Lecture 3-1

Last time we learned that any finite-dimensional irreducible module $V=V^{\lambda}$ over a semisimple Lie algebra L is completely determined by its highest weight λ , which can be any dominant integral weight. The module V^{λ} is the direct sum of its weight spaces V^{λ}_{μ} ; the weights μ occurring all lie below λ and are such that μ occurs if and only if $w\mu$ does, for all w in the Weyl group W of L. The dimension $\dim V^{\lambda}_{\mu}$ of the μ weight space of V^{λ} is called the multiplicity of μ in V^{λ} ; we saw last time that this any two W-conjugate weights have the same multiplicity in V^{λ} for any dominant integral λ . In particular, all W-conjugates $w\lambda$ of λ itself have multiplicity one in V^{λ} . This observation is important because when we speak of the highest weight of a finite-dimensional representation we are implicitly making a choice of positive roots; no one choice is any better than another. Thus it must be that V^{λ} has a unique highest weight with respect to any choice of positive roots. This is indeed the case; any two choices of positive roots are conjugate under W and the corresponding highest weight spaces $W^{\lambda}_{\lambda}, W^{\lambda}_{w\lambda}$ are indeed both one-dimensional.

By contrast, suppose that L admits a nontrivial automorphism π of its Dynkin diagram, sending say the simple root α to another simple root $\beta \neq \alpha$. We have seen that π corresponds to an automorphism g_{π} of L, but how do we know (as claimed earlier) that g_{π} is never inner in this situation? The answer is the unique irreducible module V of highest weight $\lambda = \lambda_{\alpha}$, where $2\lambda_{\alpha} \cdot \alpha/(\alpha \cdot \alpha) = 1, 2\lambda \cdot \gamma = 0$ for simple $\gamma \neq \alpha$, is not isomorphic to the corresponding module W with highest weight $\lambda' = \lambda_{\beta}$, since $\lambda \neq \lambda'$; but if g_{π} were inner, it would act on V, sending its highest weight space to another highest weight space of weight λ_{β} . There is no such weight space in V, so g_{π} is not inner. No inner automorphism of L can permute the simple root spaces nontrivially.

Which dominant weights μ occur in V^{λ} (with nonzero multiplicity)? We have already seen that if μ occurs, then it must lie below (or equal) λ in the partial order; it turns out that this necessary condition is also sufficient. In fact, if any weight λ' occurs in V^{λ} , then any dominant integral $\mu < \lambda'$ also occurs in V^{λ} . To prove this, write $\lambda - \mu = \nu = \sum_{\alpha} n_{\alpha} \alpha$, the sum taking place over simple roots α ; then we must have $\nu \cdot \alpha > 0$ for some α , whence $\lambda' \cdot \alpha \geq \nu \cdot \alpha$ is strictly positive and $\lambda' - \alpha$ must occur in V^{λ} , by the representation theory of $\mathfrak{sl}(2)$. Continuing in this way, we see that μ also occurs in V^{λ} . In fact, the proof yields more: the representation theory of $\mathfrak{sl}(2)$ guarantees that the dimension of the $\lambda' - \alpha$ weight space is at least that of the λ' weight space, whence ultimately the multiplicity of μ in V^{λ} is at least that of λ' . Since weights conjugate under W have the same multiplicity in V^{λ} , we see that the necessary and sufficient condition for an arbitrary (integral) weight μ to occur in V^{λ} is that μ and all of its W-conjugates either lie below λ in the partial order or are equal to it.

As you may have guessed, the highest root of any simple Lie algebra L is also the highest weight of L as an irreducible L-module. If L is semisimple, then its highest weights as an L-module are just the highest roots of its simple components, each regarded as the 0 weight on the other simple components.

I have mentioned that there are finitely many but in general more than one complex Lie group with a fixed Lie algebra L over \mathbb{C} ; the different Lie groups G with Lie algebra L correspond to lattices lying between the root and weight lattices of L. It turns out

that the action of L on a finite-dimensional module lifts to G if and only if the weights of the module lie in the lattice corresponding to G. Thus all finite-dimensional $\mathfrak{sl}(n,\mathbb{C})$ modules are also $SL(n,\mathbb{C})$ modules, but given the quotient G_m of $SL(n,\mathbb{C})$ by the cyclic subgroup generated by the scalar matrix $e^{2\pi i m/n}I$ for some m|n, we et a G_m -action on an $\mathfrak{sl}(n,\mathbb{C})$ -module if and only if the coordinates of its weights all have denominators diving m. The situation is simpler for the other classical groups; in types B weights either have only integers or only half-integers as coordinates and the simply connected group $\mathrm{Spin}(2n+1,\mathbb{C})$ or $\mathrm{Spin}(2n,\mathbb{C})$ acts in both cases but $SO(2n+1,\mathbb{C})$ and $SO(2n,\mathbb{C})$ does not. In type C the coordinates of any weight are integers, but a weight lies in the root lattice if and only if the sum of its coordinates is even. The group $\mathrm{Sp}(2n,\mathbb{C})$ always acts on any finite-dimensional $\mathfrak{sp}(2n,\mathbb{C})$ module but its quotient $\mathrm{PSp}(2n,\mathbb{C}) = \mathrm{Sp}(2n,\mathbb{C})/\{I,-I\}$ acts on a finite-dimensional module if and only if its weights lie in the root lattice.