Lecture 3-1

Last time we learned that any finite-dimensional irreducible module V = V* over
a semisimple Lie algebra L is completely determined by its highest weight A\, which can
be any dominant integral weight. The module V* is the direct sum of its weight spaces
Vu)\; the weights p occurring all lie below A\ and are such that p occurs if and only if wp
does, for all w in the Weyl group W of L. The dimension dim V/;\ of the p weight space of
VA is called the multiplicity of u in V*; we saw last time that this any two W-conjugate
weights have the same multiplicity in V* for any dominant integral A. In particular, all
W-conjugates wA of X itself have multiplicity one in V*. This observation is important
because when we speak of the highest weight of a finite-dimensional representation we are
implicitly making a choice of positive roots; no one choice is any better than another. Thus
it must be that V* has a unique highest weight with respect to any choice of positive roots.
This is indeed the case; any two choices of positive roots are conjugate under W and the
corresponding highest weight spaces W/\A, W{E/\ are indeed both one-dimensional.

By contrast, suppose that L admits a nontrivial automorphism 7 of its Dynkin dia-
gram, sending say the simple root a to another simple root 5 # «. We have seen that =
corresponds to an automorphism g, of L, but how do we know (as claimed earlier) that
gr is never inner in this situation? The answer is the unique irreducible module V' of
highest weight A = \,, where 2\, - a/(a- @) = 1,2\ - v = 0 for simple 7 # «, is not
isomorphic to the corresponding module W with highest weight \' = A\g, since A # \’; but
if g, were inner, it would act on V', sending its highest weight space to another highest
weight space of weight Ag. There is no such weight space in V, so g, is not inner. No
inner automorphism of L can permute the simple root spaces nontrivially.

Which dominant weights p occur in V* (with nonzero multiplicity)? We have already
seen that if u occurs, then it must lie below (or equal) A in the partial order; it turns out
that this necessary condition is also sufficient. In fact, if any weight A’ occurs in V*, then
any dominant integral ;1 < A" also occurs in V*. To prove this, write A\ —yu = v = Y o Nal,
the sum taking place over simple roots «; then we must have v - a > 0 for some «, whence
N -« > v-ais strictly positive and A — a must occur in V*, by the representation theory
of 5[(2). Continuing in this way, we see that y also occurs in V*. In fact, the proof yields
more: the representation theory of s[(2) guarantees that the dimension of the X' — « weight
space is at least that of the \’ weight space, whence ultimately the multiplicity of y in V
is at least that of \/. Since weights conjugate under W have the same multiplicity in V?,
we see that the necessary and sufficient condition for an arbitrary (integral) weight u to
occur in V* is that u and all of its W-conjugates either lie below X in the partial order or
are equal to it.

As you may have guessed, the highest root of any simple Lie algebra L is also the
highest weight of L as an irreducible L-module. If L is semisimple, then its highest weights
as an L-module are just the highest roots of its simple components, each regarded as the
0 weight on the other simple components.

I have mentioned that there are finitely many but in general more than one complex
Lie group with a fixed Lie algebra L over C; the different Lie groups G with Lie algebra
L correspond to lattices lying between the root and weight lattices of L. It turns out



that the action of L on a finite-dimensional module lifts to GG if and only if the weights
of the module lie in the lattice corresponding to G. Thus all finite-dimensional sl(n, C)
modules are also SL(n,C) modules, but given the quotient G, of SL(n,C) by the cyclic
subgroup generated by the scalar matrix e2™™/"] for some m|n, we et a G,,-action on
an sl(n,C)-module if and only if the coordinates of its weights all have denominators
diving m. The situation is simpler for the other classical groups; in types B weights either
have only integers or only half-integers as coordinates and the simply connected group
Spin(2n + 1,C) or Spin(2n,C) acts in both cases but SO(2n + 1,C) and SO(2n,C) does
not. In type C the coordinates of any weight are integers, but a weight lies in the root
lattice if and only if the sum of its coordinates is even. The group Sp(2n, C) always acts on
any finite-dimensional sp(2n,C) module but its quotient PSp(2n,C) =Sp(2n,C)/{I,—1I}
acts on a finite-dimensional module if and only if its weights lie in the root lattice.



