact real form of type An−1. In types B and
D, we can similarly but more simply take L to consist of all linear transformation s from
Rn to itself skew-adjoint with respect to the dot product, or even more simply of all skew-
symmetric n × n real matrices. Finally, in type C, the intersection sp(2n,C) ∩ su(2n,C)
realizes the compact form we are looking for. This can also be described as the set of right
linear transformations from quaternionic n-space Hn to itself that are skew-adjoint with
respect to the Hermitian form (·, ·) (given by the above recipe, but now with vi, wi ∈ H).

In general it turns out that there are up to isomorphism only finitely many real forms
of a fixed complex semisimple Lie algebra L; that is, real subalgebras L′ of L having the
same dimension over R that L does over C and such that CL′ = L. Any such L′ has
a Cartan decomposition K + P with K a compact subalgebra, P a K-submodule, and
[PP ] ⊂ K. Moreover the restriction of the Killing form κ on L′ to K is negative definite
and the restriction of κ to P is positive definite. We will say more about noncompact and
nonsplit real forms later.


