
Lecture 3-1

Last time we learned that any finite-dimensional irreducible module V = V λ over
a semisimple Lie algebra L is completely determined by its highest weight λ, which can
be any dominant integral weight. The module V λ is the direct sum of its weight spaces
V λµ ; the weights µ occurring all lie below λ and are such that µ occurs if and only if wµ

does, for all w in the Weyl group W of L. The dimension dimV λµ of the µ weight space of

V λ is called the multiplicity of µ in V λ; we saw last time that this any two W -conjugate
weights have the same multiplicity in V λ for any dominant integral λ. In particular, all
W -conjugates wλ of λ itself have multiplicity one in V λ. This observation is important
because when we speak of the highest weight of a finite-dimensional representation we are
implicitly making a choice of positive roots; no one choice is any better than another. Thus
it must be that V λ has a unique highest weight with respect to any choice of positive roots.
This is indeed the case; any two choices of positive roots are conjugate under W and the
corresponding highest weight spaces Wλ

λ ,W
λ
wλ are indeed both one-dimensional.

By contrast, suppose that L admits a nontrivial automorphism π of its Dynkin dia-
gram, sending say the simple root α to another simple root β 6= α. We have seen that π
corresponds to an automorphism gπ of L, but how do we know (as claimed earlier) that
gπ is never inner in this situation? The answer is the unique irreducible module V of
highest weight λ = λα, where 2λα · α/(α · α) = 1, 2λ · γ = 0 for simple γ 6= α, is not
isomorphic to the corresponding module W with highest weight λ′ = λβ , since λ 6= λ′; but
if gπ were inner, it would act on V , sending its highest weight space to another highest
weight space of weight λβ . There is no such weight space in V , so gπ is not inner. No
inner automorphism of L can permute the simple root spaces nontrivially.

Which dominant weights µ occur in V λ (with nonzero multiplicity)? We have already
seen that if µ occurs, then it must lie below (or equal) λ in the partial order; it turns out
that this necessary condition is also sufficient. In fact, if any weight λ′ occurs in V λ, then
any dominant integral µ < λ′ also occurs in V λ. To prove this, write λ−µ = ν =

∑
α nαα,

the sum taking place over simple roots α; then we must have ν ·α > 0 for some α, whence
λ′ ·α ≥ ν ·α is strictly positive and λ′−α must occur in V λ, by the representation theory
of sl(2). Continuing in this way, we see that µ also occurs in V λ. In fact, the proof yields
more: the representation theory of sl(2) guarantees that the dimension of the λ′−α weight
space is at least that of the λ′ weight space, whence ultimately the multiplicity of µ in V λ

is at least that of λ′. Since weights conjugate under W have the same multiplicity in V λ,
we see that the necessary and sufficient condition for an arbitrary (integral) weight µ to
occur in V λ is that µ and all of its W -conjugates either lie below λ in the partial order or
are equal to it.

As you may have guessed, the highest root of any simple Lie algebra L is also the
highest weight of L as an irreducible L-module. If L is semisimple, then its highest weights
as an L-module are just the highest roots of its simple components, each regarded as the
0 weight on the other simple components.

I have mentioned that there are finitely many but in general more than one complex
Lie group with a fixed Lie algebra L over C; the different Lie groups G with Lie algebra
L correspond to lattices lying between the root and weight lattices of L. It turns out



that the action of L on a finite-dimensional module lifts to G if and only if the weights
of the module lie in the lattice corresponding to G. Thus all finite-dimensional sl(n,C)
modules are also SL(n,C) modules, but given the quotient Gm of SL(n,C) by the cyclic
subgroup generated by the scalar matrix e2πim/nI for some m|n, we et a Gm-action on
an sl(n,C)-module if and only if the coordinates of its weights all have denominators
diving m. The situation is simpler for the other classical groups; in types B weights either
have only integers or only half-integers as coordinates and the simply connected group
Spin(2n + 1,C) or Spin(2n,C) acts in both cases but SO(2n + 1,C) and SO(2n,C) does
not. In type C the coordinates of any weight are integers, but a weight lies in the root
lattice if and only if the sum of its coordinates is even. The group Sp(2n,C) always acts on
any finite-dimensional sp(2n,C) module but its quotient PSp(2n,C) = Sp(2n,C)/{I,−I}
acts on a finite-dimensional module if and only if its weights lie in the root lattice.


